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submitted: December 21, 2009

1 Department of Knowledge-Based Mathematical Systems
University of Linz,
Softwarepark 21,
4232 Hagenberg,
Austria
E-Mail: frank.bauer.de@gmail.com

2 Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstraße 39,
D-10117 Berlin,
Germany
E-mail: mathe@wias-berlin.de

No. 1474

Berlin 2009

Key words and phrases. Inverse Problems, Heuristic Parameter Choice, Minimization Schemes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289298439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



1

Abstract. In this paper we establish a generalized framework, which allows to
prove convergenence and optimality of parameter choice schemes for inverse prob-
lems based on minimization in a generic way. We show that the well known
quasi-optimality criterion falls in this class. Furthermore we present a new pa-
rameter choice method and prove its convergence by using this newly established
tool.

1. Introduction

Regularization theory, see e.g., [5] studies the stable reconstruction of ill-posed or
badly conditioned problems

(1) Ax = y,

from noisy data yδ near y. Such a task is always divided into two parts. Firstly,
one must devise a (parametric) family of regularized solutions; popular schemes for
this are spectral cut-off, Tikhonov or Landweber regularization, see [5] for details.
Secondly, and this is of crucial importance, one must properly choose some element
from this parametric family of candidate solutions. Such parameter choice may or
may not depend on the given noisy data yδ and/or the noise level δ. The classical
parameter choice rules are the discrepancy principle and variants thereof [10, 11, 7],
which explicitly make use of the noise level δ, a quantity which is rarely known in
practice.

As A. Bakushinsky pointed out in [1] any purely data-driven parameter choice must
fail for certain sets of data, and hence cannot be convergent. However, several such
rules are successfully used in practice, as for instance the quasi-optimality criterion,
or the L-curve. The question is why such parameter choice rules work well despite
of the Bakushinsky veto.

Only recently several authors addressed this problem, probably starting with [4] in
a Bayesian framework, and continued with [3, 12] in deterministic or mixed settings.
As these studies reveal, heuristic methods may work well when excluding patholog-
ical behavior of the solution and the noise. We generalize this to parameter choice
which is based on functional minimization.

In this study we approach the problem in a coherent way. The different settings may
be described in a unified (probabilistic) way, and this is shown in Section 2. Then
we formulate a set of general assumptions on the deviation of some functions from
their mean, and on decay rates in Section 3. The convergence of certain heuristic
parameter choice rules is also established there. We discuss relations to previous
work in detail in Section 4. Finally we will present a new parameter choice, called
residual principle, in Section 5.

2. Setting and minimization schemes
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2.1. The model. We suppose that instead of the exact data y = Ax we are given
noisy data

(2) yδ = Ax + δξ,

where at the moment the noise ξ may be deterministic or stochastic. In this study
we use the singular value decomposition of the operator A as

(3) Ax =
∞∑

k=1

tk〈x, uk〉vk, x ∈ X ,

where {uk}k∈N is an orthonormal basis system of X , {vk}k∈N an orthonormal basis of
Y . The sequence {tk}k∈N of singular values is assumed to be monotonously decreas-
ing to 0, i.e. limk→∞ tk = 0. Regularization (reconstruction) methods R : Y → X
must use the data yδ from (2). We recall the following regularization schemes.

Example 1 (Spectral cut-off). Given some integer m we denote the projections onto
spaces spanned by the first m basis vectors {uk, k = 1, . . . ,m} and {vk, k = 1, . . . ,m}
by Pm and Qm, respectively. We denote by

(4) Am := QmAPm : X → Y
be the corresponding discretization. In these terms spectral cut-off is given as

(5) yδ −→ A−1
m Qmyδ.

We restrict the discretization levels to an exponential spacing m : = l(n) = bn0q
nc,

for some q > 1 and for n = 1, . . . , N , and we thus obtain as approximate solution

(6) xδ
n := A−1

l(n)Ql(n)y
δ, n = 1, . . . , N.

Example 2 (Tikhonov regularization). This is the parametric family

(7) xδ
α := (A∗A + αI)−1 A∗yδ, α > 0.

Below we shall use Tikhonov regularization with regularization parameters αn =
α0q

−n, n = 1, 2, . . . , for some q > 1, and we let (with a slight abuse of nota-
tion) xδ

n := xδ
αn

, n = 1, 2, . . .

If now R : Y → X is any method of reconstruction based on data yδ then its error
at the instance x ∈ X and noise ξ is

(8) e(x, ξ, R, δ) := ‖x−R(yδ)‖.

2.2. The setting. Within the model (2) the noise may be (unknown) deterministic
or drawn from some probability distribution. This also holds true for the solution
element x, which may be either deterministic within some class {⊂}X or randomly
chosen, such that in principle we can distinguish four different settings (Table 1), as
these are

Worst case setting: both, solution and noise are deterministic from some
sets,

Bayesian setting: both, solution and the noise are given by single probabili-
ties,
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deterministic noise ξ stochastic noise ξ
deterministic solution x worst case statistical case
randomly drawn solution x average case Bayesian analysis

Table 1. Various settings for the analysis of inverse problems

Statistical setting: the noise is represented by a singleton measure on Y , and
Average case setting: the solution is drawn from some probability distribu-

tion on X .

To cover all these settings simultaneously we will consider the following abstract
framework. Recall that in the Bayesian setup there are probability measures on both
the spaces X and Y , whereas in the deterministic framework we take suprema over
setsM, N of solution elements and noise. This can be unified by considering certain
sets of probabilities as follows. Notice, that due to the error representation (8) we
have to assume that the probability on X is Radon (concentrated on X ). In contrast,
randomness in the data enters the error only through the reconstruction mapping R.

Assumption 2.1. The spaces X and Y are endowed with the Borel σ-algebras, re-
spectively. The set P = P(X ) consists of Radon probabilities on X , and the
set Q = Q(Y) is a collection of cylindrical probabilities on Y .

The reconstruction R maps the cylindrical probabilities, driving yδ = yδ(x, ξ) on Y
to Radon ones on X .

The error is measured uniformly over P , Q, i.e.,

e(P ,Q, R, δ) := sup
P∈P

sup
Q∈Q

(
EP EQe(x, ξ, R, δ)2

)1/2

= sup
P∈P

sup
Q∈Q

(
EP EQ‖x−R(yδ)‖2

)1/2
.

This covers both the Bayesian setting, with singleton sets, and the worst case setting,
in which case we let P = {δx, x ∈M} , Q = {δy, x ∈ N}, respectively.

Example 3. The Gaussian white noise case is covered by assuming that ξ is given
by a centered cylindrical Gaussian probability with identical covariance, i.e.,

E〈ξ, v〉 = 0 ∀v ∈ Y
E〈ξ, v〉2 = ‖v‖2 ∀v ∈ Y .

Example 4. The case of deterministic noise is covered by fixing a set N ⊂ Y and
letting Q = {δξ, ξ ∈ N} the corresponding set of degenerate probabilities. In
particular, for any g : Y → R it holds that EQg(ξ) = g(ξ).

Remark 1. If all measures from P and Q are Radon, and R is linear continuous,
then the distribution of yδ is Radon, and any such mapping R may be used as
reconstruction. This applies to the worst case setting.

If the reconstruction mapping R : Y → X is linear, then it transforms arbitrary cylin-
drical probabilities (with weak second moments) into Radon ones (it is radonifying)
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if and only if its singular numbers are square summable, i.e., it is a Hilbert–Schmidt
operator. As standard reference for cylindcical and Radon probabilities we men-
tion [13].

Finite-rank linear mappings have square summable singular numbers, and hence
spectral cut-off schemes as in Example 1 fulfill this requirement.

Tikhonov regularization from Example 2 represents a Hilbert–Schmidt operator if
and only if the underlying operator A has square summable singular numbers, and we
sketch this: The singular numbers of the mapping in (7) are tk/(t

2
k +α), k = 1, 2, . . .

There are only finitely many k for which t2k ≥ α > 0, and hence the summability is
determined by those with t2k ≤ α , in which case∑

k:t2k<α

t2k
(t2k + α)2

³ 1

α2

∑
k:t2k<α

t2k,

which is finite exactly if the tk are square summable. The latter explains the diffi-
culties for using Tikhonov regularization for statistical ill-posed problems.

Assumption 2.1 is considered a standing assumption, and in the analysis below this
will be tacitly assumed without further mentioning.

We highlight the corresponding error criteria in the four settings mentioned above,
where we identify sets M, N of degenerate probabilities with the describing sets.

Worst case setting: e(M,N , R, δ) = supx∈M supξ∈N ‖x−R(yδ)‖,
Bayesian setting: e(P, Q, R, δ) =

(
EP EQ‖x−R(yδ)‖2

)1/2
,

Statistical setting: e(M, Q,R, δ) = supx∈M
(
EQ‖x−R(yδ)‖2

)1/2
, and

Average case setting: e(P,N , R, δ) = supξ∈N
(
EP‖x−R(yδ)‖2

)1/2
.

Notice that in the worst case, Bayesian and the statistical settings the errors are
given as usual.

Remark 2. The average case setting has not been treated so far, but the change
from the worst case to the average case setting could also result in

eavg(P,N , R, δ) =

(
EP sup

ξ∈N
‖x−R(yδ)‖2

)1/2

.

This criterion is stronger than the one from above, but there are issues of mea-
surability. Nonetheless, there are initial studies [9], where such error criterion is
used.

2.3. Parameter choice. Suppose that, given data yδ, we have constructed (by
some means) a collection {xδ

n}n of regularized (i.e. approximate) solutions xδ
n =

R(αn, y
δ), and αn is the regularization parameter controlling the regularization.

Our goal is to choose the best (or a near to best) representer within the family {xδ
n}n

which means we would like to minimize or control the error ‖xδ
n − x‖. This will be
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done by minimization of some carefully chosen function

(9) f : N → R+,

and the chosen regularization parameter n∗ is defined as

(10) n∗ = argmin
n

f(n).

Example 5 (Quasi-Optimality). For the quasi-optimality criterion we let

f(n) = ‖xδ
n − xδ

n+1‖, n ∈ N.

Remark 3. We stress the following. If either x or ξ are deterministic, and the
sets M, N are ’small’ then the issue of finding optimal reconstructions is useless.
Within the present model, for instance if P = δx, then we could take as reconstruc-
tion yδ 7→ R(yδ) = x, regardless of the data yδ. Thus the present analysis focuses
of the performance of given regularization strategies rather than on finding optimal
methods. Of course, the performance is then measured uniformly with respect to
x ∈M ⊂ X , or ξ ∈ N ⊂ Y , respectively. The sets M and N then represent typical
instances for data or noise.

Having fixed a function f as in (9), which is P×Q-measurable, we assign its expected
variant

(11) F (n) := FP,Q(n) =
(
EP,Qf(n)2

)1/2
, n ∈ N,

which should be close uniformly for P ∈M, Q ∈ N . Finally, we also introduce the
expected error

(12) E(n) := EP,Q(n) =
(
EP,Q‖x− xδ

n‖2
)1/2

, n ∈ N.

Remark 4. The proofs would not change (for properly modified assumptions) if
we considered general moments for describing the expected error. However, as the
knowledge gained is rather limited we will for now sacrifice generality for simplicity
and just consider the second moments.

The key idea can be comprised as follows: If the expected functional F behaves like
the error function E, and if the functional f is close to its expectation, then the
minimization of f yields a convergent (and optimal) parameter choice. To make this
precise we will impose a set of assumptions in § 3.1, and we will also provide more
intuitive conditions in § 4.1.

3. Main result

The objective in this section is provide a set of assumptions for which a variety of
parameter choices will have regularizing properties. Under an additional assumption
such choices will even obey an oracle inequality.

We first exhibit the following useful calculus for the functions E(n) and F (n), respec-
tively, in case that the minimization functional f corresponds to quasi-optimality,
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i.e., as in Example 5. We use the splitting

x− xδ
n = (x− xn) + (xn − xδ

n),

and

xδ
n − xδ

n+1 = (xn − xn+1) +
(
(xδ

n − xn)− (xδ
n+1 − xn+1)

)
.(13)

Thus, if either the solution element x is drawn from a centered random element in
the Hilbert space X or the noise probability Q is a centered (generalized) random
element in the Hilbert space Y then

EP,Q(n)2 = EP‖x− xn‖2 + EQ‖xδ
n − xn‖2,(14)

FP,Q(n)2 = EP‖xn − xn+1‖2 + EQ‖
(
xδ

n − xn

)
−
(
xδ

n+1 − xn+1

)
‖2.(15)

Therefore, in either of the above settings we must bound these summands uniformly
for the probabilities from P , Q.

Finally, by using the Hölder inequality, we have that

E(n) ≤
(
EP,Q‖x− xδ

n‖2α
)1/(2α)

,

for α ≥ 1, and below we shall require that some converse also holds true.

3.1. Assumptions. Next, we gather the assumptions for the general analysis. We
start with

Assumption 3.1 (existence of minimizer). For each P ∈ P and Q ∈ Q the func-
tion FP,Q is finite and there is a minimizing point n#, i.e.,

n# = argmin
n

FP,Q(n).

Furthermore, the following set of properties holds uniformly for P ∈ P and Q ∈ Q.
We assume that there are constants

– α > 1, controlling an additional moment, and we assign the corresponding
dual index β satisfying α−1 + β−1 = 1,

– r, controlling the decay of probabilities, and
– n, controlling the region of uncertainty, and
– constants c1, . . . , c6 > 0,

such that the following holds.

Assumption 3.2 (concentration of f). For |n− n#| > n̄ it holds uniformly

PP,Q

{
f(n#)

F (n#)
>

√
F (n)

F (n#)

}
≤ c1

2

(
F (n#)

F (n)

)r

,

and

PP,Q

{
f(n)

F (n)
<

√
F (n#)

F (n)

}
≤ c1

2

(
F (n#)

F (n)

)r

.
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Assumption 3.3 (moments of E). For each P ∈ P and Q ∈ Q the function EP,Q is
finite, and there is a constant c2 for which(

EP,Q‖x− xδ
n‖2α

)1/(2α) ≤ c2E(n)

Assumption 3.4 (concentration of E).

E(n) ≤ c
|n−m|
3 E(m).

Assumption 3.5 (decay rate for F ). For n > n# + n it holds

∞∑
n=n#+n

(
F (n#)

F (n)

)r

≤ c4 < ∞

Assumption 3.6 (combined decay rate).

∑
|n−n#|≥n

(
E(n)

E(n#)

)(
F (n#)

F (n)

)r/(2β)

≤ c5

For an optimality assertion we need the additional

Assumption 3.7 (oracle bound for n#).

E(n#) ≤ c6 min
n

E(n).

We shall provide sufficient conditions which ensure the validity of the assumptions
when discussing relation to previous work, below.

3.2. Statement of the main result. We turn to state and prove the main result
and we start with the following assertion.

Lemma 3.1. Let n# be a minimizer of F . Under assumptions 3.2 and 3.5 it holds
that

PP,Q{n∗ = n} ≤ c1

(
F (n#)

F (n)

)r

, n = 1, 2, . . . ,

and hence the minimizer n∗ of f exists (P, Q)-almost surely. 1

Proof. By the definition of n# and n∗ we can bound

PP,Q{n∗ = n} = PP,Q{f(m) ≥ f(n) for all m ∈ N} ≤ PP,Q{f(n#) ≥ f(n)}.

1If either the noise or the solution (or both) are deterministic then, according to Remark 3 the
notion (P,Q)-almost surely means that this is to hold uniformly for the corresponding set M, N ,
respectively.
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By Assumption 3.2 and for n ≥ n# + n̄ we deduce from F (n#) ≤ F (n) that

PP,Q{f(n#) > f(n)} ≤ PP,Q

{
f(n#) >

√
F (n)F (n#)

}
+ PP,Q

{
f(n) <

√
F (n)F (n#)

}
= PP,Q

{
f(n#)

F (n#)
>

√
F (n)

F (n#)

}
+ PP,Q

{
f(n)

F (n)
<

√
F (n#)

F (n)

}

≤ c1

(
F (n#)

F (n)

)r

,

which proves the first assertion. Furthermore, by Assumption 3.5 it holds

∞∑
n=n#+n

PP,Q{f(n) < f(n#)} ≤ c1

∞∑
n=n#+n

(
F (n#)

F (n)

)r

≤ c4 < ∞

Due to the Borell-Cantelli Lemma, see e.g. [6, Chapt. VIII.3], we have

PP,Q{number of n with f(n) < f(n#) is finite} = 1

and hence the parameter n∗ is finite with probability 1. ¤

This yields the main result.

Theorem 1. Let n# be as in Assumption 3.1. Under assumptions 3.2–3.6 there is
a constant C < ∞ such that uniformly for P ∈ P , Q ∈ Q we have that

(16) EP,Q(n∗) ≤ CEP,Q(n#).

If in addition the oracle bound from Assumption 3.7 holds then

(17) EP,Q(n∗) ≤ C̃ min
n

EP,Q(n).
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Proof. By Lemma 3.1 the minimizer n∗ exists with probability 1. For any pair P, Q,
and using the Hölder inequality we get

E(n∗) =
(
EP,Q‖x− xδ

n∗‖
2
)1/2

=

(
∞∑

n=1

EP,Q

(
‖x− xδ

n‖21n=n∗

))1/2

≤

(
n#−n∑
n=1

(
EP,Q‖x− xδ

n‖2α
)1/(2α) (EP,Q12β

n=n∗

)1/(2β)

+ cn
3 max

n#−n≤n≤n#+n
E(n)

+
∞∑

n=n#+n

(
EP,Q‖x− xδ

n‖2α
)1/(2α) (EP,Q12β

n=n∗

)1/(2β)


≤c2

(
cn
3c

1/(2β)
1

n#−n∑
n=1

E(n#)
E(n)

E(n#)

(
F (n#)

F (n)

)r/(2β)

+ cn
3E(n#)

+ cn
3c

1/(2β)
1

∞∑
n=n#+n

E(n#)
E(n)

E(n#)

(
F (n#)

F (n)

)r/(2β)


=c2

cn
3 + cn

3c
1/(2β)
1

∑
|n−n#|≥n

(
E(n)

E(n#)

)(
F (n#)

F (n)

)r/(2β)

E(n#)

≤c2

(
cn
3 + cn

3c
1/(2β)
1 c5

)
E(n#)

which proofs the claim with C = c2

(
cn
3 + cn

3c
1/(2β)
1 c5

)
. The oracle bound is an

immediate application of Assumption 3.7, and the proof is complete. ¤

Remark 5. The assumptions 3.1–3.7 as well as the proofs of Lemma 3.1 and Theorem
1 do not depend on the linearity of the operator A, i.e., the analysis extends (in
principle) also to non-linear inverse problems.

4. Discussion and relation to previous work

Next we provide a set of conditions which imply the assumptions made in § 3.1.
These conditions have partly been set up in previous studies, in particular [4, 3],
and we discuss the relations to such in some detail.

4.1. Sufficient conditions. We start with using a general moment inequality (Ka-
hane’s Inequality) for Gaussian centered variables.
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Lemma 4.1. If, in the settings from § 2.2, the non-degenerate probabilities are
centered Gaussian, then Assumption 3.3 holds true whenever regularization is linear
in the data.

Proof. We first treat the Bayesian setting with two Gaussian probabilities P and Q.
In this case, and for p > 1, we use Kahane’s Inequality, see [8, Cor. 3.2], to conclude
that (

EP,Q‖x− xδ
n‖p
)1/p ≤ (EP,Q‖x− xn‖p)1/p +

(
EP,Q‖xn − xδ

n‖p
)1/p

≤ Cp

((
EP,Q‖x− xn‖2

)1/2
+
(
EP,Q‖xn − xδ

n‖2
)1/2
)

≤
√

2Cp

((
EP,Q‖x− xn‖2

)
+
(
EP,Q‖xn − xδ

n‖2
))1/2

=
√

2CpEP,Q(n).

In the worst case setting the statement is trivial. Finally, in either the statistical
or the average case setting with centered Gaussian probability, the proof is similar,
and we provide the one for the statistical setting, i.e., when Q is centered Gaussian.
Then, similar as above, we bound(

EQ‖x− xδ
n‖p
)1/p ≤ ‖x− xn‖ +

(
EQ‖xn − xδ

n‖p
)1/p

≤ ‖x− xn‖ + Cp

(
EQ‖xn − xδ

n‖2
)1/2

≤ Cp

√
2
(
‖x− xn‖2 + EQ‖xn − xδ

n‖2
)1/2

= Cp

√
2
(
EQ‖x− xδ

n‖2
)1/2

.

For any degenerate P = δx, x ∈M we may thus conclude that(
EP,Q‖x− xδ

n‖p
)1/p

=
(
EQ‖x− xδ

n‖p
)1/p

≤ Cp

√
2
(
EQ‖x− xδ

n‖2
)1/2

= Cp

(
EP,Q‖x− xδ

n‖2
)1/2

,

and the proof is complete. ¤

Further conditions are more specific, and tied to the used parameter choice, and the
following set of conditions was highlighted in [4, Ass..1], and [3, Eq. (10), (14) &
(21)], and can be used for the quasi-optimality criterion.

Assumption 4.1 (bias decay). There are constants w1, w2 > 1 such that uniformly
for P ∈ P it holds that

w2
1EP‖x− xn+1‖2 ≤ EP‖x− xn‖2 ≤ w2

2EP‖x− xn+1‖2 < ∞.

Assumption 4.2 (noise propagation). There are constants w3, w4 > 1 such that
uniformly for Q ∈ Q it holds that

w2
3EQ‖xδ

n − xn‖2 ≤ EQ‖xδ
n+1 − xn+1‖2 ≤ w2

4EQ‖xδ
n − xn‖2 < ∞.

Remark 6. We stress that Assumption 4.1 only depends on the set P . It is constant
with respect to Q ∈ Q, and hence we may replace the above expectations EP by
EP,Q. A similar remark applies to Assumption 4.2, which only depends on Q ∈ Q
and is constant with respect to P ∈ P .
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To proceed it is convenient to introduce the following set of abbreviations (for fixed
probabilities P, Q):

b(n) := ‖x− xn‖, B(n) :=
(
EP,Qb2(n)

)1/2
,(18)

s(n) := ‖xδ
n − xn‖, S(n) :=

(
EP,Qs2(n)

)1/2
,(19)

d(n) :=
∥∥(xδ

n+1 − xn+1

)
−
(
xδ

n − xn

)∥∥ , D(n) :=
(
EP,Qd2(n)

)1/2
,(20)

g(n) := ‖xn+1 − xn‖, G(n) :=
(
EP,Qg2(n)

)1/2
.(21)

With this notation the assumptions 4.1 and 4.2 translate to

(22) 1 < w1 ≤
B(n)

B(n + 1)
≤ w2, and 1 < w3 ≤

S(n + 1)

S(n)
≤ w4.

Lemma 4.2. The following assertions hold true.
Under Assumption 4.1

– the bias B is an exponentially decreasing sequence, and
– Uniformly for P ∈ P we have that B(n) ³ G(n).

Under Assumption 4.2

– the noise propagation S is exponentially increasing, and
– uniformly for Q ∈ Q we have that D(n) ³ S(n).

Proof. Let n2 > n1. By iterating the left hand side in (22) (n2 − n1)-times we have

that B(n2) ≤ w
−(n2−n1)
1 B(n1), which proves the first assertion. Moreover, we have

under Assumption 4.1 that

(w2 − 1)B(n) ≤ B(n)−B(n + 1) ≤ G(n) ≤ B(n) + B(n + 1) ≤ (1 + w1)B(n),

proving the asymptotic equivalence. The conclusions under Assumption 4.2 are
proved similarly, and hence omitted. ¤

The crucial observation is comprised in the following lemma.

Lemma 4.3. Let f be as in Example 5 and n# be from Assumption 3.1. Suppose
that assumptions 4.1 and 4.2 hold. Then there is a number n such that
for n > n# + n :

(23) F (n) ³ E(n) ³ D(n) ³ S(n),

for n < n# − n:

(24) F (n) ³ E(n) ³ B(n) ³ G(n).

Consequently, it holds that E(n) ³ F (n) ³ max {B(n), S(n)}, and E(n), F (n)
decrease for n < n# − n and increase for n > n# + n exponentially, with constants
uniformly for P ∈ P and Q ∈ Q.
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Proof. Fix probabilities P and Q. First, assume that S(1) < B(1). In this case we
let n+ be the last point where S(n) ≤ B(n), i.e., where

γB(n+ + 1) ≤ S(n+) ≤ B(n+),

for some constant γ > 0. This parameter n+ allows for the following implications.
If m > n+ then, by Lemma 4.2, we have that

S(m)

S(n+)
≥ w

m−n+

3 , and
B(n+ + 1)

B(m)
≥ w

m−n+−1
1 .

Therefore, we conclude

S(m) ≥ w
m−n+

3 S(n+) ≥ γw
m−n+

3 B(n+ + 1) ≥ γw
m−n+

3 w
m−n+−1
1 B(m)

=
γ

w1

(w3w1)
m−n+B(m).

Similarly, we conclude for k < n+ that

B(k) ≥ w
n+−k
1 B(n+) ≥ w

n+−k
1 S(n+) ≥ w

n+−k
1 w

n+−k
3 S(k).

Thus, there are ñ and c > 1 for which

S(m) ≥ cB(m), and B(k) ≥ cS(k), whenever k + ñ < n+ < m− ñ.

Plainly, by enlarging ñ we may increase c > 1, and hence we may assume that
c+1
c−1

< min{w3, w2}.

In the second case, when S(1) > B(1), then S(n) ≥ S(1) ≥ B(1) ≥ B(n), and
S(m) ≥ cB(m) for m ≥ ñ, and we may let n+ := 1.

We turn to proving the assertions. To establish (23) with constants n+ and ñ we
first consider the case that n > n+ + ñ. Using the triangle inequality we bound

E(n) ≤ B(n) + S(n) ≤ c + 1

c
S(n).

Similarly, we have that

E(n) ≥ S(n)−B(n) ≥ c− 1

c
S(n).

Also, it holds

F (n) ≤ E(n) + E(n + 1) ≤ c + 1

c
(1 + w4)S(n),

and finally that

F (n) ≥ E(n + 1)− E(n) ≥ c− 1

c
S(n + 1)− c + 1

c
S(n)

≥ 1

c
(w3 (c− 1)− (c + 1)) S(n).

Notice that w3 (c− 1)− (c + 1) > 0.

The case n < n+ − ñ is treated similarly, allowing to establish assertion (24) with
constants n+ and ñ.

Obviously, n+ and n# do not need to coincide, however n+ − ñ ≤ n# ≤ n+ + ñ and
hence (23) and (24) hold for n = 2ñ. ¤
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The above lemma allows for the following implication.

Corollary 1. The assumptions 4.1 and 4.2 imply the validity of the assumptions 3.1,
3.4, 3.5, and 3.7.

Proof. Clearly, Lemma 4.3 implies the existence of the minimizer n#. This assertion
also yields assumptions 3.4 and 3.5 (for every r > 0). It remains to show that
Assumption 3.7 is valid. By using Lemma 4.3 we bound (for some constants 0 <
C, C̃ < ∞) as follows:

E(n#) ≤ CF (n#) = C min
n

F (n) ≤ C̃ min
n

E(n),

and the proof is complete. ¤

So far we have provided sufficient conditions to yield all but assumptions 3.2 and 3.6.
By the exponential decay proved in Lemma 4.3 the latter assumption would follow
from the first if r > 0 is large enough. Thus, we aim at providing conditions which
ensure that Assumption 3.2 holds for every r > 0, uniformly for P ∈ P , Q ∈ Q .
To this end we draw another conclusion from the assumptions 4.1, 4.2. For quasi-
optimality, the function f is related to the auxiliary functions d, g, see (13), and
therefore the following requirement helps us.

Assumption 4.3 (tail behavior). There are constants C1, C2, and r > 0 for which

PP

(
g(n)

G(n)
> η

)
≤ C1η

−2r, PQ

(
d(n)

D(n)
> η

)
≤ C2η

−2r, η > 1,

and there is n0 such that for n ≥ n0 it holds

PP

(
g(n)

G(n)
<

1

η

)
≤ C1η

−2r, PQ

(
d(n)

D(n)
<

1

η

)
≤ C2η

−2r, η > 1,

uniformly for P ∈ P , Q ∈ Q.

Remark 7. Assumption 4.3 is trivially fulfilled whenever the probabilities are degen-
erate, and can be proved to hold for single centered Gaussian ones. The latter can
be seen from Lemma 4.5, below.

Lemma 4.4. Suppose that the assumptions 4.1, 4.2, and 4.3 hold. If f is the quasi-
optimality function as in Example 5 then Assumption 3.2 holds for r.

Proof. First, if both probabilities P and Q are degenerate, then f(n) = F (n) and
Assumption 3.2 holds trivially for all r and with constant 1.

Next, using the triangle inequality we have that f(k) ≤ d(k) + g(k), and therefore
we can deduce that

P
(

f(k)

F (k)
> η

)
≤ P

(
d(k)

D(k)
>

F (k)

D(k)

η

2

)
+ P

(
g(k)

G(k)
>

F (k)

G(k)

η

2

)
≤ PQ

(
d(k)

D(k)
>

η

2

)
+ PP

(
g(k)

G(k)
>

η

2

)
≤ 22r (C1 + C2) η−2r,
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which proves the first bound in Assumption 3.2 by letting η :=
√

F (n)/F (n#) and
k = n#.

Furthermore, if n > n# + n we bound, by using that f(n) ≥ d(n)− g(n), as

P

(
f(n)

F (n)
<

√
F (n#)

F (n)

)
≤ P

(
d(n)

F (n)
<

√
F (n#)

F (n)
+

g(n)

F (n)

)

≤ P

(
d(n)

F (n)
< 2

√
F (n#)

F (n)

)
P

(
g(n)

F (n)
<

√
F (n#)

F (n)

)

+ P
(

d(n)

F (n)
< 2

g(n)

F (n)

)
P

(
g(n)

F (n)
>

√
F (n#)

F (n)

)

≤ P

(
d(n)

F (n)
< 2

√
F (n#)

F (n)

)
+ P

(
g(n)

F (n)
>

√
F (n#)

F (n)

)
.

We continue as follows. First, by using the asymptotics (23) we have that

D2(n)

F (n)F (n#)
³ F (n)

F (n#)
> 1.

Therefore we bound

P

(
d(n)

F (n)
< 2

√
F (n#)

F (n)

)
= P

(
d(n)

D(n)
< 2

√
F (n)F (n#)

D(n)2

)
≤ CC2

(
F (n#)

F (n)

)r

.

Similarly we use Lemma 4.2 to infer that G(n) ³ B(n) ≤ B(n#) ≤ F (n#), hence

F (n)F (n#)

G2(n)
≥ F (n)

F (n#)
> 1,

and we bound

P

(
g(n)

F (n)
>

√
F (n#)

F (n)

)
= P

(
g(n)

G(n)
>

√
F (n)

F (n#)

)
≤ C1

(
F (n#)

F (n)

)r

.

The case that k < n# − n is treated similarly, and hence we omit the proof. ¤

Since we have established that the assumptions from Section 3.1 are fulfilled for
quasi-optimality, we conclude the following

Corollary 2. Suppose that the set of probabilities P and Q are such that the as-
sumptions 4.1, 4.2, and 4.3 hold. Then quasi-optimality yields an oracle bound

E(n∗) ≤ C̃ min
n

E(n).
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4.2. Relation to previous work. Here we shall exhibit how previous analysis is
covered by the present setup. As already mentioned, in previous analysis both some
worst case, Bayesian and ’intermediate’ settings were considered. The parameter
choice was quasi-optimality.

For the worst case setting the authors in [3] introduce assumptions, called (P) and
(Q), with corresponding sets M, N . Then they show in Lemma 2.4, ibid., that (P)
implies the growth bounds in Assumption 4.1, and in Lemma 2.6, ibid., that (Q)
yields Assumption 4.2. Therefore, all the assumptions in § 4.1 are fulfilled, and
Theorem 1 reproves their Theorem 3.9 for the worst case setting.

The authors in [4] study the Bayesian setting, and they impose as Ass. 2.1, ibid.
exactly the growth constraints in assumptions 4.1 and 4.2. In Example 2.2, ibid.,
they verify the following: if either the solution element x is drawn from a centered
Gaussian distribution, or the noise is distributed according to some Gaussian law,
and if the variances decrease polynomially then the assumptions 4.1 and 4.2 are
fulfilled.

The key to show, that Assumption 4.3 and hence Assumption 3.2 holds for every
r > 0 within the Bayesian framework is the following result, see [4, Lem. 6.1].

Lemma 4.5. Let Z =
∑∞

k=1 α2
kζ

2
k with

∑∞
k=1 α2

k = 1 and ζk ∼ N(0, 1) i.i.d. Assume
that maxk αk > 0. Then

∀ z ∈ (0, 1) : P(Z ≤ z) ≤ exp
(1− z + log(z)

2 maxk α2
k

)
, ∀ z > 0 : P(Z ≥ z) ≤

√
2e−z/4.

Therefore, all the assumptions in § 4.1 are fulfilled, and Theorem 1 reproves their
results for the Bayesian setting.

The authors in [3] also study the statistical setting with Gaussian white noise, and
Theorem 3.9, ibid., corresponds to Theorem 1.

As we have shown here, the quasi-optimality principle can be applied in all four cases,
the “Worst case setting”, “Bayesian setting”, “Statistical setting” and the “Average
case setting”. Even more, instead of imposing a single Gaussian probability for the
statistical or Bayesian settings, our results extend to classes of such, provided that
the bounds in Assumption 4.3 hold uniformly.

Example 6. We briefly sketch this for families {Pγ, γ ∈ Γ} of centered Gaussian priors
for the solution, i.e., we assume that each Pγ has diagonal covariance operator with
respect to the u1, u2, . . . , and the diagonal elements, denoted by γ1, γ2, . . . decay
like γk ³ k−νγ , γ ∈ Γ. Suppose furthermore, that regularization is spectral cut-off.
Then, for fixed γ ∈ Γ, as an easy calculation shows, we have for g(n) from (21) that

g2(n) =

l(n+1)∑
k=l(n)+1

γ2
kη

2
k,
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with i.i.d. standard normal η1, η2, . . . . In particular this yields that G2(n) =∑l(n+1)
j=l(n)+1 γ2

j , and hence that

g2(n)

G2(n)
=

l(n+1)∑
k=l(n)+1

γ2
k∑l(n+1)

j=l(n)+1 γ2
j

,

and Lemma 4.5 applies, with α
(γ)
k := γ2

k/
∑l(n+1)

j=l(n)+1 γ2
j . In order to fulfill (the first

couple of bounds in) Assumption 4.3 for arbitrarily large r > 0 we need that

max
l(n)+1≤k≤l(n+1)

α
(γ)
k → 0, as n →∞,

uniformly for γ ∈ Γ. This results in a requirement for the exponents νγ, γ ∈
Γ, and leads to require that there are 1/2 < νmin ≤ νmax < ∞ such that νγ ∈
[νmin, νmax], γ ∈ Γ. The same requirement ensures that Assumption 4.1 is fulfilled.

In a similar way one can treat families of Gaussian distributions for the noise, and
we leave the details to the reader.

5. Residual Principle

Here we present a new minimization scheme; this time not operating in the solution
space X but in the data space Y . Numerical simulations and preliminary discussion
on this principle can be found in [2]. To formulate this principle, we use the singular
value decomposition of the operator A from (3). Regularization is done by spectral
cut-off as in Example 1, yielding xδ

n := A−1
l(n)Ql(n)y

δ, n = 1, . . . , N.

According to this spacing we let yδ
n := Ql(n)y

δ, n = 1, . . . , N . The parameter choice
now consists of choosing some discretization level, and we base our parameter choice
(called Residual method) on the projected data, and we let

f(n) :=
‖yδ

N − yδ
n‖2√

trace (B∗
nBn)

(25)

where

Bn := A(Pl(N) − Pl(n)), n = 1, . . . , N.(26)

and we let

n∗ := argmin
1≤n≤N

f(n),(27)

denote any minimizer of f .
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5.1. Bayesian framework. We will analyze this parameter choice in a Bayesian
setting, similar to the one presented in [4]. We assume the following prior proba-
bility P for x: All Fourier coefficients 〈x, uk〉, k = 1, . . . , are independently nor-
mally distributed according to N (0, γ2

k), with a decreasing and square summable
sequence γ : N+

0 → R+
0 .

The normalized error elements are also randomly chosen according to Q, i.e. the
(formal) Fourier coefficients 〈ξ, vk〉, k = 1, . . . , are all independent and distributed
according to the normal distribution N (0, σ2

k). Below, the expectation is always
with respect to the product probability, i.e., E := EP,Q.

To keep computations simple we will restrict ourselves to the following model.

Assumption 5.1. Let µ > 0, ν > 1/2 and −1/2 < τ .
We let tk := k−µ, γk := k−ν and σk := kτ , k = 1, . . .

Remark 8. Obviously it holds that E‖yδ − yδ
n‖2 = ∞ as long as σ is not decreasing

too fast. Therefore we assume to know an upper bound N > nopt for the ’optimal’
parameter nopt. Hence instead of the residual ‖yδ − yδ

n‖ we just consider the finite
dimensional version ‖yδ

N − yδ
n‖ in order to perform the analysis.

Let us briefly motivate the above weighting in (25) in the Bayesian framework. By
a reasoning as for the representations (14) and (15) we have that

E‖yδ
N − yδ

n‖2 = EP‖(Pl(N) − Pl(n))Ax‖2 + δ2EQ‖(Pl(N) − Pl(n))ξ‖2

=

l(N)∑
k=l(n)+1

t2kγ
2
k + δ2

l(N)∑
k=l(n)+1

σ2
k.(28)

The first term in (28), now called ϕ(n) :=
∑l(N)

k=l(n)+1 t2kγ
2
k, is a fast decreasing function

whereas the second term stays comparably stable, depending on the noise variances.
In order to detect the change point more reliably it is advisable to multiply both
summands with a moderately increasing function. The function ϕ(·)−1/2 would be
preferable, however this is unknown to us. Since γ is supposed to be decreasing we
can instead use that

ϕ(n) =

l(N)∑
k=l(n)+1

t2kγ
2
k ≥ c

l(N)∑
k=l(n)+1

t2k = trace (B∗
nBn) ,

with operator Bn as in (26). In this case the function ϕ(n) (trace (B∗
nBn))−1/2 is still

decreasing, and as long as the color of the noise is not too bad and the ill-posedness
of the operator is moderate, the function

(trace (B∗
nBn))−1/2

l(N)∑
k=l(n)+1

σ2
k

is increasing. The required trace can be either calculated directly or by using fast
trace estimators. For the geometric discretization scheme l(n), n = 1, . . . , N , and
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under Assumption 5.1 the representation (28) leads to

E‖yδ
N − yδ

n‖2 = δ2

l(N)∑
k=l(n)+1

k2τ +

l(N)∑
k=l(n)+1

k−2ν−2µ and trace (B∗
nBn) =

l(N)∑
l(n)

k−2µ.

Elementary calculus allows to upper and lower bound both of these expressions,
using the spacing q > 1, and yielding that

E‖yδ
N − yδ

n‖2 ³ qn(−2ν−2µ+1) + δ2qN(2τ+1),

trace (B∗
nBn) ³ qn(−2µ+1).

with constants independent of n, N and δ. Hence we have that

(29) F 2(n) =
E‖yδ

N − yδ
n‖2√

trace (B∗
nBn)

³ qn(−2ν−µ+1/2) + δ2qN(2τ+1)qn(µ−1/2),

which is a sum of a decreasing and an increasing function of n, provided that µ > 1/2.

Obviously, the chosen regularization parameter depends on the choice of N : the
bigger N , the worse the result. However we need to make sure that N > nopt, and
this will be discussed, below.

Similarly, the expected squared error can be computed as

(30) E2(n) = E‖x− xδ
n‖2 ³ qn(−2ν+1) + δ2qn(2µ+2τ+1).

We notice that the growth and decay rates of E and F are different, in general.

5.2. Analysis. The asymptotic error expansion (30) yields the following result,
stated without proof.

Lemma 5.1. For the minimal average error it holds that

min
n

√
E‖x− xδ

n‖2 ≤ C13δ
ν−1/2
ν+µ+τ

This minimum is obtained at nopt with

qnopt ³ δ−1/(µ+ν+τ).

Remark 9. The value nopt uses complete information about the model parameters
and is not available. However, necessarily this yields that qN ≥ cδ−1/(µ+ν+τ).

We turn to proving some result for the minimizer n# of the functional F from (29).
As shown below, we can guarantee that nopt < N as long as

(31) 0 < δ ≤ cq−N(τ+1/2).

Proposition 1. Suppose that the maximal discretization N is fixed, µ > 1/2, and
that assumption 5.1 holds. If (31) holds then there is a non-trivial (interior) mini-
mizer 1 < n# < N of the functional F . The corresponding error E(n#) obeys

(32) E(n#) =
(
E‖x− xδ

n#
‖2
)1/2

³ C(qN)δκ,
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for κ = ν−1/2
µ+ν−1/2

. The constant C(qN) is of the order

(33) C(qN) =
[
qN
] (ν−1/2)(τ+1/2)

µ+ν−1/2 .

Proof. We use the expansion (29) of the functional F . Its minimizer n# must obey
that

(34) qn# ³
[

1

δ2qN(2τ+1)

]1/(2µ+2ν−1)

.

Inserting this into (30) we observe that the first summand is dominating, and hence
we obtain that

E(n#) ³ C(qN)δκ,

With exponent κ and constant C(qN) as stated. The proof is complete. ¤

We turn to proving that Theorem 1 applies for the function f of the residual method,
and this will be based on Lemma 4.5.

Corollary 3. Under the assumptions of Proposition 1 the assumptions 3.2–3.6 hold
for the residual principle.

Proof. First, for the Bayesian setting we can apply Lemma 4.1 to see that Assump-
tion 3.3 holds.

Moreover, the assumptions 3.4 and 3.5 hold by the representations (29) and (30).
It remains to establish the concentration for f . The quotient f(n)2/F (n)2 is a sum
of squares of Gaussian random variables (non-central χ2), and hence we shall apply
Lemma 4.5. By construction, the coefficients α2

k are equal to

α2
k =

δ2σ2
k + s2

kγ
2
k

E‖yδ
N − yδ

n‖2
,

such that the assumption of Lemma 4.5 holds trivially, see (28). In order to establish
a rate for Assumption 3.2 we need to upper bound the maximal value maxl(n)≤k≤l(N) α2

k.
Since 2τ > −1, n > ñ, and c < 1/2, we have that

max
l(n)≤k≤l(N)

{
δ2k2τ + k−2ν−2µ

E‖yδ
N − yδ

n‖2

}
≤ max

l(n)≤k≤l(N)

{
δ2k2τ

E‖yδ
N − yδ

n‖2

}
+ max

l(n)≤k≤l(N)

{
k−2ν−2µ

E‖yδ
N − yδ

n‖2

}
≤ δ2l(n)2τ + δ2l(N)2τ + l(n)−2µ−2ν

E‖yδ
N − yδ

n‖2

≤ C11
δ2qn(2τ) + δ2qN(2τ) + qn(−2µ−2ν)

qn(−2ν−2µ+1) + δ2qN(2τ+1)

≤ C11

(
q−n + q−N + q−n

)
≤ 3C11q

−n
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(A lower bound of the same order is obtained by letting k := l(n) = qn.) Hence
using Lemma 4.5 the assumption 3.2 holds for arbitrarily large values r, provided
that n̄ is large enough. We conclude that Assumption 3.6 also is valid. The proof is
complete. ¤

As a direct consequence of Theorem 1 we have the following.

Corollary 4. Under the assumptions of Proposition 1 there is a constant C < ∞
such that √

E‖x− xδ
n∗‖2 ≤ CC(qN)δ

ν−1/2
ν−1/2+µ .

Remark 10. The above bound can be interpreted as follows. The probabilistic
smoothness index ν corresponds to a deterministic index ν − 1/2, and then the
above bound is the optimal order bound for smoothness ν − 1/2 and decay µ of the
singular numbers under bounded deterministic noise. However, this is multiplied by
a penalty C(qN). As mentioned in Remark 9 there is a lower bound for qN , and
when inserting this into (33) we see that we do not get optimal rates. However,
we still get convergence despite of the presence of unknown colored noise, and the
bound is better for τ close to −1/2. The latter means that we are close to the case
of bounded noise.

Extensive stochastic experiments we performed and are reported in [2, § 4.9]. In
contrast to the considerations above the parameter N was chosen independent of δ
at machine precision. Both, for the white noise and the (unknown) colored noise
cases, the method works considerably well. The choice of an exponential cut-off
scheme is, regarding our experiments, not necessary in order to get stable results.
This indicates the the given estimates are much too rough; however better results
can only be expected when taking the correlation inherent in the structure of f(·)
into account.

The authors in [2] also observe that the same parameter choice method works com-
parably well and stable for Tikhonov regularization, a regularization which has not
been covered in the above proof.

Conclusion

The authors introduce a unified framework to understand the typical behavior of
parameter choice in inverse problems. If it works in expectation and if it obeys
certain stability then it is provably convergent, often even order optimal in a oracle
sense.

This subsumes some of the previous studies for classical inverse problems and
Bayesian analysis, where the parameter choice was either spectral cut-off or Tikhonov
regularization. Here this extends to other parameter choice and to extended settings.

The study concludes with a new parameter choice, which was numerically tested
before, and which receives theoretical justification in a Bayesian framework, here.
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