17 research outputs found

    Sensing and perception: Connectionist approaches to subcognitive computing

    Get PDF
    New approaches to machine sensing and perception are presented. The motivation for crossdisciplinary studies of perception in terms of AI and neurosciences is suggested. The question of computing architecture granularity as related to global/local computation underlying perceptual function is considered and examples of two environments are given. Finally, the examples of using one of the environments, UCLA PUNNS, to study neural architectures for visual function are presented

    ParameterNet: Parameters Are All You Need

    Full text link
    The large-scale visual pretraining has significantly improve the performance of large vision models. However, we observe the \emph{low FLOPs pitfall} that the existing low-FLOPs models cannot benefit from large-scale pretraining. In this paper, we introduce a novel design principle, termed ParameterNet, aimed at augmenting the number of parameters in large-scale visual pretraining models while minimizing the increase in FLOPs. We leverage dynamic convolutions to incorporate additional parameters into the networks with only a marginal rise in FLOPs. The ParameterNet approach allows low-FLOPs networks to take advantage of large-scale visual pretraining. Furthermore, we extend the ParameterNet concept to the language domain to enhance inference results while preserving inference speed. Experiments on the large-scale ImageNet-22K have shown the superiority of our ParameterNet scheme. For example, ParameterNet-600M can achieve higher accuracy on ImageNet than the widely-used Swin Transformer (81.6\% \emph{vs.} 80.9\%) and has much lower FLOPs (0.6G \emph{vs.} 4.5G). In the language domain, LLaMA-1B enhanced with ParameterNet achieves 2\% higher accuracy over vanilla LLaMA. The code will be released at \url{https://parameternet.github.io/}.Comment: https://parameternet.github.io

    Elevated NET, Calprotectin, and Neopterin Levels Discriminate between Disease Activity in COVID-19, as Evidenced by Need for Hospitalization among Patients in Northern Italy

    Get PDF
    Coronavirus disease 2019 (COVID-19) displays clinical heterogeneity, but little information is available for patients with mild or very early disease. We aimed to characterize biomarkers that are useful for discriminating the hospitalization risk in a COVID-19 cohort from Northern Italy during the first pandemic wave. We enrolled and followed for four weeks 76 symptomatic SARS-CoV-2 positive patients and age/sex-matched healthy controls. Patients with mild disease were discharged (n.42), and the remaining patients were hospitalized (n.34). Blood was collected before any anti-inflammatory/immunosuppressive therapy and assessed for soluble C5b-9/C5a, H3-neutrophil extracellular traps (NETs), calprotectin, and DNase plasma levels via ELISA and a panel of proinflammatory cytokines via ELLA. Calprotectin and NET levels discriminate between hospitalized and non-hospitalized patients, while DNase negatively correlates with NET levels; there are positive correlations between calprotectin and both NET and neopterin levels. Neopterin levels increase in patients at the beginning of the disease and do so more in hospitalized than non-hospitalized patients. C5a and sC5b-9, and other acute phase proteins, correlate with neopterin, calprotectin, and DNase. Both NET and neopterin levels negatively correlate with platelet count. We show that calprotectin, NETs, and neopterin are important proinflammatory parameters potentially useful for discriminating between COVID-19 patients at risk of hospitalization

    Connectionist model-based stereo vision for telerobotics

    Get PDF
    Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function

    Infinite-Dimensional Programmable Quantum Processors

    Get PDF
    A universal programmable quantum processor uses program quantum states to apply an arbitrary quantum channel to an input state. We generalize the concept of a finite-dimensional programmable quantum processor to infinite dimension assuming an energy constraint on the input and output of the target quantum channels. By proving reductions to and from finite-dimensional processors, we obtain upper and lower bounds on the program dimension required to approximately implement energy-limited quantum channels. In particular, we consider the implementation of Gaussian channels. Due to their practical relevance, we investigate the resource requirements for gauge-covariant Gaussian channels. Additionally, we give upper and lower bounds on the program dimension of a processor implementing all Gaussian unitary channels. These lower bounds rely on a direct information-theoretic argument, based on the generalization from finite to infinite dimension of a certain replication lemma for unitaries.Comment: 38 pages, 2 figures, published versio
    corecore