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Abstract

In this paper, the minimization of a weighted total variation regularization term withL1 norm
as the data fidelity term is addressed using Uzawa block relaxation methods. The unconstrained
minimization problem is transformed into a saddle-point problem by introducing a suitable aux-
iliary unknown. Applying a Uzawa block relaxation method tothe corresponding augmented
Lagrangian functional, we obtain a new numerical algorithmin which the main unknown is
computed using Chambolle projection algorithm. The auxiliary unknown is computed explic-
itly. Numerical experiments show the availability of our algorithm for salt and pepper noise
removal or shape retrieval and also its robustness against the choice of the penalty parameter.
This last property allows us to attain the convergence in a reduced number of iterations leading
to efficient numerical schemes. Moreover, we highlight the fact that an appropriate weighted to-
tal variation term, chosen according to the properties of the initial image, may provide not only
a significant improvement of the results but also a geometricfiltering of the image components.

Keywords: Total variation,L1 norm, augmented Lagrangian, Fenchel duality, Uzawa methods,
salt and pepper noise removal, shape retrieval, geometric filtering.
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1 Introduction

In many image processing problems, a denoising step is required to remove noise or spurious de-
tails from corrupted pictures. Variational approaches have gained a wide popularity these years
due to the possible addition of well-chosen regularity terms. Among the most influential models,
we can cite the total variation minimization framework introduced by Rudin and Osher [40] and
Rudin, Osher and Fatemi [41]. In this framework, given a noisy image f(x), they propose to
recover the original imageu(x) by minimizing the total variation underL2 data fidelity:

E(u) =

∫

Ω
|∇u(x)|dx+ λ

∫

Ω
(u(x)− f (x))2 dx, (1.1)

whereΩ ⊂ R
2, is the image domain andλ a positive scale parameter.

Such a minimization allows the recovery of a simple geometric description of the imageu while
preserving boundaries. This framework is then very efficient when denoising images with flat
zones but fails in preserving texture details. It also failsin removing contrasted and isolated
pixels in images corrupted by an impulse noise. Another drawback is that the minimizer presents
a loss of contrast due to theL2 data fidelity term as mentioned in [19].

Consequently, many recent works propose to investigate theminimization of a total variation
regularization term with aL1 data fidelity term:

E(u) =

∫

Ω
|∇u(x)|dx+ λ

∫

Ω
|u(x)− f (x)|dx. (1.2)

This energy is non strictly convex and thus the global minimizer is not unique on the contrary
to the energy (1.1). However theL1 norm presents some interesting properties [19] and then
outperforms theL2 norm for applications such as impulse noise removal [37, 28]or shape de-
noising [6, 38, 10]. The minimization ofTV + L1 yields a contrast invariant filter [19, 21] and
well preserves contrasted features at different scales.

In [10], the authors propose to use a weighted total variation regularization term, denoted by
TVg, instead ofTV and they search for the imageu which minimizes:

E(u) =
∫

Ω
g(x)|∇u(x)|dx+ λ

∫

Ω
|u(x)− f (x)|dx, (1.3)

whereg : Ω → R
+ is a function independent ofu.

Wheng is chosen as an edge indicator function of the input image (e.g.,g(x) = 1/(1+ |∇ f |)), the
weighted TV norm allows a better preservation of corners andsharp angles in shape denoising.
More important, the introduction of such a function allows to establish a link betweenTVg and
the Geodesic active contours model introduced by [13, 31, 14] as an improvement of the original
snakes [30]. This point will be further explained in Section3 devoted to the geometric properties
of the model.

The minimization of functionals (1.2) and (1.3) is not trivial due to their non differentiability.
Recent papers addressed the minimization ofTV + L1 using various numerical algorithms. For
example, standard calculus of variations and Euler-Lagrange equations can be used to compute
the PDE that will drive the functionalu towards a minimum [6, 38, 10]. This method requires
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a smooth approximation of theL1 norm and a small time step much be chosen so as to ensure
the convergence. This often leads to a large number of iterations as mentioned by [10]. In
[16], a MRF (Markov Random Field) model is proposed which uses the anisotropic separable
approximation (i.e.|∇u|= |Dxu|+ |Dyu| whereDx andDy are the horizontal and vertical discrete
derivative operators). This approximation is also used in [22, 23] where the authors proposed
an efficient graph-cut method. In all these approaches, an approximation or a smoothing of the
L1 norm is required. In [10], following the works of [18, 15, 4] and more particularly [5], an
elegant fast minimization algorithm based on a dual formulation is proposed. Thanks to such
approaches, they do not need any approximation or smoothingof theL1 norm, they only use a
convex regularization of the criterion as follows (first proposed by [5]):

Er(u,v) =
∫

Ω
g(x)|∇u(x)|dx+

r
2

∫

Ω
|u(x)+ v(x)− f (x)|2 dx+ λ

∫

Ω
|v(x)|dx (1.4)

In their algorithm, the penalty parameterr must be chosen large enough so as to ensure that
f = u+v where the functionu represents the geometric information (piecewise smooth regions)
and the functionv captures the texture information [34, 43, 5]. The choice of the penalty pa-
rameterr can then be problematic and the influence of this parameter onconvergence must be
deeply studied. Moreover, choosingr too large may lead to an increase computational time
(ill-conditioning).

Based on this very interesting work and after a reminder of the geometric properties of this
model, we propose a new numerical scheme for the minimization of (1.3) using Uzawa (dual)
methods. Indeed, (1.4) is the penalty functional associated with the constrained minimization
problem

min
u+v= f

E(u,v) =
∫

Ω
g(x)|∇u(x)|dx+ λ

∫

Ω
|v(x)|dx. (1.5)

The “natural” improvement of the method proposed by [10] is then to associate the penalty and
multiplier methods, i.e. an augmented Lagrangian method. The augmented Lagrangian method
combines the features of the penalty and primal-dual approach and moderates the disadvantages
of both. Moreover, convergence in augmented Lagrangian methods can usually be attained
without the need to increaser to infinity, see e.g. [7]. We then propose a Uzawa block relaxation
algorithm based on the augmented Lagrangian functional associated with (1.5). In each iteration
of our algorithm, the main unknownu is computed using Chambolle algorithm [15], and the
auxiliary unknownv is computed explicitly using Fenchel duality theory.

The numerical scheme is then tested and evaluated for salt and pepper noise removal and
shape denoising in order to demonstrate the applicability of our method. We show that the
proposed algorithm is robust against the choice of the penalty parameterr. The optimal choice
for the penalty parameter leads to an efficient scheme in terms of number of iterations and then
computational time. Besides, we also propose to study the influence of well-chosen functions
g in order to improve shape retrieval or salt-and-pepper noise removal. An efficient algorithm,
denoted UBR-EDGE, is then proposed and evaluated for this last application. We also give
an example showing that this function can help us to perform ageometrical filtering of shape
components.

The paper is organized as follows. In Section 2 we present theTVg + L1 model followed
by its geometric properties in Section 3. In Section 4, we introduce the augmented Lagrangian
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formulation of theTVg +L1 model. The Uzawa block relaxation method is detailed in Section 5.
The convergence of the algorithm is presented in Section 6, followed by numerical experiments
in Section 7.

2 Introduction of the TVg +L1-norm minimization problem

Let Ω be a two-dimensional bounded open domain ofR
d with Lipschitz boundary. An image

can be interpreted as a real function defined onΩ or a suitable discretization of this continuous
image. We consider the following convex energy functional defined, for anyf ∈ L1(Ω), any
g : Ω → R

+ and any positive parameterλ :

E(u) =

∫

Ω
g(x)|∇u(x)|dx+ λ

∫

Ω
|u(x)− f (x)|dx (2.1)

Our aim is the minimization of the energy functionalE, i.e.

min
u∈BV (Ω)

E(u), (2.2)

whereBV (Ω) is the subspace of functionsu ∈ L1(Ω) such that
∫

Ω
|∇u| := sup

[

∫

Ω
u∇ ·ϕ dx | ϕ ∈ C

1
c (Ω,R2), |ϕ | ≤ 1

]

< ∞

with ∇ ·ϕ = divϕ . It is known thatBV (Ω) is a Banach space when equipped with its “natural”
norm

‖ u ‖BV (Ω)=‖ u ‖L1(Ω) +
∫

Ω
|∇u|.

In order to approximate (2.1) by an augmented Lagrangian, weuse the following minimization
problem

min
u∈V

E(u) (2.3)

whereV = W 1,1(Ω)∩L2(Ω). In practice, discrete operators are considered.
In two-dimensional form, an image is an array of sizeN ×N. The Euclidean spaceRN×N

is denoted byX and equipped with theL2 scalar product(u,v)X = ∑1≤i, j≤N ui jvi j and the norm
‖ u ‖L2=

√

(u,u)X . TheL1 norm is defined by‖ u ‖L1= ∑1≤i, j≤N |ui j|. If u ∈ X , ∇u is a vector
in Y = X ×X defined by∇u = ((∇ui j)

1,(∇ui j)
2), with

(∇ui j)
1 =

{

ui+1, j −ui, j if i < N

0 if i = N
(∇ui j)

2 =

{

ui, j+1−ui, j if j < N

0 if j = N

A discrete version of the divergence operator must be definedby analogy with the continuous
setting(p,∇u)Y = −(div(p),u)X :

(div(p))i j =











p1
i, j − p1

i−1, j if 1 < i < N

p1
i, j if i = 1

−p1
i−1, j if i = N

+











p2
i, j − p2

i, j−1 if 1 < j < N

p2
i, j if j = 1

−p2
i, j−1 if j = N
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We sometimes use the notation∇ · p for div(p).
The discrete total variation and fidelity terms are then

J(u) :=
∫

Ω
g(x)|∇u(x)|dx = ∑

1≤i, j≤N

gi j|∇ui j|, (2.4)

F(u) := λ
∫

Ω
|u(x)− f (x)|dx = λ ∑

1≤i, j≤N

|ui j − fi j|, (2.5)

and the minimization problem (2.3) becomes

min
u∈X

E(u) = J(u)+ F(u). (2.6)

From now and through the rest of the paper, we will consider the discrete functionals (2.4)-
(2.5) and the discrete minimization problem (2.6). We will sometimes use the continuous nota-
tions; however, the reader has to keep in mind that only the discrete case is considered.

3 Geometric properties of the model

In this section, we propose to remind some geometric properties of theTV , TV + L1 andTVg +
L1 functionals.

In [38], the authors propose a geometric interpretation of the energy criterionL1 + TV in
terms of the level sets ofu and f . We remind here for completeness the main results of their
study using the notations introduced in [21].
Let us denote the lower level sets of an image as follows:

Lα(u) = {x,u(x) < α}, (3.1)

and the upper level sets as:
Uα(u) = {x,u(x) > α}. (3.2)

For each levelα , Uα(u) andLα(u) denote two sets of the imageu. From a geometrical point of
view, the co-area formula [26] states that, for any functionwhich belongs to the space of bounded
variations BV(Ω), there is a relation between the TV regularization term and the perimeter
Per(Uα) of the setUα . Indeed, we can write for allα ∈ [0,1]:

Per(Uα(u)) =
∫

Ω
|∇χUα(u)|dx, (3.3)

whereχUα (u) stands for the characteristic function of the setUα(u). In [38], the authors lighten
the fact that the energy (1.2) can be written as an integration over the different level set valuesα
of the imagesu andv of the energyEα :

E(u) =

∫

R

Eα(u, f )dα , (3.4)

with
Eα(u, f ) = Per(Uα(u))+ λ |Uα(u)∆Uα( f ) | (3.5)
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where the second term represents the Lebesgue measure of thesymmetric difference between the
two setsUα(u) andUα( f ). Such a geometrical feature may contribute to explain the properties
of the TV + L1 energy. Indeed, when decreasing the weightλ of the data term, components
will be removed in an order determined by their size and theirgeometry. For example, small
components will be removed first and sharp angles will be smoothed. Moreover, this criterion
can be exploited to formulate efficient shape segmentation algorithms [38, 9]. Indeed, let us
consider that the initial functionf is a binary shape defined byUα( f ), the main idea is to find
the minimizeru of the energy (1.2) in the space of all functions rather than in the non-convex
collection of characteristic sets. In [38], the authors show that any setUα1(u), obtained by a
simple threshold of the result functionu, is a global minimizer of (3.4). The main problem
of this approach lies in the choice of the levelα1 for thresholding. Note that this method can
be extended to the segmentation of an image in two regions [38, 10] based on the Mumford-
Shah functional [35]. It can then be considered as an alternative to geometrical PDEs (Partial
Differential Equations) classically used in active contours [20, 39]. On the contrary to these
approaches, it provides a global optimum but this optimum isnot unique (the criterion is not
strictly convex).

When dealing with the weighted TV norm, similar results can be stated [10]. Indeed, the
TVg term, when applied to a characteristic set is equivalent to aweighted perimeter

TVg(U
α(u)) =

∫

C
g(s)ds, (3.6)

whereC designates the boundary of the setUα(u) ands its arc length. Such a term corresponds
to the energy criterion introduced by [14] under the name ofgeodesic active contours. The
introduction of the functiong may then be used to minimize a weighted length that takes benefit
of image properties. In [14], an edge indicator function is introduced (g(x) = 1/(1+ β |∇I|)) in
the criterion (3.6) in order to segment objects with strong boundaries in images corrupted with
a Gaussian noise.

In [10], based on the results of [38], the authors propose to take benefit of the relation
betweenTVg and the criterion (3.6) to address the segmentation problem. Let us remind their
main theorem in order to be self content.

Theorem 3.1 ([10]) Suppose that g(x)∈ [0,1] and f (x) the given image is a characteristic func-
tion of a bounded domain Ω f ⊂ Ω, for any given λ > 0, if u(x) is any minimizer of the criterion
(1.3), then for almost every α1 ∈ [0,1] we have that the characteristic function of the set Uα1(u)
is a global minimizer of the criterion (1.3).

Hence, minimizingTVg + L1 norm can be interpreted as the research of an optimal domain
that minimizes the geodesic active contour energy with an additional data fidelity term based on
the symmetric difference between shapes. In [10], the authors demonstrate that this algorithm
can then be exploited for shape segmentation. Here again, the choice of the coefficientα1 can
be problematic, since for eachα1 ∈ [0,1], the setUα1(u) is a potential solution.

As far as image denoising or shape denoising is concerned, wepropose to choose the func-
tion g according to the type of noise of the corrupted image. Indeed, an edge indicator function
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is well appropriated for a Gaussian noise but not for a salt and pepper noise. In our experimen-
tal results, we test three different functionsg and we study their influences on the final results.
A substantial improvement of both the restoration quality and the segmentation result can be
observed when using a suitable functiong. Moreover it can also be used to select some image
components according to their geometry as demonstrated in the last section dedicated to the
experimental results.

Let us now introduce our augmented Lagrangian method for thederivation of an efficient
numerical scheme forTVg + L1 minimization.

4 Augmented Lagrangian formulation

In this section we present Uzawa (dual) methods for solving (2.6). To this end, we need to trans-
form the convex minimization problem (2.6) into a suitable saddle-point problem by introducing
an auxiliary unknown.

Let us introduce the auxiliary unknownp = f −u and rewrite the functionalE as

E(u, p) = J(u)+ F(p). (4.1)

For consistency, we introduce the constraints set

K = {(u, p) ∈ X ×X | u+ p− f = 0 in X} .

The unconstrained minimization problem (2.6) becomes

min
(u,p)∈K

E(u, p). (4.2)

To problem (4.2), we associate the Lagrangian functionalL , defined onX ×X ×X , by

L (u, p;s) = E(u, p)+ (s,u+ p− f )X . (4.3)

In (6), (·, ·)X denotes theL2(X) scalar product. The corresponding saddle-point problem isthen

sup
s∈X

inf
(u,p)∈K

L (u, p;s). (4.4)

SinceE is convex, proper and lower semi-continuous, a saddle point(u∗, p∗;s∗) ∈ X ×X ×X of
L exists and verifies

L (u∗, p∗;s) ≤ L (u∗, p∗;s∗) ≤ L (u, p;s∗), ∀(u, p,s) ∈ X ×X ×X .

We now introduce the augmented Lagrangian functional, defined by

Lr(u, p;s) = L (u, p;s)+
r
2
‖ u+ p− f ‖2

L2 (4.5)

wherer > 0 is the penalty parameter. It can be proved (easily) that a saddle point ofLr is a
saddle point ofL and conversely. This is due to the fact that the quadratic term in Lr vanishes
when the constraintu+ p− f = 0 is satisfied.
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5 Uzawa block relaxation methods

Uzawa block relaxation methods have been used in nonlinear mechanics for operator splitting
and domain decomposition methods [27, 29, 32]. Applying Uzawa block relaxation method to
the saddle point problem (4.4) we obtain the following algorithms.

Algorithm UBR

Initialization. p−1, s0 andr > 0 given.

k ≥ 0. Compute successivelyuk, pk andsk as follows.

Step 1. Find uk ∈ X such that

Lr(u
k, pk−1;sk) ≤ Lr(v, pk−1;sk), ∀v ∈ X . (5.1)

Step 2. Find pk ∈ X such that

Lr(u
k, pk;sk) ≤ Lr(u

k,q;sk), ∀q ∈ X . (5.2)

Step 3. Update the Lagrange multiplier

sk+1 = sk + r(uk + pk − f ).

The algorithm UBR corresponds to the generic Uzawa block relaxation algorithm ALG2
(see, e.g., [27, 29]). We detail the algorithm above in the next subsections.

5.1 Solution of sub-problem(5.1)

The functionalu 7→ Lr(u, pk−1;sk) can be rewritten as

Φ1(u) :=
r
2
‖ u ‖2

L2 +J(u)+ (p̃k−1,u)X +C (5.3)

wherep̃k−1 = sk + r(pk−1− f ) andC is a constant which does not count in the minimization.
Let F1 : X → R andG1 : Y = X ×X → R be defined by

F1(u) =
r
2
‖ u ‖2

L2 +(p̃k−1,u)X , (5.4)

G1(v) =

∫

Ω
g|v|dx. (5.5)

SettingΛ = ∇ ∈ L (X ,Y ), the sub-problem inu can be rewritten as

(P1) inf
u∈X

F1(u)+G1(Λu).

The Fenchel dual problem of(P1) is

(P∗
1 ) sup

v∗∈Y
−F

∗
1 (−Λ∗v∗)−G

∗
1 (v∗),
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whereΛ∗ ∈L (Y,X) is the adjoint ofΛ (Λ∗v∗ =−div(v∗) =−∇ ·v∗), F1 : X∗ = X →R∪{+∞}
andG ∗

1 : Y ∗ = Y → R∪{+∞} denote the Fenchel convex conjugate functionals ofF1 andG1,
respectively.F1 andG1 satisfy the conditions of the Fenchel duality theorem (see e.g. [25, p.
59] ) and then, it follows that no duality gap occurs. The primal solution ¯u and the dual solution
v̄∗ satisfy the extremality condition (see e.g. [25, p. 53])

−Λ∗v̄∗ = ∇ · v̄∗ = ∇F1(ū) = rū + p̃k−1, (5.6)

sinceF1 is differentiable.
From the definition of the Fenchel convex conjugate functional, we have

F
∗
1 (u∗) = sup

u∈X
(u∗,u)X −F1(u)

=
1
2r

‖ u∗− p̃k−1 ‖2
L2 . (5.7)

For v∗, the Fenchel convex conjugate ofG1 is

G
∗
1 (v∗) = sup

v∈Y
(v∗,v)Y −

∫

Ω
g|v|dx =

{

0 if |v∗| ≤ g,

+∞ if |v∗| ≥ g.
(5.8)

Substituting (5.7) and (5.8) into(P∗), we get the dual problem

sup
v∗

−F
∗
1 (−Λ∗v∗)−G

∗
1 (v∗) = sup

|v∗|≤g
−

1
2r

‖ ∇ · v∗− p̃k−1 ‖2
L2,

= inf
|v∗|≤g

1
2r

‖ ∇ · v∗− p̃k−1 ‖2
L2,

= inf
|v∗|2−g2≤0

1
2r

‖ ∇ · v∗− p̃k−1 ‖2
L2 . (5.9)

The Karush-Kuhn-Tucker conditions (see e.g. [8, 33]) applied to the convex problem (5.9) yield
the existence of a multiplierµ ≥ 0 such that

−
1
r

∇(∇ · v∗− p̃k−1)+2µv∗ = 0, (5.10)

µ(|v∗|2−g2) = 0. (5.11)

As in Chambolle [15], either the constraint is active or not,we have

1
r2 |∇(∇ · v∗− p̃k−1)|2−4µ2g2 = 0

that is,

µ =
1

2rg
|∇(∇ · v∗− p̃k−1)|. (5.12)
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Substituting (5.12) into (5.10), we obtain

−∇(∇ · v∗− p̃k−1)+
1
g
|∇(∇ · v∗− p̃k−1)|v∗ = 0. (5.13)

Equation (5.13) is identical with [10, Eq.38], up to a (penalty) constant. For solving (5.13), we
can then use the fixed-point procedure of Chambolle [15],v0 = 0 and for anyℓ ≥ 0

vℓ+1 =
vℓ + τ∇(∇ · vℓ− p̃k−1)

1+(τ/g)|∇(∇ · vℓ − p̃k−1)|
, (5.14)

whereτ > 0. The Chambolle procedure (5.14) can be viewed as a semi-implicit Euler scheme
for computing the stationary solution of the following evolution equation

∂v
∂ t

−∇(∇ · v− p̃k−1)+
1
g
|∇(∇ · v− p̃k−1)|v = 0

that is,
vℓ+1− vℓ

τ
−∇(∇ · vℓ− p̃k−1)+

1
g
|∇(∇ · vℓ− p̃k−1)|vℓ+1 = 0.

Finally, with v∗ computed using (5.14), we compute ¯u using the extremality condition (5.6),
i.e.

ū =
1
r
(∇ · v∗− p̃k−1) = f − pk−1 +

1
r
(∇ · v∗− sk). (5.15)

5.2 Solution of sub-problem(5.2)

The functionalp 7→ Lr(uk, p;sk) can be rewritten as

Φ2(p) =
r
2
‖ p ‖2

L2 +(ũk, p)X + λ
∫

Ω
|p|dx+C,

where ˜uk = sk + r(uk − f ) andC is a constant which does not count in the minimization. As in
previous subsection we set

F2(p) =
r
2
‖ p ‖2

L2 +(ũ, p)X , ∀p ∈ X ,

G2(q) = λ
∫

Ω
|q|dx, ∀q ∈ X .

SettingΛ = Id (the identity operator), the sub-problem (5.2) reads

(P2) inf
p∈X

F2(p)+G2(Λp)

for which the dual problem is

(P∗
2 ) sup

q∗∈X
−F

∗
2 (−q∗)−G

∗
2 (q∗).
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A straightforward calculation, using fenchel convex conjugate functional, yields

F
∗
2 (p∗) =

1
2r

‖ p∗− ũk ‖2
L2, ∀p∗ ∈ X

G
∗
2 (q∗) =

{

0 if |q∗| ≤ λ ,

+∞ if |q∗| ≥ λ
, ∀q∗ ∈ X ,

with the extremality condition between the primal solutionp̄ and the dual solution ¯q∗

−q̄∗ = rp̄+ ũk.

Gathering the results above, we compute the solution of the sub-problem (5.2) explicitly

pk =







0 if |sk + r(uk − f )| ≤ λ ,

f −uk − 1
r

[

sk −λ sk+r(uk− f )
|sk+r(uk− f )|

]

if |sk + r(uk − f )| ≥ λ .

5.3 Uzawa block relaxation algorithms

With the results of the previous section, we can present our Uzawa block relaxation algorithm.

Algorithm UBR

Initialization. p−1, s0 andr > 0 given.

Iteration k ≥ 0. Compute successivelyuk, pk andsk as follows.

Step 1. Set p̃k−1 = sk + r(pk−1− f ) and computevk with (5.14).

Computeuk

uk = f − pk−1 +
1
r
(∇ · vk − sk)

Step 2. Computepk

pk =







0 if |sk + r(uk − f )| ≤ λ ,

f −uk − 1
r

[

sk −λ sk+r(uk− f )
|sk+r(uk− f )|

]

if |sk + r(uk − f )| ≥ λ .

Step 3. Update the Lagrange multiplier

sk+1 = sk + r(uk + pk − f ).

We iterate until the relative error inuk andpk becomes sufficiently “small”.

11



6 Convergence

We first rewrite the constrained optimization problem (4.2)in a standard form by setting

G(u) = J(u), F(p) = λ ‖ p ‖L1 .

Let us introduce the linear and continuous operatorB : X → X , defined by

Bu = u− f .

We observe that the constrained minimization problem (4.2)is equivalent to unconstrained min-
imization problem

min
u∈X

G(u)+ F(Bu).

The augmented Lagrangian functional (4.5) can be rewrittenas

Lr(u, p;s) = G(u)+ F(p)+ (s,Bu+ p)X +
r
2
‖ Bu+ p ‖2

L2 .

SinceF andG are convex, proper and lower semi-continuous functionals and the constraint is
linear, a saddle-point forL exists. We easily verify the the functional(u, p) 7→ Lr(u, p;s) is
coercive onX ×X , proper inu (for any fixedp ands) and proper inp (for any fixedu ands ).
Algorithm UBR is therefore equivalent to finite dimensionalversion of ALG2 described in [29,
chapter 3]. We have the following convergence theorem, [29,theorem 4.2].

Theorem 6.1 (Convergence)The sequence (uk, pk,sk) generated in Algorithm UBR is such that

uk → u∗ in X , pk → p∗ in X , sk → s∗ in X ,

(u∗, p∗,s∗) being a saddle-point of Lr.

Since we are in finite dimension, it is not necessary to assumethe uniform convexity ofF or of
G, [29, Remark 4.4-4.6].

7 Numerical experiments

In this section, we present some numerical examples to evaluate the algorithm UBR for ap-
plications such a salt and pepper noise removal (section 7.1), shape denoising (section 7.2) or
geometric filtering (section 7.3). The influence of the penalty parameterr is more particularly
studied and we propose to test the robustness of our numerical scheme against variations of this
parameter. The stability of our algorithm regarding with this parameter allows to obtain the
convergence in a reduced number of iterations without decreasing the quality of the result. We
also propose to take benefit of the functiong(x) to improve the denoising results by choosing an
appropriate function for the different noise models. This function can also help us to perform a
geometric filtering of shapes.

12



In all numerical experiments, the convergence of the algorithm UBR is checked using the
following convergence criterion:

√

||uk −uk−1||22 + ||pk − pk−1||22
√

||uk||22 + ||pk||22

≤ εup (7.1)

Note that, each iteration of Algorithm UBR requires the convergence of the Chambolle fixed
point procedure (5.14). The convergence of this loop is checked using a threshold on the nor-
malizedL2 error onvl . In the experiments, we chooseεFP = 0.5 for the first iterations and
εFP = 0.1 to end the process. According to our experiments (not reported here), increasing the
accuracy of the Chambolle fixed point procedure does not improve the final result whereas it
increases the computational cost of each iteration.

The numerical experiments were run inC++ with the library Pandore3 developed by R.
Clouard. The salt and pepper noise was generated with gmic4 proposed by D. Tschumperle,
except the images of the Figure 12 which were downloaded fromthe page of R. Chan5.

7.1 Salt and pepper noise removal

Salt and pepper noise is a model that can represent the effects of bit errors in transmission
or faulty memory locations. In salt and pepper noisy images,the noisy pixels can take only the
minimum or maximum values in the dynamic range of image values. For such images, the use of
theL1 norm is then well suited due to its link to median filtering. Ithas been used by [1, 2, 3] for
1D data and by [36, 37, 28, 6] for efficient image denoising algorithms. Two-phase approaches
are also proposed in [17, 11, 12] with very nice results for a high level of salt an pepper noise.
In this paper, we first propose to test the robustness of our dual algorithm, named UBR, for the
denoising of the image “peppers” (Figure 1.(a)). In a secondstep, we propose to take benefit
of a dedicated functiong in order to increase the quality of the results. Our algorithm is then
embedded in a more complete process, named UBR-EDGE, that isevaluated for the denoising
of various images corrupted with a high level of noise.

The restoration performances are classically measured by the PSNR (peak signal-to-noise
ratio) defined as follows:

PSNR = 10log10
max2

1
|Ω| ∑i, j(I0(i, j)− IR(i, j))2

(7.2)

wheremax denotes the maximum value ofI (for 8-bits imagesmax = 255) and|Ω| is the number
of pixels(i, j) of the imageI0. We noteI0(i, j) andIR(i, j) the discrete values ofI0, the original
image, andIR, the restored image. This value is inversely proportional to the mean square error
and so a higher value of PSNR corresponds to a better restoration result (note that this is only an
overall measure that must not be used without a visualization of the results).

3available at http://www.greyc.ensicaen.fr/regis/Pandore/
4http://gmic.sourceforge.net/
5http://www.math.cuhk.edu.hk/ rchan/paper/impulse/
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(a) Peppers (b) Lena

Figure 1: Input image: (a) Peppers (256x256), (b) Lena (512x512)

7.1.1 Robustness of UBR

Firstly, the experimental results provided in Figure 2 showthe applicability of our numerical
scheme (named UBR) for this application. With the functiong(x) = 1 andλ = 1.5, we find
a PSNR of 32.5 dB for the denoising of an image corrupted with a noise of 10%. Noise is
correctly removed as can be observed in Figure 2.b, moreover, the noisy part is captured through
the auxiliary unknownv as displayed in Figure 2.c.

(a) Noisy image (b) Final imageu (c) Final imagev

Figure 2: The two different imagesu (PSNR= 32.5dB) andv obtained after convergence with
UBR and withg(x) = 1 (λ = 1.5, r = 20,εup = 0.0001) for the image “peppers” with a salt and
pepper noise of 10%.

Secondly, we want to study the robustness of the result against the choice of the parameter
r. Our experimental results show that the algorithm UBR provides the same denoised image
for different values ofr. This is demonstrated by the Figure 3 that displays the evolution of the
PSNR according to the number of iterations for different parametersr (from 10 to 200). Such
a feature then represents an improvement of the method proposed in [10] since the convergence
can be obtained without the need to increaser to infinity.

We also report the number of iterations according tor (Figure 4). In this case, the optimal
value in terms of iterations is obtained forr = 30 with 60 iterations whenλ = 1.5, and forr = 10
with 91 iterations whenλ = 0.5. Choosing a higher value forr increases the number of iterations
needed to attain the convergence without improving the finalresult. We can then choose a small
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value forr to obtain a low computational cost without decreasing the quality of the result.
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PSNR = 32.5dB
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Figure 3: Algorithm UBR (g=1) : Evolution of PSNR during iterations (λ = 1.5) with r =
10,20,30,100,200 (εup = 0.0001) for the image “peppers” with a salt and pepper noise of 10%
(the function isg(x) = 1).
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0

100

200

300
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λ = 0.5
λ = 1.5

Figure 4: Algorithm UBR (g=1) : Number of iterations for convergence according to the param-
eterr with λ = 0.5 andλ = 1.5 for the image “Peppers” with a salt and pepper noise of 10%
(g(x) = 1).

7.1.2 Improvement using an appropriate functiong

Thirdly, we propose to take benefit of the fact that the dynamic range of the noise is known. We
propose to replace the edge indicator function used in [10] for the functiong(x) by a regularized
version of the following mask function:

m(x) =

{

αn if f (x) = min or max
α elsewhere

(7.3)
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wheremin andmax are respectively the minimum and maximum intensity values of the noisy
imagef . We chooseαn = 1.5 andα = 0.5 in order to uppermost smooth the corrupted pixels. We
then takeg(x) = mσ (x) wheremσ (x) = Gσ ∗m(x) is a slight regularized version ofm (σ = 0.5).
Figure 5 displays the different values of PSNR and the resulting images obtained while setting
g(x) = 1 (first row) andg(x) = mσ (x) (second row). Final images are provided for different
values of the regularization parameterλ . For each parameter, we observe a significant increase
of 2 to 4dB in the final PSNR. The best value of PSNR is 34.5 dB obtained forλ = 1.2. The
scale effect of the parameterλ is also less visible due to the fact that we restrict the regularization
term to the extreme values of intensities corresponding to the corrupted pixels.

(a) λ = 0.5,g = 1 (b) λ = 1,g = 1 (c) λ = 1.5,g = 1
PSNR= 25.5 dB PSNR= 30.3 dB PSNR= 32.5 dB

(a) λ = 0.5,g = mσ (b) λ = 1,g = mσ (c) λ = 1.5,g = mσ
PSNR= 29.6 dB PSNR= 34.3 dB PSNR= 34.9 dB

Figure 5: Experimental results with the algorithm UBR for different smoothing values ofλ
(r = 20,εup = 0.0001) for the image “peppers” with a salt and pepper noise of 10%. The first
row displays the results obtained withg(x) = 1 while the second row displays the result obtained
usingg(x) = mσ (x).

In Figure 6, we report the variation of the PSNR according to the parameterλ for g(x) = 1
andg(x) = mσ (x). In Table 7, we give the PSNR values for different noise levels and the corre-
sponding computational costs (withg(x) = mσ (x) andr = 20). A good quality of restoration is
obtained at a low computational cost (from 1.6 seconds for a noise of 10% to 4.3 seconds for a
noise of 70% with a computer of 3GHz and 2Gb of RAM), which confirms the efficiency of our
numerical scheme UBR. We use this feature to design our salt and pepper noise removal algo-
rithm detailed thereafter. Note that the parameterr is set to the same value for all the experiments
of Table 7. Choosing automatically the value ofr in order to obtain the lower computational cost
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at each noise level or each parameterλ is an open question that remains difficult to solve.
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Figure 6: Algorithm UBR : Final PSNR value obtained according to the parameterλ with r = 20
for the image “peppers” corrupted with a salt and pepper noise of 10% (withg(x) = 1 and with
g(x) = mσ (x)).

Algorithm UBR ( g = mσ ) for Peppers (256x256)
Noise level PSNR λ Iterations Computational cost

10 34.9 1.5 63 1.6 s
20 31.4 1.2 139 2.8 s
30 29.0 1.2 158 3.3 s
40 27.3 1.2 161 3.9 s
50 25.5 1.2 167 4.3 s
70 21.9 1.2 167 4.3 s

Figure 7: PSNR according to the salt and pepper noise level for the image “peppers” using
g(x) = mσ (x) (r = 20,εup = 0.0001). The computational cost for convergence is obtained with
a computer of 3GHz with 2Gb of RAM.

7.1.3 UBR-EDGE: an algorithm for salt and pepper noise removal

The use of the functiong provides a significant increase of the quality of the final results. How-
ever, even if the algorithmTVg + L1 well performs for low noise values, it gives very smoothed
results for higher noise values. Indeed, in order to remove large noisy patches, we must decrease
the parameterλ and so increase the smoothing of the whole image. In order to improve the
results for very noisy images, we propose to first decrease the size of unknown values using a
median filter (of half-size 1). The pixels that are still unknown after this first pass are estimated
by computing a mean on the known 4-connexity neighbours (i.e. we only take the known values
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to compute the mean). The aim of this first pass is to correct the bias introduced by the extreme
intensity values of the noisy pixels (min or max). This first estimation is then corrected using
theTVg + L1 algorithm which is able to smooth differently noisy pixels from uncorrupted ones
through theg function. At the end of the process, we apply a very simple edge smoother also
known as EDDI [24] usually used in deinterlacing process forelectronic devices. In this efficient
edge smoother, the unknown intensity value is estimated by computing the mean between the
two opposite pixels that have the nearest value of intensityin a 4-neighborhood. We apply this
simple filtering scheme only on pixels that are detected as corrupted pixels in the input image.

In Figure 8, we show the different steps of our process for therestoration of the image “Lena”
with a salt and pepper noise of 70%. The Figure 8.(c) displaysthe image obtained after the pre-
processing step (median filter + mean). This image is processed as an input of our algorithm
UBR usingg(x) = mσ (x) and the result of our UBR algorithm is given in Figure 8.(d). The
EDGE smoother EDDI is then applied to this result giving the final image Figure 8.(e) which is
the result of our UBR-EDGE algorithm.

(a) Input image (70%) (b) Original image

(c) Step 1: pre-processing (d) Step 2: UBR (e) Final : UBR + EDGE
PSNR= 19.6 dB PSNR= 30.1 dB PSNR= 30.6 dB

Figure 8: Salt and pepper noise removal using the algorithm UBR-EDGE for the image Lena
corrupted by a noise of 70%. The result is given for each step of the process. The image obtained
after the pre-processing (median+mean) is given in (c). This image is used as an input of the
algorithm UBR and the result is given in (d). A last post-processing is applied to the image
which yields to the final result given in (e).

Some visual results are provided in Figure 9 for “Lena” (512x512) and in Figure 10 for
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“Peppers” (256x256). Thanks to these visual results and to the associated PSNR values and
computational costs reported for all the noise levels in Table 11, we can conclude that our algo-
rithm provides good visual results at a low computational cost. The PSNR values obtained for
the image “Lena” can be compared with the PSNR values reported in [17] for many different
algorithms. Compared to the values computed in this paper, our algorithm gives comparable
PSNR results to the best algorithm (i.e. algorithm III) evenfor a high noise level. Indeed, the
PSNR value reported for the restoration of the image “Lena” corrupted by a noise of 70% is
29.3 dB using the algorithm III [17] and 31.4 dB using our algorithm. For a noise of 90%, they
find a PSNR of 25.4 dB while our algorithm gives a PSNR of 26.6 dB. We also report the visual
results and associated PSNR values for the noisy images of the web page of R. Chan6. For such
images our algorithm gives good quality results with a PSNR value that is near to the one found
by the algorithm [17] even if a little smaller (with a difference of less than 1 dB). As far as the
computational cost is concerned, it is difficult to compare the two computational costs since the
algorithm III is programmed using Matlab. However, our algorithm seems to provide a lower
computational cost especially for a high level of noise (seeTable 11).

7.2 Shape retrieval

The second example concerns shape retrieval with the image (“circle”) corrupted by a Gaussian
noise of variance 10 (Figure 13). In order to take benefit of the algorithm UBR for segmentation
purposes, we apply the same procedure as in [10]. The algorithm is processed until convergence
and the final functionu is thresholded in order to display the setUα(u) with α = 0.5. In all
experiments, we display both the characteristic function of this set and its final boundary in
white on the initial image. The accuracy of the segmentationresult is evaluated using the Dice
Coefficient defined as follows between two shapesS1 andSre f :

DC(S1,Sre f ) = 2
|S1∩Sre f |

|S1|+ |Sre f |
. (7.4)

Note that, for a perfectly segmented shape, we haveDC = 1. Here,Sre f is the circle shape of
Figure 13.a andS1 = U0.5(u) (upper level set of u whereu is the result of our algorithm UBR).

Let us first test the availability of our scheme for segmentation purposes. In Figure 14 (first
and second row) the final results obtained using different values of λ and with g(x) = 1 are
reported. The boundary of the setU0.5(u) is displayed in white on the noisy image and the
extracted shape is represented on the second row using a binary image. Our algorithm allows
to properly segment the shape. However, for small values ofλ , the TV regularization term
smoothes the corners and removes some small components of the shape. In order to avoid this
scale space effect and to improve the DC value, we can take benefit of a classical edge indicator
function:

g(x) = 1/(1+ βGσ ∗ |∇ f |).

whereGσ is a Gaussian kernel of 0-mean and varianceσ (we takeσ = 0.1 andβ = 10). Thanks
to this function, the DC coefficient is significantly improved as can be observed in Figure 14

6http://www.math.cuhk.edu.hk/ rchan/paper/impulse/
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(third and fourth rows) and is less dependent on the value ofλ (see also the Figure 16). These
experiments confirm the interest of the weighted total variation term for segmentation using dual
approaches as mentioned in [10].

As far as the robustness against the parameterr is concerned, we again visualize the number
of iterations (Figure 15.a) and theDC value (Figure 15.b) according to the parameterr. The
experimental results tend to prove that the algorithm converges towards the same final result for
each value ofr. The number of iterations is provided for two different values ofλ (0.5 and 1).

7.3 Geometric filtering

Finally, we give here an example of the applicability ofTVg +L1 minimization for geometric fil-
tering of shapes according to the orientation of their gradients. Such geometric filters are usually
designed in the framework of mathematical morphology in order to remove some shapes from a
set using their geometric properties [42]. In this paper, wetake one example to demonstrate the
potential use ofTVg + L1 for such an application. Let us consider that we want to remove the
horizontal ellipses from the binary image of Figure 17.a. Wethen define the regularized mask
mε(x,θre f ) = δε(θ(x)−θre f ), whereθ(x) represents the orientation of the gradient off andδε
is a regularized dirac function equal to 1 whenθ = θre f and almost 0 elsewhere. We then use
the following function forg:

g(x) = 1/(1+ βmε (x,θre f )|∇ f |).

As can be observed in Figure 17, when applyingTVg + L1 using the function defined above for
θre f = π/2[π] (horizontal values of the gradient), we make the vertical shapes disappear from
the initial image (the resulting binary shape and boundaries are shown in Figure 17).

8 Conclusion

In this paper, we propose to minimize aTVg + L1 criterion using an augmented Lagrangian
method which combines the features of the penalty and primal-dual approach and moderates
the disadvantages of both. We propose a Uzawa Block Relaxation (UBR) scheme and we more
particularly study the robustness of the algorithm againstthe penalty parameterr. Experimental
results tend to prove that the convergence can be attained without increasingr to infinity. This
parameter can then be chosen so as to decrease the number of iterations and therefore the compu-
tational cost. We also study the influence of the functiong for different applications such as salt
and pepper noise removal, shape retrieval or geometric filtering. An appropriate choice for this
function improves the final results for both salt and pepper noise removal and shape retrieval.
We also show that it can be used to select some shape components according to their geometric
properties. Using this function, we propose a whole algorithm for salt and pepper noise removal
(UBR-EDGE) that is able to handle high noise levels at a low computational cost. As far as the
perspectives are concerned, we can remark that choosing automatically the value of the penalty
parameter in order to obtain the lower computational cost for each image is an open question
that remains difficult to solve. Our on going research is directed towards this issue and towards
the design and evaluation of some other functionsg for geometric filtering.
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(a) Noise: 10% (b) PSNR=43.5 dB

(c) Noise: 30% (d) PSNR=37.1 dB

(e) Noise: 50% (f) PSNR=33.9 dB

(g) Noise: 70% (h) PSNR=31.4 dB

(i) Noise: 90% (j) PSNR=26.6 dB

Figure 9: Salt and pepper noise removal using the algorithm UBR-EDGE for the image Lena
(512x512). The input images are given with the associated results.
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(a) Peppers, Noise: 30% (b) UBR-EDGE, PSNR=34.5 dB

(c) Peppers, Noise: 70% (d) UBR-EDGE PSNR=27.7 dB

Figure 10: Salt and pepper noise removal using the algorithmUBR-EDGE for the image “Pep-
pers” (256x256). For the result obtained in (b),λ=2 and for the result in (d),λ = 1.5.

Algorithm UBR-EDGE
Lena (512x512) Peppers (256x256)

Noise PSNR Computational cost (s) PSNR Computational cost (s)
10 43.4 2.7 40.6 0.4
20 39.7 3.9 37.3 0.7
30 37.1 5.3 34.5 1.1
40 35.3 6.6 32.2 1.4
50 33.9 8.1 30.6 1.7
70 31.4 17.1 27.7 2.3
90 26.6 41.4 23.1 20.1

Figure 11: PSNR according to the salt and pepper noise level for the image “peppers” (256x256)
and “Lena” (512x512) using the algorithm UBR-EDGE (r = 200, εup = 0.0001). For a noise
level between 10% and 50%, we choose the same value ofλ = 2. For a noise level of 70%,
λ = 1.5 and for 90%,λ = 0.7. The computational cost for convergence is given with a computer
of 3GHz with 2Gb of RAM, it includes the pre- and post- processing steps.
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(a) UBR-EDGE: PSNR=22.2 dB (b) UBR-EDGE: PSNR=33.3 dB

(c) UBR-EDGE: PSNR=26.0 dB (d) UBR-EDGE: PSNR=25.7 dB

(e) UBR-EDGE: PSNR=29.1 dB (f) UBR-EDGE: PSNR=23.8 dB

(g) UBR-EDGE: PSNR=31.8 dB (h) UBR-EDGE: PSNR=35.4 dB

Figure 12: Salt and pepper noise removal using the algorithmUBR-EDGE for different images
of the Berkeley database corrupted with a salt and pepper noise of 70%. For all the results, we
takeλ = 2.
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(a) (b)

Figure 13: Input image (a) with a Gaussian noise of 10% (b)

(a) λ = 1,g = 1 (b) λ = 0.5,g = 1 (c) λ = 0.2,g = 1
DC= 0.99 DC= 0.97 DC= 0.95

(a) λ = 1 (b) λ = 0.5 (c) λ = 0.2
DC= 0.999 DC= 0.999 DC= 0.994

Figure 14: Experimental results of shape segmentation withUBR for different smoothing values
of λ (r = 20,εup = 0.0001) for the image “circle” with a Gaussian noise of 10%. Thetwo first
rows display the results obtained withg(x) = 1 while the two last rows display the result obtained
using an appropriate functiong = ϕ(|∇I|). For each value ofλ , we show both the setU0.5(u)
and its boundary in white.
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Figure 15: Algorithm UBR withg(x) = ϕ(|∇I(x)|): Number of iterations for convergence (a)
and dice coefficient (b) according to the parameterr with λ = 0.5 andλ = 1 for the segmentation
of the image “circle” corrupted with a Gaussian noise of 10% (εup = 0.0001).
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Figure 16: Algorithm UBR: Dice coefficient according to the parameterλ with g(x) = 1 andg
chosen as a function of the image gradient for the segmentation of the image “circle” corrupted
with a Gaussian noise of 10% (r = 20,εup = 0.0001).

(a) Initial shape (b) Final imageu

(c) setU0.5(u) (d) contour ofU0.5(u)

Figure 17: Experimental results of geometrical filtering (selection of horizontal ellipses) with
UBR (r = 20, λ = 0.05, εup = 0.0001) for the image “ellipses”. We show the initial image (a),
the final image without thresholding (b) the setU0.5(u) (c) and its boundary (d).
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