4,969 research outputs found

    PORTA: A three-dimensional multilevel radiative transfer code for modeling the intensity and polarization of spectral lines with massively parallel computers

    Full text link
    The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the spectral line polarization produced by scattering processes and the Hanle and Zeeman effects. One of the difficulties is that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present PORTA, an efficient multilevel radiative transfer code we have developed for the simulation of the spectral line polarization caused by scattering processes and the Hanle and Zeeman effects in 3D models of stellar atmospheres. The numerical method of solution is based on the non-linear multigrid iterative method and on a novel short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic B\'ezier interpolation. Therefore, with PORTA the computing time needed to obtain at each spatial grid point the self-consistent values of the atomic density matrix (which quantifies the excitation state of the atomic system) scales linearly with the total number of grid points. Another crucial feature of PORTA is its parallelization strategy, which allows us to speed up the numerical solution of complicated 3D problems by several orders of magnitude with respect to sequential radiative transfer approaches, given its excellent linear scaling with the number of available processors. The PORTA code can also be conveniently applied to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems.Comment: 15 pages, 15 figures, to appear in Astronomy and Astrophysic

    Numerical Solution of the Expanding Stellar Atmosphere Problem

    Get PDF
    In this paper we discuss numerical methods and algorithms for the solution of NLTE stellar atmosphere problems involving expanding atmospheres, e.g., found in novae, supernovae and stellar winds. We show how a scheme of nested iterations can be used to reduce the high dimension of the problem to a number of problems with smaller dimensions. As examples of these sub-problems, we discuss the numerical solution of the radiative transfer equation for relativistically expanding media with spherical symmetry, the solution of the multi-level non-LTE statistical equilibrium problem for extremely large model atoms, and our temperature correction procedure. Although modern iteration schemes are very efficient, parallel algorithms are essential in making large scale calculations feasible, therefore we discuss some parallelization schemes that we have developed.Comment: JCAM, in press. 28 pages, also available at ftp://calvin.physast.uga.edu:/pub/preprints/CompAstro.ps.g

    Parallel eigensolvers in plane-wave Density Functional Theory

    Full text link
    We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations

    A spectral scheme for Kohn-Sham density functional theory of clusters

    Full text link
    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems -- the plane-wave method -- is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.Comment: Manuscript submitted (with revisions) to Journal of Computational Physic

    Exploiting hybrid parallelism in the kinematic analysis of multibody systems based on group equations

    Get PDF
    Computational kinematics is a fundamental tool for the design, simulation, control, optimization and dynamic analysis of multibody systems. The analysis of complex multibody systems and the need for real time solutions requires the development of kinematic and dynamic formulations that reduces computational cost, the selection and efficient use of the most appropriated solvers and the exploiting of all the computer resources using parallel computing techniques. The topological approach based on group equations and natural coordinates reduces the computation time in comparison with well-known global formulations and enables the use of parallelism techniques which can be applied at different levels: simultaneous solution of equations, use of multithreading routines, or a combination of both. This paper studies and compares these topological formulation and parallel techniques to ascertain which combination performs better in two applications. The first application uses dedicated systems for the real time control of small multibody systems, defined by a few number of equations and small linear systems, so shared-memory parallelism in combination with linear algebra routines is analyzed in a small multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The second application studies large multibody systems in which the kinematic analysis must be performed several times during the design of multibody systems. A simulator which allows us to control the formulation, the solver, the parallel techniques and size of the problem has been developed and tested in more powerful computational systems with larger multicores and GPU.This work was supported by the Spanish MINECO, as well as European Commission FEDER funds, under grant TIN2015-66972-C5-3-

    Domain decomposition methods for the parallel computation of reacting flows

    Get PDF
    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte
    • …
    corecore