17 research outputs found

    Parameterised Pushdown Systems with Non-Atomic Writes

    Get PDF
    We consider the master/slave parameterised reachability problem for networks of pushdown systems, where communication is via a global store using only non-atomic reads and writes. We show that the control-state reachability problem is decidable. As part of the result, we provide a constructive extension of a theorem by Ehrenfeucht and Rozenberg to produce an NFA equivalent to certain kinds of CFG. Finally, we show that the non-parameterised version is undecidable.Comment: This is the long version of a paper appearing in FSTTCS 201

    On Bounded Reachability Analysis of Shared Memory Systems

    Get PDF
    This paper addresses the reachability problem for pushdown systems communicating via shared memory. It is already known that this problem is undecidable. It turns out that undecidability holds even if the shared memory consists of a single boolean variable. We propose a restriction on the behaviours of such systems, called stage bound, towards decidability. A k stage bounded run can be split into a k stages, such that in each stage there is at most one process writing to the shared memory while any number of processes may read from it. We consider several versions of stage-bounded systems and establish decidability and complexity results

    Reachability in Networks of Register Protocols under Stochastic Schedulers

    Get PDF
    We study the almost-sure reachability problem in a distributed system obtained as the asynchronous composition of N copies (called processes) of the same automaton (called protocol), that can communicate via a shared register with finite domain. The automaton has two types of transitions: write-transitions update the value of the register, while read-transitions move to a new state depending on the content of the register. Non-determinism is resolved by a stochastic scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the processes. The answer to this problem naturally depends on the number N of processes. However, we prove that our setting has a cut-off property: the answer to the almost-sure reachability problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding whether this constant answer is positive or negative

    Checking Presence Reachability Properties on Parameterized Shared-Memory Systems

    Get PDF
    We consider the verification of distributed systems composed of an arbitrary number of asynchronous processes. Processes are identical finite-state machines that communicate by reading from and writing to a shared memory. Beyond the standard model with finitely many registers, we tackle round-based shared-memory systems with fresh registers at each round. In the latter model, both the number of processes and the number of registers are unbounded, making verification particularly challenging. The properties studied are generic presence reachability objectives, which subsume classical questions such as safety or synchronization by expressing the presence or absence of processes in some states. In the more general round-based setting, we establish that the parameterized verification of presence reachability properties is PSPACE-complete. Moreover, for the roundless model with finitely many registers, we prove that the complexity drops down to NP-complete and we provide several natural restrictions that make the problem solvable in polynomial time

    Complexity of Liveness in Parameterized Systems

    Get PDF
    We investigate the fine-grained complexity of liveness verification for leader contributor systems. These consist of a designated leader thread and an arbitrary number of identical contributor threads communicating via a shared memory. The liveness verification problem asks whether there is an infinite computation of the system in which the leader reaches a final state infinitely often. Like its reachability counterpart, the problem is known to be NP-complete. Our results show that, even from a fine-grained point of view, the complexities differ only by a polynomial factor. Liveness verification decomposes into reachability and cycle detection. We present a fixed point iteration solving the latter in polynomial time. For reachability, we reconsider the two standard parameterizations. When parameterized by the number of states of the leader L and the size of the data domain D, we show an (L + D)^O(L + D)-time algorithm. It improves on a previous algorithm, thereby settling an open problem. When parameterized by the number of states of the contributor C, we reuse an O^*(2^C)-time algorithm. We show how to connect both algorithms with the cycle detection to obtain algorithms for liveness verification. The running times of the composed algorithms match those of reachability, proving that the fine-grained lower bounds for liveness verification are met

    On the Complexity of Bounded Context Switching

    Get PDF
    Bounded context switching (BCS) is an under-approximate method for finding violations to safety properties in shared-memory concurrent programs. Technically, BCS is a reachability problem that is known to be NP-complete. Our contribution is a parameterized analysis of BCS. The first result is an algorithm that solves BCS when parameterized by the number of context switches (cs) and the size of the memory (m) in O*(m^(cs)2^(cs)). This is achieved by creating instances of the easier problem Shuff which we solve via fast subset convolution. We also present a lower bound for BCS of the form m^o(cs / log(cs)), based on the exponential time hypothesis. Interestingly, the gap is closely related to a conjecture that has been open since FOCS\u2707. Further, we prove that BCS admits no polynomial kernel. Next, we introduce a measure, called scheduling dimension, that captures the complexity of schedules. We study BCS parameterized by the scheduling dimension (sdim) and show that it can be solved in O*((2m)^(4sdim)4^t), where t is the number of threads. We consider variants of the problem for which we obtain (matching) upper and lower bounds

    Model-Checking Parametric Lock-Sharing Systems Against Regular Constraints

    Get PDF
    In parametric lock-sharing systems processes can spawn new processes to run in parallel, and can create new locks. The behavior of every process is given by a pushdown automaton. We consider infinite behaviors of such systems under strong process fairness condition. A result of a potentially infinite execution of a system is a limit configuration, that is a potentially infinite tree. The verification problem is to determine if a given system has a limit configuration satisfying a given regular property. This formulation of the problem encompasses verification of reachability as well as of many liveness properties. We show that this verification problem, while undecidable in general, is decidable for nested lock usage. We show Exptime-completeness of the verification problem. The main source of complexity is the number of parameters in the spawn operation. If the number of parameters is bounded, our algorithm works in Ptime for properties expressed by parity automata with a fixed number of ranks

    A Compositional Deadlock Detector for Android Java

    Get PDF
    We develop a static deadlock analysis for commercial Android Java applications, of sizes in the tens of millions of LoC, under active development at Facebook. The analysis runs primarily at code-review time, on only the modified code and its dependents; we aim at reporting to developers in under 15 minutes. To detect deadlocks in this setting, we first model the real language as an abstract language with balanced re-entrant locks, nondeterministic iteration and branching, and non-recursive procedure calls. We show that the existence of a deadlock in this abstract language is equivalent to a certain condition over the sets of critical pairs of each program thread; these record, for all possible executions of the thread, which locks are currently held at the point when a fresh lock is acquired. Since the critical pairs of any program thread is finite and computable, the deadlock detection problem for our language is decidable, and in NP. We then leverage these results to develop an open-source implementation of our analysis adapted to deal with real Java code. The core of the implementation is an algorithm which computes critical pairs in a compositional, abstract interpretation style, running in quasi-exponential time. Our analyser is built in the INFER verification framework and has been in industrial deployment for over two years; it has seen over two hundred fixed deadlock reports with a report fix rate of ∌54%

    The Diagonal Problem for Higher-Order Recursion Schemes is Decidable

    Full text link
    A non-deterministic recursion scheme recognizes a language of finite trees. This very expressive model can simulate, among others, higher-order pushdown automata with collapse. We show decidability of the diagonal problem for schemes. This result has several interesting consequences. In particular, it gives an algorithm that computes the downward closure of languages of words recognized by schemes. In turn, this has immediate application to separability problems and reachability analysis of concurrent systems.Comment: technical report; to appear in LICS'1
    corecore