19 research outputs found

    Parallel Coupled Micro-Macro Actuators

    Get PDF
    This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance

    A Parallel Elastic Haptic Thimble for Wide Bandwidth Cutaneous Feedback.

    Get PDF
    Design of wearable fingertip haptic devices is often a compromise between conflicting features: lightness and compactness, against rich and neat haptic feedback. On one side direct drive actuators (i.e. voice coils) provide a clean haptic feedback with high dynamics, with limited maximum output forces. On the other side mechanical transmissions with reduction can increase output force of micro sized motors, at the cost of slower and often noisy output signals. In this work we present a compact fingertip haptic device based on a parallel elastic mechanism: it merges the output of two differently designed actuators in a single, wide bandwidth haptic feedback. Each actuator is designed with a different role: one for rendering fast, high frequency force components, the other for rendering constant to low frequency components. In the work we present design and implementation of the device, followed by experimental characterization of its performance in terms of frequency response and rendering capabilities

    Conception d'un actionneur adapté à l'interaction physique dans un contexte de robotique

    Get PDF
    Les systèmes robotiques modernes sont généralement des machines mécaniquement rigides et contrôlées en position. Cette conception, bien que cohérente avec une recherche de performance en contrôle du mouvement, limite l'applicabilité aux environnements structurés et sécurisés. Pour que leur domaine d'application puisse s'étendre aux environnements partiellement inconnus, dynamiques ou anthropiques, des capacités d'interaction physique accrues sont nécessaires. Dans ce contexte, répondre aux exigences de sécurité, de robustesse et de polyvalence représente un défi, entre autres parce que les performances des technologies d'actionneur communément disponibles ne sont pas adéquates. Pour adresser cette problématique, ce mémoire propose une solution technologique basée sur l'usage synergique d'un moteur électromagnétique et de deux freins magnétorhéologiques. Le moteur agit comme source de vitesse et fournit la puissance mécanique. Les deux freins dirigent ce flux de puissance en contrôlant l'amplitude et la direction du couple appliqué en sortie. Cette approche découple la sortie de l'actionneur du moteur, permettant une impédance (inertie et friction) de sortie très faible. Elle permet également un contrôle en force relativement précis à haute bande passante. À l'aide de l'information de position de la sortie, elle permet également de réaliser des interactions complexes de façon sécuritaire et performante. Dans ce mémoire, le concept et la réalisation de prototypes sont présentés. Les performances de contrôle de force, d'interaction et de mouvement sont illustrées et discutées. Ces résultats indiquent des performances relativement uniques qui valident le potentiel de l'actionneur pour répondre à la problématique décrite. Une suite possible à ce projet serait la révision du prototype en vue d'optimiser des paramètres tels que la densité de couple, le coût de fabrication et la robustesse. Il s'agirait ensuite de tester l'actionneur dans un système robotique effectuant une tâche choisie. La technologie développée au cours de la maîtrise et décrite dans ce mémoire fait l'objet d'une demande de brevet international (protocole PCT) [Fauteux et al., 2009b]

    The design and application of a nonlinear series compliance actuator for use in robotic arms

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (p. 55-56).by Arrin Katz.S.M

    Progettazione e Controllo di Attuatori Intrinsecamente Sicuri

    Get PDF
    Questo lavoro presenta risultati teorici e sperimentali sul VIA (Variable Impedance Approach) quale approccio di co-design di sistemi robotici sicuri ed allo stesso tempo performanti

    Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion

    Get PDF
    Biped robots hold promise as terrestrial explorers because they require a single discrete foothold to place their next step. However, biped robots are multi-input multi-output dynamically unstable machines. This makes walking on rough terrain difficult at best. Progress has been made with non-periodic rough terrain like stairs or inclines with fully active walking machines. Terrain that requires the walker to change its gait pattern from a standard walk is still problematic. Most walking machines have difficulty detecting or responding to the small perturbations induced by this type of terrain. These small perturbations can lead to unstable gait cycles and possibly a fall. The Intelligent Systems and Automation Lab at the University of Kansas has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small perturbations caused by periodic rough terrain. The first walking machine prototype, referred to as Jaywalker has two main custom actuation systems. The first is the hip ratchet system. It allows the walker to have either a passive or active hip swing. The second is the hybrid parallel ankle actuator. This new actuator uses a pneumatic ram and stepper motor in parallel to produce an easily controlled high torque output. In open loop control it has less than a 1° tracking error and 0.065 RPM velocity error compared to a standard stepper motor. Step testing was conducted using the Jaywalker, with a passive hip, to determine if a walker with significant leg mass could walk without full body actuation. The results of testing show the Jaywalker is ultimately not capable of walking with a passive hip. However, the walking motion is fine until the terminal stance phase. At this point the legs fall quickly towards the ground as the knee extends the shank. This quick step phenomenon is caused by increased speeds and forces about the leg and hip caused by the extension of the shank. This issue can be overcome by fully actuating the hip, or by adding counterbalances to the legs about the hip

    Co-design meccanico/controllistico in attuatori a rigidezza variabile per manipolatori robotici intrinsecamente sicuri

    Get PDF
    In questo lavoro si affronta il problema della progettazione, del controllo e dell’ottimizzazione di attuatori a rigidezza variabile per applicazioni robotiche nell’ambito di manipolatori intrinsecamente sicuri. L’avvento della robotica di servizio ha introdotto nuove problematiche nel design meccanico e nel controllo di un robot. La condivisione di uno spazio operativo tra l’uomo ed il robot, infatti, esige un’attenta valutazione dei fattori legati alla sicurezza. Il modello di attuazione VSA (Variable Stiffness Actuator), nel cui ambito si sviluppa questa tesi, permette di ottenere buone performance in termini di accuratezza e prontezza garantendo, al contempo, la necessaria sicurezza durante tutta l’esecuzione del task. In questo lavoro è stata effettuata un’indagine sperimentale che ha portato alla definizione di un algoritmo di controllo di un prototipo di VSA; è stato progettato un nuovo attuatore dagli ingombri più ridotti per permettere un facile equipaggiamento su bracci robotici; infine, è stato effettuato uno studio di ottimizzazione sul sistema dinamico VSA

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    The programmable spring: towards physical emulators of mechanical systems

    Get PDF
    The way motion is generated and controlled in robotics has traditionally been based on a philosophy of rigidity, where movements are tightly controlled and external influences are ironed out. More recent research into autonomous robots, biological actuation and human machine interaction has uncovered the value of compliant mechanisms in both aiding the production of effective, adaptive and efficient behaviour, and increasing the margins for safety in machines that operate alongside people. Various actuation methods have previously been proposed that allow robotic systems to exploit rather than avoid the influences of external perturbations, but many of these devices can be complex and costly to engineer, and are often task specific. This thesis documents the development of a general purpose modular actuator that can emulate the behaviour of various spring damping systems. It builds on some of the work done to produce reliable force controlled electronic actuators by developing a low cost implementation of an existing force actuator, and combining it with a novel high level control structure running in software on an embedded microcontroller. The actuator hardware with its embedded software results in a compact modular device capable of approximating the behaviour of various mechanical systems and actuation devices. Specifying these behaviours is achieved with an intuitive user interface and a control system based on a concept called profile groups. Profile group configurations that specify complex mechanical behaviours can be rapidly designed and the resulting configurations downloaded for a device to emulate. The novel control system and intuitive user interface developed to facilitate the rapid prototyping of mechanical behaviours are explained in detail. Two prototype devices are demonstrated emulating a number of mechanical systems and the results are compared to mechanical counterparts. Performance issues are discussed and some solutions proposed alongside general improvements to the control system. The applications beyond robotics are also explored
    corecore