1,532,259 research outputs found

    Parallel Processing of Large Graphs

    Full text link
    More and more large data collections are gathered worldwide in various IT systems. Many of them possess the networked nature and need to be processed and analysed as graph structures. Due to their size they require very often usage of parallel paradigm for efficient computation. Three parallel techniques have been compared in the paper: MapReduce, its map-side join extension and Bulk Synchronous Parallel (BSP). They are implemented for two different graph problems: calculation of single source shortest paths (SSSP) and collective classification of graph nodes by means of relational influence propagation (RIP). The methods and algorithms are applied to several network datasets differing in size and structural profile, originating from three domains: telecommunication, multimedia and microblog. The results revealed that iterative graph processing with the BSP implementation always and significantly, even up to 10 times outperforms MapReduce, especially for algorithms with many iterations and sparse communication. Also MapReduce extension based on map-side join usually noticeably presents better efficiency, although not as much as BSP. Nevertheless, MapReduce still remains the good alternative for enormous networks, whose data structures do not fit in local memories.Comment: Preprint submitted to Future Generation Computer System

    URL Recommender using Parallel Processing

    Get PDF
    The main purpose of this project is to section similar news and articles from a vast variety of news articles. Let’s say, you want to read about latest news related to particular topic like sports. Usually, user goes to a particular website and goes through some news but he won’t be able to cover all the news coverage in a single website. So, he would be going through some other news website to checking it out and this continues. Also, some news websites might be containing some old news and the user might be going through that. To solve this, I have developed a web application where in user can see all the latest news from different websites in a single place. Users are given choice to select the news websites from which they want to view the latest news. The articles which we get from news websites are very random and we will be applying the DBSCAN algorithm and place the news articles in the cluster form for each specific topic for user to view. If the user wants to see sports, he will be provided with sports news section. And this process of extracting random news articles and forming news clusters are done at run time and at all times we will get the latest news as we will be extracting the data from web at run time. This is an effective way to watch all news at single place. And in turn this can be used as articles (URL) recommender as the user has to just go through the specific cluster which interests him and not visit all news websites to find articles. This way the user does not have to visit different sites to view all latest news. This idea can be expanded to not just news articles but also in other areas like collecting statistics of financial information etc. As the processing is done at runtime, the performance has to be improved. To improve the performance, the distributed data mining is used and multiple servers are being used which communicate with each other

    Speeding up parallel processing

    Get PDF
    In 1967 Amdahl expressed doubts about the ultimate utility of multiprocessors. The formulation, now called Amdahl's law, became part of the computing folklore and has inspired much skepticism about the ability of the current generation of massively parallel processors to efficiently deliver all their computing power to programs. The widely publicized recent results of a group at Sandia National Laboratory, which showed speedup on a 1024 node hypercube of over 500 for three fixed size problems and over 1000 for three scalable problems, have convincingly challenged this bit of folklore and have given new impetus to parallel scientific computing

    Studies in optical parallel processing

    Get PDF
    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC

    Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    Get PDF
    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced
    corecore