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Abstract
We study the almost-sure reachability problem in a distributed system obtained as the asyn-
chronous composition of N copies (called processes) of the same automaton (called protocol),
that can communicate via a shared register with finite domain. The automaton has two types of
transitions: write-transitions update the value of the register, while read-transitions move to a
new state depending on the content of the register. Non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the
processes. The answer to this problem naturally depends on the number N of processes. How-
ever, we prove that our setting has a cut-off property: the answer to the almost-sure reachability
problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding
whether this constant answer is positive or negative.

1998 ACM Subject Classification F.1.1 Models of Computation, F.3.1 Specifying and Verifying
and Reasoning about Programs, C.2.2 Network Protocols

Keywords and phrases Networks of Processes, Parametrized Systems, Stochastic Scheduler,
Almost-sure Reachability, Cut-Off Property

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.106

1 Introduction

Verification of systems with many identical processes. It is a classical pattern in dis-
tributed systems to have a large number of identical components running concurrently
(a.k.a. networks of processes). In order to verify the correctness of such systems, a naive
option consists in fixing an upper bound on the number of processes, and applying clas-
sical verification techniques on the resulting system. This has several drawbacks, and in
particular it gives no information whatsoever about larger systems. Another option is to
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use parameterized-verification techniques, taking as a parameter the number of copies of the
protocol in the system being considered. In such a setting, the natural question is to find
and characterize the set of parameter values for which the system is correct. Not only the
latter approach is more general, but it might also turn out to be easier and more efficient,
since it involves orthogonal techniques.

Different means of communication lead to different models. A seminal paper on para-
meterized verification of such distributed systems is the work of German and Sistla [17].
In this work, the authors consider networks of processes all following the same finite-state
automaton; the communication between processes is performed thanks to rendez-vous com-
munication. Various related settings have been proposed and studied since then, which
mainly differ by the way the processes communicate. Among those, let us mention broadcast
communication [15, 10], token-passing [8, 2], message passing [6], shared register with ring
topologies [1], or shared memory [16]. In his nice survey on such parameterized models [14],
Esparza shows that minor changes in the setting, such as the presence of a controller in the
system, might drastically change the complexity of the verification problems. The relative
expressiveness of some of those models has been studied recently in [3], yielding several
reductions of the verification problems for some of those classes of models.

Asynchronous shared-memory systems. We consider a communication model where the
processes asynchronously access a shared register, and where read and write operations on this
register are performed non-atomically. A similar model has been proposed by Hague in [18],
where the behavior of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [16] and [11], respectively. These works consider networks in which a specific process, called
the leader, runs a different program, and address the problem whether, for some number
of processes, the leader can satisfy a given reachability or liveness property. In the case
where there is no leader, and where processes are finite-state, the parameterized control-state
reachability problem (asking whether one of the processes can reach a given control state) can
be solved in polynomial time, by adapting the approach of [9] for lossy broadcast protocols.

Fairness and cut-off properties. In this work, we further insert fairness assumptions in the
model of parameterized networks with asynchronous shared memory, and consider reachability
problems in this setting. There are different ways to include fairness in parameterized models.
One approach is to enforce fairness expressed as a temporal-logic properties on the executions
(e.g., any action that is available infinitely often must be performed infinitely often); this is
the option chosen for parameterized networks with rendez-vous [17] and for systems with
disjunctive guards (where processes can query the states of other processes) in [4]. We follow
another choice, by equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar. However, expressing fairness via
temporal logic allows for very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach leads to consider all possible interleavings with probability 1.
Under this stochastic scheduler assumption, we focus on almost-sure reachability of a given
control state by any of the processes of the system. More specifically, as in [4], we are
interested in determining the existence of a cut-off, i.e., an integer k such that networks
with more than k processes almost-surely reach the target state. Deciding the existence
and computing such cut-offs is important for at least two aspects: first, it ensures that the
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system is correct for arbitrarily large networks; second, if we are able to derive a bound on
the cut-off, then using classical verification techniques we can find the exact value of the
cut-off and exactly characterize the sizes of the networks for which the behavior is correct.

Our contributions. We prove that for finite-state asynchronous shared-memory protocols
with a stochastic scheduler, and for almost-sure reachability of some control state by some
process of the network, there always exists a positive or negative cut-off; positive cut-offs are
those above which the target state is reached with probability 1, while negative cut-offs are
those above which the target state is reached with probability strictly less than 1. Notice
that both cut-offs are not complement of one another, so that our result is not trivial.

We then prove that the “sign” (positive or negative) of a cut-off can be decided in
EXPSPACE, and that this problem is PSPACE-hard. Finally, we provide lower and upper
bounds on the values of the cut-offs, exhibiting in particular protocols with exponential
(negative) cut-off. Notice how these results contrast with classical results in related areas: in
the absence of fairness, reachability can be decided in polynomial time, and in most settings,
when cut-offs exist, they generally have polynomial size [4, 13, 12].

2 Presentation of the model and of the considered problem

2.1 Preliminaries
Let S be a finite set. A multiset over S is a mapping µ : S → N. The cardinality of a
multiset µ is |µ| =

∑
s∈S µ(s). The support µ of µ is the subset ν ⊆ S s.t. for all s ∈ S,

it holds s ∈ ν if, and only if, µ(s) > 0. For k ∈ N, we write NSk for the set of multisets of
cardinality k over S, and NS for the set of all multisets over S. For any s ∈ S and k ∈ N,
we write sk for the multiset where sk(s) = k and sk(s′) = 0 for all s′ 6= s. We may write s
instead of s1 when no ambiguity may arise. A multiset µ is included in a multiset µ′, written
µ v µ′, if µ(s) ≤ µ′(s) for all s ∈ S. Given two multisets µ and µ′, their union µ ⊕ µ′ is
still a multiset s.t. (µ⊕ µ′)(s) = µ(s) + µ′(s) for all s ∈ S. Assuming µ v µ′, the difference
µ′ 	 µ is still a multiset s.t. (µ′ 	 µ)(s) = µ′(s)− µ(s).

A quasi-order 〈A,�〉 is a well quasi-order (wqo for short) if for every infinite sequence
of elements a1, a2, . . . in A, there exist two indices i < j such that ai � aj . For instance,
for n > 0, 〈Nn,≤〉 (with lexicographic order) is a wqo. Given a set A with an ordering �
and a subset B ⊆ A, the set B is said to be upward closed in A if for all a1 ∈ B and
a2 ∈ A, in case a1 � a2, then a2 ∈ B. The upward-closure of a set B (for the ordering �),
denoted by ↑�(B) (or sometimes ↑(B) when the ordering is clear from the context), is the
set {a ∈ A | ∃b ∈ B s.t. b � a}. If 〈A,�〉 is a wqo and B is an upward closed set in A, there
exists a finite set of minimal elements {b1, . . . , bk} such that B = ↑{b1, . . . , bk}.

2.2 Register protocols and associated distributed system
We focus on systems that are defined as the (asynchronous) product of several copies of the
same protocol. Each copy communicates with the others through a single register that can
store values from a finite alphabet.

I Definition 1. A register protocol is given by P = 〈Q,D, q0, T 〉, where Q is a finite set of
control locations, D is a finite alphabet of data for the shared register, q0 ∈ Q is an initial
location, T ⊆ Q× {R,W} ×D ×Q is the set of transitions of the protocol. Here R means
read the content of the shared register, while W means write in the register.

ICALP 2016
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q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Figure 1 Example of a register protocol with D = {0, 1, 2}.

In order to avoid deadlocks, it is required that each location has at least one outgoing
transition. We also require that whenever some R-transition (q,R, d′, q′) appears in T , then
for all d ∈ D, there exists at least one qd ∈ Q such that (q,R, d, qd) ∈ T . The size of the
protocol P is given by |Q|+ |T |.

I Example 1.a. Figure 1 displays a small register protocol with four locations, over an
alphabet of data D = {0, 1, 2}. In this figure (and in the sequel), omitted R-transitions
(e.g., transitions R(1) and R(2) from q0) are assumed to be self-loops. When the register
contains 0, this protocol may move from initial location q0 to location q1. From there it can
write 1 in the register, and then move to q2. From q2, as long as the register contains 1, the
process can either stay in q2 (with the omitted self-loop R(1)), or write 2 in the register and
jump back to q1. It is easily seen that if this process executes alone, it cannot reach state qf .

We now present the semantics of distributed systems associated with our register protocols.
We consider the asynchronous composition of several copies of the protocol (the number
of copies is not fixed a priori and can be seen as a parameter). We are interested in the
behavior of such a composition under a fair scheduler. Such distributed systems involve two
sources of non-determinism: first, register protocols may be non-deterministic; second, in
any configuration, all protocols have at least one available transition, and non-determinism
arises from the asynchronous semantics. In the semantics associated with a register protocol,
non-determinism will be solved by a randomized scheduler, whose role is to select at each
step which process will perform a transition, and which transition it will perform among the
available ones. Because we will consider qualitative objectives (almost-sure reachability),
the exact probability distributions will not really matter, and we will pick the uniform one
(arbitrary choice). Note that we assume non-atomic read/write operations on the register, as
in [18, 16, 11]. More precisely, when one process performs a transition, then all the processes
that are in the same state are allowed to also perform the same transition just after, in fact
write are always possible, and if a process performs a read of a specific value, since this read
does not alter the value of the register, all processes in the same state can perform the same
read (until one process performs a write). We will see later that dropping this hypothesis
has a consequence on our results. We now give the formal definition of such a system.

The configurations of the distributed system built on register protocol P = 〈Q,D,
q0, T 〉 belong to the set Γ = NQ ×D. The first component of a configuration is a multiset
characterizing the number of processes in each state of Q, whereas the second component
provides the content of the register. For a configuration γ = 〈µ, d〉, we denote by st(γ) the
multiset µ in NQ and by data(γ) the data d in D. We overload the operators defined over
multisets; in particular, for a multiset δ over Q, we write γ⊕ δ for the configuration 〈µ⊕ δ, d〉.
Similarly, we write γ for the support of st(γ).

A configuration γ′ = 〈µ′, d′〉 is a successor of a configuration γ = 〈µ, d〉 if, and only if,
there is a transition (q, op, d′′, q′) ∈ T such that µ(q) > 0, µ′ = µ	 q ⊕ q′ and either op = R

and d = d′ = d′′, or op = W and d′ = d′′. In that case, we write γ → γ′. Note that since
µ(q) > 0 and µ′ = µ 	 q ⊕ q′, we have necessarily |µ| = |µ′|. In our system, we assume
that there is no creation or deletion of processes during an execution, hence the size of
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configurations (i.e., |st(γ)|) remains constant along transitions. We write Γk for the set of
configurations of size k. For any configuration γ ∈ Γk, we denote by Post(γ) ⊆ Γk the set of
successors of γ, and point out that such a set is finite and non-empty.

Now, the distributed system SP associated with a register protocol P is a discrete-time
Markov chain 〈Γ,Pr〉 where Pr : Γ× Γ→ [0, 1] is the transition probability matrix defined
as follows: for all γ and γ′ ∈ Γ, we have Pr(γ, γ′) = 1

|Post(γ)| if γ → γ′, and Pr(γ, γ′) = 0
otherwise. Note that Pr is well defined: by the restriction imposed on the transition
relation T of the protocol, we have 0 < |Post(γ)| <∞ for all configuration γ, and hence we
also get Σγ′∈ΓPr(γ, γ′) = 1. For a fixed integer k, we define the distributed system of size k
associated with P as the finite-state discrete-time Markov chain SkP = 〈Γk,Prk〉, where Prk
is the restriction of Pr to Γk × Γk.

We are interested in analyzing the behavior of the distributed system for a large number of
participants. More precisely, we are interested in determining whether almost-sure reachability
of a specific control state holds when the number of processes involved is large. We are
therefore seeking a cut-off property, which we formalize in the following.

A finite path in the system SP is a finite sequence of configurations γ0 → γ1 . . . → γk.
In such a case, we say that the path starts in γ0 and ends in γk. We furthermore write
γ →∗ γ′ if, and only if, there exists a path that starts in γ and ends in γ′. Given a location qf ,
we denote by J♦qf K the set of paths of the form γ0 → γ1 . . .→ γk for which there is i ∈ [0; k]
such that st(γi)(qf ) > 0. Given a configuration γ, we denote by P(γ, J♦qf K) the probability
that some paths starting in γ belong to J♦qf K in SP . This probability is well-defined since
the set of such paths is measurable (see e.g., [5]). Given a register protocol P = 〈Q,D,
q0, T 〉, an initial register value d0, and a target location qf ∈ Q, we say that qf is almost-surely
reachable for k processes if P(〈qk0 , d0〉, J♦qf K) = 1.

I Example 1.b. Consider again the protocol depicted in Fig. 1, with initial register content 0.
As we explained already, for k = 1, the final state is not reachable at all, for any scheduler
(here as k = 1, the scheduler only has to solve non-determinism in the protocol).

When k = 2, one easily sees that the final state is reachable: it suffices that both processes
go to q2 together, from where one process may write value 2 in the register, which the
other process can read and go to qf . Notice that this does not ensure that qf is reachable
almost-surely for this k (and actually, it is not; see Example 1.c).

We aim here at finding cut-offs for almost-sure reachability, i.e., we seek the existence of
a threshold such that almost-sure reachability (or its negation) holds for all larger values.

I Definition 2. Fix a protocol P = 〈Q,D, q0, T 〉, d0 ∈ D, and qf ∈ Q. An integer k ∈ N is a
cut-off for almost-sure reachability (shortly a cut-off ) for P , d0 and qf if one of the following
two properties holds:

for all h ≥ k, we have P(〈qh0 , d0〉, J♦qf K) = 1. In this case k is a positive cut-off;
for all h ≥ k, we have P(〈qh0 , d0〉, J♦qf K) < 1. Then k is a negative cut-off.

An integer k is a tight cut-off if it is a cut-off and k − 1 is not.

Notice that from the definition, cut-offs need not exist for a given distributed system.
Our main result precisely states that cut-offs always exist, and that we can decide their
nature.

I Theorem 3. For any protocol P, any initial register value d0 and any target location qf ,
there always exists a cut-off for almost-sure reachability, whose value is at most doubly-
exponential in the size of P. Whether it is a positive or a negative cut-off can be decided in
EXPSPACE, and is PSPACE-hard.

ICALP 2016
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q0

q1

q2

qf

R(0)
W (1)

R(1)
W (0)

R(1)
W (2)

R(2)
W (0)

R(0)

Figure 2 Example of a register
protocol with atomic read/write
operations.

s0 s1 s2 . . . sn−1 sn

W (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n−2) R(n−1)

W (n−1)

Figure 3 A “filter” protocol Fn for n > 0.

I Remark. When dropping the condition on non-atomic read/write operations, and allowing
transitions with atomic read/write operations (i.e., one process is ensured to perform a read
and a write operation without to be interrupted by another process), the existence of a
cut-off (Theorem 3) is not ensured. This is demonstrated with the protocol of Fig. 2: one
easily checks (e.g., inductively on the number of processes, since processes that end up in q2
play no role anymore) that state qf is reached with probability 1 if, and only if, the number
of processes is odd.

3 Properties of register protocols

3.1 Example of a register protocol
We illustrate our model with a family of register protocols (Fn)n>0, depicted in Fig. 3. For a
fixed n, protocol Fn has n + 1 states and n different data; intuitively, in order to move
from si to si+1, two processes are needed: one writes i in the register and goes back to s0,
and the second process can proceed to si+1 by reading i. Since backward transitions to s0 are
always possible and since states can always exit s0 by writing a 0 and reading it afterwards,
no deadlock can ever occur so the main question remains to determine if sn is reachable by
one of the processes as we increase the number of initial processes. As shown in Lemma 4,
the answer is positive: Fn has a tight linear positive cut-off; it actually behaves like a “filter”,
that can test if at least n processes are running together. We exploit this property later in
Section 4.4.

I Lemma 4. Fix n ∈ N. The “filter” protocol Fn, depicted in Fig. 3, with initial register
value 0 and target location sn, has a tight positive cut-off equal to n.

3.2 Basic results
In this section, we consider a register protocol P = 〈Q,D, q0, T 〉, its associated distributed
system SP = 〈Γ,Pr〉, an initial register value d0 ∈ D and a target state qf ∈ Q. We define a
partial order � over the set Γ of configurations as follows: 〈µ, d〉 � 〈µ′, d′〉 if, and only if,
d = d′ and µ = µ′ and µ v µ′. Note that with respect to the classical order over multisets,
we require here that the supports of µ and µ′ be the same (we add in fact a finite information
to hold for the comparison). We know from Dickson’s lemma that 〈NQ,v〉 is a wqo and since
Q, D and the supports of multisets in NQ are finite, we can deduce the following lemma.

I Lemma 5. 〈Γ,�〉 is a wqo.

We will give some properties of register protocols, but first we introduce some further
notations. Given a set of configuration ∆ ⊆ Γ, we define Pre∗(∆) and Post∗(∆) as follows:

Pre∗(∆) = {γ ∈ Γ | ∃γ′ ∈ ∆.γ →∗ γ′} Post∗(∆) = {γ′ ∈ Γ | ∃γ ∈ ∆.γ →∗ γ′}
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We also define the set Jqf K of configurations we aim to reach as {γ ∈ Γ | st(γ)(qf ) > 0}.
It holds that γ ∈ Pre∗(Jqf K) if, and only if, there exists a path in J♦qf K starting in γ.

As already mentioned, when 〈µ, d〉 → 〈µ′, d′〉 in SP , the multisets µ and µ′ have the same
cardinality. This implies that given k > 0, the set Post∗({〈qk0 , d0〉}) is finite (remember that
Q and D are finite). As a consequence, for a fixed k, checking whether P(〈qk0 , d0〉, J♦qf K) = 1
can be easily achieved by analyzing the finite-state discrete-time Markov chain SkP [5].

I Lemma 6. Let k ≥ 1. Then P(〈qk0 , d0〉, J♦qf K) = 1 if, and only if, Post∗({〈qk0 , d0〉}) ⊆
Pre∗(Jqf K).

The difficulty here precisely lies in finding such a k and in proving that, once we
have found one correct value for k, all larger values are correct as well (to get the cut-off
property). Characteristics of register protocols provide us with some tools to solve this
problem. We base our analysis on reasoning on the set of configurations reachable from initial
configurations in ↑{〈q0, d0〉} (the upward closure of {〈q0, d0〉} w.r.t. �), remember that since
the order 〈Γ,�〉 requires equality of support for elements to be comparable, we have that
↑{〈q0, d0〉} =

⋃
k≥1{〈qk0 , d0〉}. We begin by showing that this set of reachable configurations

and the set of configurations from which Jqf K is reachable are both upward-closed. Thanks
to Lemma 5, they can be represented as upward closures of finite sets. To show that
Post∗(↑{〈q0, d0〉}) is upward-closed, we prove that register protocols enjoy the following
monotonicity property. A similar property is given in [11] and derives from the non-atomicity
of operations.

I Lemma 7. Let γ1, γ2, and γ′2 be configurations in Γ. If γ1 →∗ γ2 and γ2 � γ′2, then there
exists γ′1 ∈ Γ such that γ′1 →∗ γ′2 and γ1 � γ′1.

Pre∗(Jqf K) is also upward-closed, since if Jqf K can be reached from some configuration γ,
it can also be reached by a larger configuration by keeping the extra copies idle. Thus:

I Lemma 8. Post∗(↑{〈q0, d0〉}) and Pre∗(Jqf K) are upward-closed sets in 〈Γ,�〉.

3.3 Existence of a cut-off
From Lemma 8, and from the fact that 〈Γ,�〉 is a wqo, there must exist two finite sequences
of configurations (θi)1≤i≤n and (ηi)1≤i≤m such that Post∗(↑{〈q0, d0〉}) = ↑{θ1, . . . , θn} and
Pre∗(Jqf K) = ↑{η1, . . . , ηm}. By analyzing these two sequences, we now prove that any
register protocol has a cut-off (for any initial register value and any target location).

We let ∆,∆′ ⊆ Γ be two upward-closed sets (for �). We say that ∆ is included in ∆′
modulo single-state incrementation whenever for every γ ∈ ∆, for every q ∈ γ, there is some
k ∈ N such that γ⊕ qk ∈ ∆′. Note that this condition can be checked using only comparisons
between minimal elements of ∆ and ∆′. In particular, we have the following lemma.

I Lemma 9. Post∗(↑{〈q0, d0〉}) is included in Pre∗(Jqf K) modulo single-state incrementation
if, and only if, for all i ∈ [1;n], and for all q ∈ θi, there exists j ∈ [1;m] such that
data(θi) = data(ηj) and θi = ηj and st(ηj)(q′) ≤ st(θi)(q′) for all q′ ∈ Q \ {q}.

Using the previous characterization of inclusion modulo single-state incrementation for
Post∗(↑{〈q0, d0〉}) and Pre∗(Jqf K) together with the result of Lemma 6, we are able to provide
a first characterization of the existence of a negative cut-off.

I Lemma 10. If Post∗(↑{〈q0, d0〉}) is not included in Pre∗(Jqf K) modulo single-state incre-
mentation, then max1≤i≤n(|st(θi)|) is a negative cut-off.

ICALP 2016
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We now prove that if the condition of Lemma 10 fails to hold, then there is a positive
cut-off.In order to make our claim precise, for every i ∈ [1;n] and for any q ∈ θi, we let
di,q = max{(|st(ηj)(q)− st(θi)(q)|) | 1 ≤ j ≤ m and θi = ηj}.

I Lemma 11. If Post∗(↑{〈q0, d0〉}) is included in Pre∗(Jqf K) modulo single-state increment-
ation, then max1≤i≤n(|st(θi)|+

∑
q∈θi

di,q) is a positive cut-off.

The last two lemmas entail our first result:

I Theorem 12. Any register protocol admits a cut-off (for any given initial register value
and target state).

4 Detecting negative cut-offs

We develop an algorithm for deciding whether a distributed system associated with a register
protocol has a negative cut-off. Thanks to Theorem 12, this can also be used to detect
the existence of a positive cut-off. Our algorithm relies on the construction and study of
a symbolic graph, as we define below: for any given protocol P, the symbolic graph has
bounded size, but can be used to reason about arbitrarily large distributed systems built
from P. It will store sufficient information to decide the existence of a negative cut-off.

4.1 k-bounded symbolic graph
In this section, we consider a register protocol P = 〈Q,D, q0, T 〉, its associated distributed
system SP = 〈Γ,Pr〉, an initial register value d0 ∈ D, and a target location qf ∈ Q of P.
With P , we associate a finite-state graph, called symbolic graph of index k, which for k large
enough contains enough information to decide the existence of a negative cut-off.

I Definition 13. Let k be an integer. The symbolic graph of index k associated with P
and d0 is the transition system G = 〈V, v0, E〉 where

V = NQk × 2Q ×D contains triples made of a multiset of states of Q of size k, a subset
of Q, and the content of the register; the multiset (called concrete part) is used to exactly
keep track of a fixed set of k processes, while the subset of Q (the abstract part) encodes
the support of the arbitrarily many remaining processes;
v0 = 〈qk0 , {q0}, {d0}〉;
transitions are of two types, depending whether they involve a process in the concrete part
or a process in the abstract part. Formally, there is a transition 〈µ, S, d〉 → 〈µ′, S′, d′〉
whenever there is a transition (q,O, d′′, q′) ∈ T such that d = d′ = d′′ if O = R and
d′ = d′′ if O = W , and one of the following two conditions holds:

either S′ = S and q v µ (that is, µ(q) > 0) and µ′ = µ	 q ⊕ q′;
or µ = µ′ and q ∈ S and S′ ∈ {S \ {q} ∪ {q′}, S ∪ {q′}}.

The symbolic graph of index k can be used as an abstraction of distributed systems made
of at least k + 1 copies of P: it keeps full information of the states of k processes, and only
gives the support of the states of the other processes. In particular, the symbolic graph of
index 0 provides only the states appearing in each configuration of the system.

I Example 1.c. Consider the protocol depicted in Fig. 1. Its symbolic graph of index 0 is
depicted in Fig. 4. Notice that the final state (representing all configurations containing qf )
is reachable from any state of this symbolic graph. However, our original protocol P of
Fig. 1 does not have a positive cut-off (assuming initial register value 0): indeed, with
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{q0}, 0
{q1}, 1

{q1}, 0

{q1}, 2{q2}, 1

{q0, q1}, 0

{q0, q1}, 1

{q0, q1}, 2{q0, q2}, 1

{q0, q1, q2}, 1 {q0, q1, q2}, 2

{q1, q2}, 1 {q1, q2}, 2

all sets
containing

qf

Figure 4 Symbolic graph (of index 0) of the protocol of Fig. 1 (self-loops omitted).

positive probability, a single process will go to q1 and immediately write 1 in the register, thus
preventing any other process to leave q0; then one may check that the process in q1 alone
cannot reach qf , so that the probability of reaching qf from qk0 is strictly less than 1, for
any k > 0. This livelock is not taken into account in the symbolic graph of index 0, because
from any configuration with support {q0, q1} and register data equal to 1, the symbolic graph
has a transition to the configuration with support {q0, q1, q2}, which only exists in the concrete
system when there are at least two processes in q1. As we prove in the following, analyzing
the symbolic graph for a sufficiently large index guarantees to detect such a situation.

For any index k, the symbolic graph achieves the following correspondence:

I Lemma 14. Given two states 〈µ, S, d〉 and 〈µ′, S′, d′〉, there is a transition from 〈µ, S, d〉
to 〈µ′, S′, d′〉 in the symbolic graph G of index k if, and only if, there exist multisets δ and δ′
with respective supports S and S′, and such that 〈µ⊕ δ, d〉 → 〈µ′ ⊕ δ′, d′〉 in SP .

4.2 Deciding the existence of a negative cut-off
We now explain how the symbolic graph can be used to decide the existence of a negative
cut-off. Since Pre∗(Jqf K) is upward-closed in 〈Γ,�〉, there is a finite set of configurations
{ηi = 〈µi, di〉 | 1 ≤ i ≤ m} such that Pre∗(Jqf K) = ↑{ηi | 1 ≤ i ≤ m}. We let K =
max{st(ηi)(q) | q ∈ Q, 1 ≤ i ≤ m}, and show that for our purpose, it is enough to consider
the symbolic graph of index K · |Q|; we provide a bound on K in the next section.

I Lemma 15. There is a negative cut-off for P, d0 and qf if, and only if, there is a node in
the symbolic graph of index K · |Q| that is reachable from 〈qK·|Q|0 , {q0}, d0〉 but from which
no configuration involving qf is reachable.

Proof. We begin with the converse implication, assuming that there is a state 〈µ, S, d〉 in the
symbolic graph of index K · |Q| that is reachable from (qK·|Q|0 , {q0}, d0) and from which no
configuration in Jqf K is reachable. Applying Lemma 14, there exist multisets δ0 = qN0 and δ,
with respective supports {q0} and S, such that 〈µ⊕ δ, d〉 is reachable from 〈qK·|Q|0 ⊕ δ0, d0〉.
If location qf was reachable from 〈µ⊕ δ, d〉 in the distributed system, then there would exist
a path from 〈µ, S, d〉 to a state involving qf in the symbolic graph, which contradicts our
hypothesis. By Lemma 7, it follows that such a configuration 〈µ ⊕ δ′, d〉—which cannot
reach qf —can be reached from 〈qK·|Q|0 ⊕ qN ′0 , d0〉 for any N ′ ≥ N : hence it cannot be the
case that qf is reachable almost-surely for any N ′ ≥ N . Therefore there cannot be a positive
cut-off, which implies that there is a negative one (from Theorem 12).

Conversely, if there is a negative cut-off, then for some N > K · |Q|, the distributed
system SNP with N processes has probability less than 1 of reaching Jqf K from qN0 . This system
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being finite, there must exist a reachable configuration 〈µ, d〉 from which qf is not reachable [5].
Hence 〈µ, d〉 /∈ Pre∗(Jqf K), and for all i ≤ m, there is a location qi such that µ(qi) < µi(qi) ≤
K. Then there must exist a reachable state 〈κ, S, d〉 of the symbolic graph of index K · |Q|
for which κ(qi) = µ(qi) and qi /∈ S, for all 1 ≤ i ≤ m: it indeed suffices to follow the path
from 〈qN0 , d0〉 to 〈µ, d〉 while keeping track of the processes that end up in some qi in the
concrete part; this is possible because the concrete part has size at least K · |Q|.

It remains to be proved that no state involving qf is reachable from 〈κ, S, d〉 in the symbolic
graph. If it were the case, then by Lemma 14, there would exist δ with support S such that
Jqf K is reachable from 〈κ ⊕ δ, d〉 in the distributed system. Then 〈κ ⊕ δ, d〉 ∈ Pre∗(Jqf K),
so that for some 1 ≤ i ≤ m, (κ⊕ δ)(qi) ≥ µi(qi), which is not possible as κ(qi) < µi(qi) and
qi is not in the support S of δ. This contradiction concludes the proof. J

I Remark. Besides the existence of a negative cut-off, this proof also provides us with an
upper bound on the tight cut-off, as we shall see in Section 5.

4.3 Complexity of the algorithm
We now consider the complexity of the algorithm that can be deduced from Lemma 15.
Using results by Rackoff on the coverability problem in Vector Addition Systems [19],
we can bound K – and consequently the size of the needed symbolic graph – by a double-
exponential in the size of the protocol. Therefore, it suffices to solve a reachability problem
in NLOGSPACE [20] on this doubly-exponential graph: this boils down to NEXPSPACE with
regard to the protocol’s size, hence EXPSPACE by Savitch’s theorem [20].

I Theorem 16. Deciding the existence of a negative cut-off is in EXPSPACE.

4.4 PSPACE-hardness for deciding cut-offs
I Theorem 17. Deciding the existence of a negative cut-off is PSPACE-hard.

Our proof is based on the encoding of a linear-bounded Turing machine [20]: we build a
register protocol for which there is a negative cut-off if, and only if, the machine reaches its
final state qhalt with the tape head reading the last cell of the tape. Write n for the size of
the tape of the Turing machine. We assume (without loss of generality) that the machine
is deterministic, and that it accepts only if it ends in its halting state qhalt while reading
the last cell of the tape. Our reduction works as follows: some processes of our network
will first be assigned an index i in [1;n] indicating the cell of the tape they shall encode
during the simulation. The other processes are stuck in the initial location, and will play
no role. The state q and position j of the head of the Turing machine are stored in the
register. During the simulation phase, when a process is scheduled to play, it checks in the
register whether the tape head is on the cell it encodes, and in that case it performs the
transition of the Turing machine. If the tape head is not on the cell it encodes, the process
moves to the target location (which we consider as the target for the almost-sure reachability
problem). Finally, upon seeing (qhalt, n) in the register, all processes move to a (n+ 1)-filter
protocol Fn+1 (similar to that of Fig. 3) whose last location sn+1 is the aforementioned
target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n+ 1)-filter (and the other processes are stuck in the initial location); from
there sn+1 cannot be reached. If the Turing machine does not halt, then assume that there is
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Figure 5 Simulating an exponential counter: grey boxes contain the nodes used to encode the
bits of the counter; yellow nodes at the bottom correspond to the filter module from Fig. 3; purple
nodes tok, sent and sink correspond to the second part of the protocol, and are used to produce
tokens. Missing read edges are assumed to be self-loops.

an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n+ 1)-filter, which requires that at least n+ 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach qhalt, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n+ 1 processes would end up in the (n+ 1)-filter, and
with probability 1 the target location should be reached.

5 Bounds on cut-offs

5.1 Existence of exponential tight negative cut-offs
We exhibit a family of register protocols that admits negative cut-off exponential in the
size of the protocol. The construction reuses ideas from the PSPACE-hardness proof. Our
register protocol has two parts: one part simulates a counter over n bits, and requires a token
(a special value in the register) to perform each step of the simulation. The second part is
used to generate the tokens (i.e., writing 1 in the register). Figure 5 depicts our construction.
We claim that this protocol, with # as initial register value and qf as target location, admits
a negative tight cut-off larger than 2n: in other terms, there exists N > 2n such that the
final state will be reached with probability strictly less than 1 in the distributed system made
of at least N processes (starting with # in the register), while the distributed system with
2n processes will reach the final state almost-surely. In order to justify this claim, we explain
now the intuition behind this protocol.

We first focus on the first part of the protocol, containing nodes named ai, bi, ci, di
and si. This part can be divided into three phases: the initialization phase lasts as long as
the register contains #; the counting phase starts when the register contains halt for the first
time; the simulation phase is the intermediate phase.
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During the initialization phase, processes move to locations ai and tok, until some process
in tok writes 1 in the register (or until some process reaches qf , using a transition from ai
to qf while reading #). Write γ0 for the configuration reached when entering the simulation
phase (i.e., when 1 is written in the register for the first time). We assume that st(γ0)(ai) > 0
for some i, as otherwise all the processes are in tok, and they all will eventually reach qf .
Now, we notice that if st(γ0)(ai) = 0 for some i, then location dn cannot be reached, so
that no process can reach the counting phase. In that case, some process (and actually all
of them) will eventually reach qf . We now consider the case where st(γ0)(ai) ≥ 1 for all i.
One can prove (inductively) that di is reachable when st(γ0)(tok) ≥ 2i. Hence dn, and thus
also s0, can be reached when st(γ0)(tok) ≥ 2n. Assuming qf is not reached, the counting
phase must never contain more than n processes, hence we actually have that st(γ0)(ai) = 1.
With this new condition, s0 is reached if, and only if, st(γ0)(tok) ≥ 2n. When the latter
condition is not true, qf will be reached almost-surely, which proves the second part of our
claim: the final location is reached almost-surely in systems with strictly less than n+ 2n
copies of the protocol.

We now consider the case of systems with at least n+ 2n processes. We exhibit a finite
execution of those systems from which no continuation can reach qf , thus proving that qf is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters ai; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching dn. At that time, all the processes in tok move to sent, and the process in dn
writes halt in the register and enters s0. The processes in the simulation phase can then
enter s0, and those in sent can move to sink. We now have n processes in s0, and the other
ones in sink. According to Lemma 4, location qf cannot be reached from this configuration,
which concludes our proof.

I Theorem 18. There exists a family of register protocols which, equipped with an initial
register value and a target location, admit negative tight cut-offs whose size are exponential
in the size of the protocol.

I Remark. The question whether there exists protocols with exponential positive cut-offs
remains open. The family of filter protocols described at Section 3.1 is an example of
protocols with a linear positive cut-off.

5.2 Upper bounds on tight cut-offs
The results (and proofs) of Section 4 can be used to derive upper bounds on tight cut-offs.
We make this explicit in the following theorem.

I Theorem 19. For a protocol P = 〈Q,D, q0, T 〉 equipped with an initial register value d0 ∈ D
and a target location qf ∈ Q, the tight cut-off is at most doubly-exponential in |P|.

6 Conclusions and future works

We have shown that in networks of identical finite-state automata communicating (non-
atomically) through a single register and equipped with a fair stochastic scheduler, there
always exists a cut-off on the number of processes which either witnesses almost-sure
reachability of a specific control-state (positive cut-off) or its negation (negative cut-off).
This cut-off determinacy essentially relies on the monotonicity induced by our model, which
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allows to use well-quasi order techniques. By analyzing a well-chosen symbolic graph, one can
decide in EXPSPACE whether that cut-off is positive, or negative, and we proved this decision
problem to be PSPACE-hard. This approach allows us to deduce some doubly-exponential
bounds on the value of the cut-offs. Finally, we gave an example of a network in which
there is a negative cut-off, which is exponential in the size of the underlying protocol. Note
however that no such lower-bound is known yet for positive cut-offs.

We have several further directions of research. First, it would be nice to fill the gap
between the PSPACE lower bound and the EXPSPACE upper bound for deciding the nature
of the cut-off. We would like also to investigate further atomic read/write operations, which
generate non-monotonic transition systems, but for which we would like to decide whether
there is a cut-off or not. Finally, we believe that our techniques could be extended to more
general classes of properties, for instance, universal reachability (all processes should enter a
distinguished state), or liveness properties.
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