846 research outputs found

    Parallelization of an unstructured grid, hydrodynamic-diffusion code

    Full text link

    Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context

    Full text link
    We have developed a time-dependent, multi-energy-group, and multi-angle (Sn_n) Boltzmann transport scheme for radiation hydrodynamics simulations, in one and two spatial dimensions. The implicit transport is coupled to both 1D (spherically-symmetric) and 2D (axially-symmetric) versions of the explicit Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated in general structured or unstructured grids and though the code can address many problems in astrophysics it was constructed specifically to study the core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the radiation/hydrodynamic evolution of differentially rotating bodies. We summarize the equations solved and methods incorporated into the algorithm and present results of a time-dependent 2D test calculation. A more complete description of the algorithm is postponed to another paper. We highlight a 2D test run that follows for 22 milliseconds the immediate post-bounce evolution of a collapsed core. We present the relationship between the anisotropies of the overturning matter field and the distribution of the corresponding flux vectors, as a function of energy group. This is the first 2D multi-group, multi-angle, time-dependent radiation/hydro calculation ever performed in core collapse studies. Though the transport module of the code is not gray and does not use flux limiters (however, there is a flux-limited variant of VULCAN/2D), it still does not include energy redistribution and most velocity-dependent terms.Comment: 19 pages, plus 13 figures in JPEG format. Submitted to the Astrophysical Journa

    Rich: Open Source Hydrodynamic Simulation on a Moving Voronoi Mesh

    Get PDF
    We present here RICH, a state of the art 2D hydrodynamic code based on Godunov's method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Using our code we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time advancement scheme is more accurate and robust than AREPO's, when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Llyod iterations) and it effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way, and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. Moreover, we show that Voronoi based moving mesh schemes suffer from an error, that is resolution independent, due to inconsistencies between the flux calculation and change in the area of a cell. Our code is publicly available as open source and designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes

    Parallel implementation of the SHYFEM (System of HydrodYnamic Finite Element Modules) model

    Get PDF
    This paper presents the message passing interface (MPI)-based parallelization of the three-dimensional hydrodynamic model SHYFEM (System of HydrodYnamic Finite Element Modules). The original sequential version of the code was parallelized in order to reduce the execution time of high-resolution configurations using state-of-the-art high-performance computing (HPC) systems. A distributed memory approach was used, based on the MPI. Optimized numerical libraries were used to partition the unstructured grid (with a focus on load balancing) and to solve the sparse linear system of equations in parallel in the case of semi-to-fully implicit time stepping. The parallel implementation of the model was validated by comparing the outputs with those obtained from the sequential version. The performance assessment demonstrates a good level of scalability with a realistic configuration used as benchmark

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    The prospect of using LES and DES in engineering design, and the research required to get there

    Full text link
    In this paper we try to look into the future to divine how large eddy and detached eddy simulations (LES and DES, respectively) will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.Comment: accepted for publication in the Royal Society Philosophical Transactions

    Lattice Boltzmann modeling for shallow water equations using high performance computing

    Get PDF
    The aim of this dissertation project is to extend the standard Lattice Boltzmann method (LBM) for shallow water flows in order to deal with three dimensional flow fields. The shallow water and mass transport equations have wide applications in ocean, coastal, and hydraulic engineering, which can benefit from the advantages of the LBM. The LBM has recently become an attractive numerical method to solve various fluid dynamics phenomena; however, it has not been extensively applied to modeling shallow water flow and mass transport. Only a few works can be found on improving the LBM for mass transport in shallow water flows and even fewer on extending it to model three dimensional shallow water flow fields. The application of the LBM to modeling the shallow water and mass transport equations has been limited because it is not clearly understood how the LBM solves the shallow water and mass transport equations. The project first focuses on studying the importance of choosing enhanced collision operators such as the multiple-relaxation-time (MRT) and two-relaxation-time (TRT) over the standard single-relaxation-time (SRT) in LBM. A (MRT) collision operator is chosen for the shallow water equations, while a (TRT) method is used for the advection-dispersion equation. Furthermore, two speed-of-sound techniques are introduced to account for heterogeneous and anisotropic dispersion coefficients. By selecting appropriate equilibrium distribution functions, the standard LBM is extended to solve three-dimensional wind-driven and density-driven circulation by introducing a multi-layer LB model. A MRT-LBM model is used to solve for each layer coupled by the vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to obtain stratified flow velocities. Numerical examples are presented to verify the multi-layer LB model against analytical solutions. The model’s capability of calculating lateral and vertical distributions of the horizontal velocities is demonstrated for wind- and density- driven circulation over non-uniform bathymetry. The parallel performance of the LBM on central processing unit (CPU) based and graphics processing unit (GPU) based high performance computing (HPC) architectures is investigated showing attractive performance in relation to speedup and scalability

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic
    • …
    corecore