65,925 research outputs found

    Parameter choice methods using minimization schemes

    Get PDF
    In this paper we establish a generalized framework, which allows to prove convergenence and optimality of parameter choice schemes for inverse problems based on minimization in a generic way. We show that the well known quasi-optimality criterion falls in this class. Furthermore we present a new parameter choice method and prove its convergence by using this newly established tool

    An Augmented Lagrangian Method for TVg + L1-norm Minimization

    Get PDF
    International audienceIn this paper, the minimization of a weighted total variation regularization term with L1 norm as the data fidelity term is addressed using Uzawa block relaxation methods. The unconstrained minimization problem is transformed into a saddle-point problem by introducing a suitable auxiliary unknown. Applying a Uzawa block relaxation method to the corresponding augmented Lagrangian functional, we obtain a new numerical algorithm in which the main unknown is computed using Chambolle projection algorithm. The auxiliary unknown is computed explicitly. Numerical experiments show the availability of our algorithm for salt and pepper noise removal or shape retrieval and also its robustness against the choice of the penalty parameter. This last property allows us to attain the convergence in a reduced number of iterations leading to efficient numerical schemes. Moreover, we highlight the fact that an appropriate weighted total variation term, chosen according to the properties of the initial image, may provide not only a significant improvement of the results but also a geometric filtering of the image components

    ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    Get PDF
    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H−1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation

    Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses

    Full text link
    We present a common pulse retrieval algorithm (COPRA) that can be used for a broad category of ultrashort laser pulse measurement schemes including frequency-resolved optical gating (FROG), interferometric FROG, dispersion scan, time domain ptychography, and pulse shaper assisted techniques such as multiphoton intrapulse interference phase scan (MIIPS). We demonstrate its properties in comprehensive numerical tests and show that it is fast, reliable and accurate in the presence of Gaussian noise. For FROG it outperforms retrieval algorithms based on generalized projections and ptychography. Furthermore, we discuss the pulse retrieval problem as a nonlinear least-squares problem and demonstrate the importance of obtaining a least-squares solution for noisy data. These results improve and extend the possibilities of numerical pulse retrieval. COPRA is faster and provides more accurate results in comparison to existing retrieval algorithms. Furthermore, it enables full pulse retrieval from measurements for which no retrieval algorithm was known before, e.g., MIIPS measurements
    corecore