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In 1967 Aindahl expressed doubts about the ultimate utility of multiprocessors. His 
formulation, now called Aniclahl's law, became part of the computing folklore and has 
inspired much skepticism etJOUt the ability of the current generation of massively 
parallel processors to efficimtly deliver all their computing power to programs. The 
widely publicized recent results of a group at  Sandia National Laboratory -- which 
showed spceriiip on a 1024 node I iy~wrci ibe  of over 500 for three fixed size problems 
and over 1000 for three scalable problems -- have convincingly challenged this bit of 
folklorc and have given new impetus to parallel scientific computing. 

This is a preprint of the column The Science of Computing for 
American Scientist 76,  No. 4 (July-August 1988). 

Work reported herein was supported in part by-Cooperative Agreement NCC 2-387 
between the National Aeronautics and Space Administration (NASA) 

and the Universities Space Research Association (USRA). 



Speeding Up Parallel Processing 

Peter J. Denning 

Research Institute for Advanced Computer Science 

23 May 1988 

In 1986, Alan Karp of the IBM Scientific Center in Palo Alto issued a chal- 

lenge -- a reward of $100 to  anyone who could design a practical program that 

runs more than 200 times faster on a parallel processor than on a single proces- 

sor (1). This bound is equivalent to  an assumption, arising from a theory called 

Amdahl's law, that practical programs contain at  least half a percent of speed- 

limiting sequential operations. 

200 was unbreakable -- after all, he only put $100 of his own money on the line -- 

but he did want to  stimulate algorithm developers to search for practical ways 

to break this barrier. 

Karp obviously did not believe that the limit of 

Gordon Bell, then the head of the Computer and Information Science Direc- 

torate at NSF, added to  the incentives in 1987, when he offered two annual 

awards of $1000 of his own money to promote parallel processing research lead- 

ing to  a massive speedup of practical programs. The first award was given on 
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March 1 of this year t o  John Gustavson, Gary Montry, and Robert Benner of 

Sandia Sational Laboratory, who had demonstrated a near-perfect speedup for 

three scientific problems on an NCUBE/ten, a hypercube with 1024 processors 

( 2 ) .  

\C’ithin days of the award, major national newspapers ran stories about the 

“breakthrough in supercomputing” that had been achieved a t  Sandia, and even 

the normally sober magazine Science got caught up in the frenzy (3).  These arti- 

cles suggested that a basic law of computing (Amdahl’s) had been disproved and 

that the result had taken the <-omputing research community by surprise. What 

is Amdahl’s law, and how startling to  computer scientists was the Sandia result? 

In 1967. Gene Amdahl published a paper in which he expressed doubts that  

multiprocessors could significantly speed up practical programs ( 4 ) .  Theoreti- 

cal ly ,  one could expect a speedup no greater than the number of processors: if a 

probleiii rc’cliilres operations, and if each of P processors could independently 

perform an equal portion of those operations, the whole program could be com- 

pleted in ,Y / P operation times. The difficulty with this line of reasoning, 

Amdahl observed, is that  the instructions of a program are not independent; for 

example, the sum of two numbers cannot be computed until both numbers have 

been previously computed. The best possible running time is determined by the 

longest sequential path in the program. If that  path contains S operations, the 

best possible speedup is 
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Time with 1 processor - N - 
Time with P processors S +(N - S ) / P  ’ 

which can never exceed N / S  no matter how large P is. Thus the sequential 

part of the program is an inherent bottleneck blocking parallel speedup. 

Known as Amdahl’s law, this formulation has been part of the computing 

folklore for many years now. In 1984, when the first commercial multiprocessors 

containing hundreds or thousands of processors were announced, the latent skep- 

ticism about the practical utility of massively parallel processors came to the 

fore. Practical programs contain many sequential steps in addition to  those in 

their kernel algorithms; these include the steps to  obtain parameters, set up the 

comput.ation, load the program into the machine, gather the results, and create 

displays. In a program designed explicitly for a parallel machine, the sequential 

’ steps also include operations for sending and receiving messages between proces- 

sors; the total of these operations constitutes the communication time of the pro- 

gram. Although many kernel algorithms can be speeded up proportionately with 

more processors, it is not obvious whether many practical programs can be 

speeded up by much. 

Despite the widespread acceptance of Amdahl’s law outside the computing 

research community, the community itself did not consider the doubts expressed 

in 1967 as binding on computer performance two decades later. Far from being 

surprised by the development at  Sandia, many researchers were hot on the trail 

of demonstrating an almost linear speedup of important practical algorithms. 
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Substantial sums of money from NSF, DOD, DOE, and other agencies are 

invested in research in “scalable algorithms,” and this research has now begun to 

bear fruit. 

What did the Sandia group accomplish? What has been learned from their 

work? I will comment on these questions, and I also recommend (highly) that 

you read their paper ( 5 ) .  

The Sandia group considered two approaches to  using a parallel processor. 

The goal of the first is to  solve a fixed-size instance of a problem faster; as the 

number of processors grows, the piece of the problem assigned to  any one of 

them shrinks, but the ratio of communication time to  computation time rises 

and limits the speedup. The figure of merit, which is called fixed-size speedup, is 

constrained by Amdahl’s law. The goal of the sccond approach is to  solve the 

largest instance of the prohlem possible within H fixed time; the amount of work 

assigned to each processor is held fixed, and the total computational work per- 

formed scales up with the number of processors. The figure of merit in this case 

is called scaled speedup. If each processor’s communication is restricted to its 

immediate neighbors, the ratio of communication time to computation time will 

be constant: scaled speedup is not limited by Amdahl’s law. The Sandia group 

argued that scaled speedup is the more realistic approach. 

It is important to  distinguish between scaling up the amount of work and 

scaling up the size of the problem instance. The algorithms for solving many 

scientific problems involve work given by superlinear polynomial functions of the 
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problem size, and thus the problem size can grow only as a sublinear function of 

the machine's capacity. For example, an algorithm requiring n operations for a 

problem of size n will need four times as many processors to  handle a problem 

twice as large. Thus parallel speedup produces modest benefits compared to a 

new algorithms with running times of lower orders. And yet parallel speedup is 

important because we want to deliver all the computing power available to a 

problem ( 6 ) .  

The Sandia group achieved its results, as we have seen, with an 

NCUBE/ten, a hypercube consisting of 1024 processors, each with 512K bytes of 

memory and speed of about 80,000 floating point operations per second. The 

NCUBE is one of several commercial hypercube machines available, including the 

Intel iPSC series, the FPS T series, the Ametek Cube, and the Connection 

Machine. A hypercube consists of P =2" processing nodes, named with the n - 

bit binary numbers 0, . . . , 2n -1 .  There is a communication link between two 

nodes only if their binary numbers differ by exactly one bit, and each node is 

connected directly to  exactly n others. When one processor needs to send a 

message to  another processor, that message must traverse one link for each bit 

that  is different in the processors' binary numbers, being relayed by a series of 

intermediate nodes. The required protocol is cheap and easy to  implement in the 

interconnection hardware. Each node of a hypercube contains a small control 

program that is able to send, receive, and relay messages by the protocol. 
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To map an algorithm onto such a machine so that  (ideally) all the proces- 

sors are fully utilized, it is necessary to  divide the problem into parts that  can be 

executed on separate processors and to keep the ratio of communication time to 

computational time low for each part. (If this can be accomplished by a single 

method that can be automatically configured for any number P of processors, 

the algorithm is called scalable.) One of the impediments to this goal on a 

hypercube is that  the time of the longest communication grows as log,P ; unless 

the problem itself requires communication only between neighbors, the algorithm 

may not be scalable. 

Many scientific problems involve the solution of partial differential equa- 

tions over a grid that  covers a region of space. These problems are easily 

mapped to a hypercube by assigning to each node a subregion as large as its 

memory permits. Becaiise each grid point needs to  communicate only with its 

neighbors on the grid are also neighbors in the hypercube ( 7 ) ,  the communica- 

tion time per node is independent of the size of t.he space. Thus the pract,ical 

question is how to  implement communication so that its time is small. 

The Sandia group examined this question for three problems. The first cal- 

culates the progress of a two-dimensional acoustic wave through a set of 

deflectors and provides a graphic display of the resulting heavily-diffracted wave- 

front. The second calculates dynamic fluid flow in a nonconducting, compressi- 

ble ideal gas under unstable conditions and displays vortex formations. The 
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third calculates the deflection of a beam subject to  a specified load. The compu- 

tation for each case consisted of a host program that loaded1024 individual node 

programs into the machine and their execution. A series of runs of each case for 

different problem sizes produced measurements of running time and operations 

completed per second. These measurements showed that the fixed-size speedup 

on the 1024-processor hypercube was over 500 for each problem (well in excess of 

the 200 limit in the Karp challenge) and the scaled speedup was over 1000 for 

each problem. 

These impressive results would not have been possible without careful atten- 

tion to  several principles that  minimize the communication time experienced by 

each processor. The assignment of work to each processor was determined dur- 

ing the algorithm’s design and remained static during the computation; no 

dynamic reconfiguration or load-balancing was used. Many exchanges of data 

between neighboring grid points were carried ou t  siniult a ~ ~ c ~ o u s l y  throughout the 

machine. Each processor initiated communications with its neighbors in batches 

that  permitted a high degree of overlap; in the wave problem, for example, com- 

munications could be completed in about one-third the sum of the individual 

message-transmission times. On each processor a double-buffering scheme was 

used to  gather data  from arrays into a single contiguous buffer prior to  transmis- 

sion of a message, and also to  scatter data back into arrays from a contiguous 

buffer just after reception of a message. Whenever possible, many items of data 

were lumped into a single message. Finally, the time to  load (broadcast) identi- 



8,Speeding u p  Parallel Processing TR-88.15 (23  May 1988) 

cal information to all nodes was greatly reduced by a fan-out tree: the first node 

sends the information to  all its nearest neighbors, which in turn relay it to  

theirs, and so on; every node will have the information after log,P relays. The 

Sandia group implemented these principles by hand. The challenge now is to 

find ways of automating them in compilers. 

Will these results eventually be extended t o  all scientific and engineering 

problems? The answer is clearly no. Problems corresponding to  the solution of 

partial differential equations over a grid are especially suited to the type of parti- 

tioning used by the Sandia group. But there are many other types of problems 

for which load-balanced static partitioning is not as easy. An example is a two- 

phase image processing problem: in the first phase, the picture is divided into 

independent chunks for detection of local contours, and in the second, contours 

are joined across chunks to construct larger features. All the processors can be 

kept busy during the first phase, but  in the second phase, processors whose 

chunks contain few features will be idle. For computations in which the distribu- 

tion of computational loads over the processors depends on the input data, 

dynamic load scheduling is needed to  realize the full efficiency of the machine. 

The Sandia group has convincingly challenged the assumption hidden in the 

folklore -- that  massively parallel speedup would be elusive in practice. They 

have given a new impetus to  parallel computing. 
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Measuring parallel speedup 

Consider solutions to  partial differential equations on an "V x N  square grid by algorithms 

that update grid points only from their immediate neighbors. The total computation time 

required is aN2, where a is the total time per grid point. Assuming that all communication can 

be done in parallel throughout the machine ( the  best case), the total communication time on two 

or more processors is b , the total time to exchange messages between a pair of neighboring grid 

points. If this problem is divided equally among P processors, the speedup is 

Time on 1 processor - aN2 F =  - 
Time on P processors a N z / P  + b 

F is called fixed-size speedup, because the problem size was held constant while the machine got 

larger. For many processors, F has a constant asymptote of a N z / b .  

Suppose that the problem size is scaled up to  follow the machine size - tha t  is, N Z = e P ,  

where c is the largest number of grid points assignable to  one processor. When one subsitutes 

the new terms in the formula for F ,  a new figure of merit results: 

S is called the scaled speedup, because the total computational work w a s  allowed to scale up 

wi th  t h e  machine size. Note that S is linear in P . 

Suppose that fixed-size speedup were constrained to 200 for practical programs, a limit sug- 

gested by Alan Karp's challenge. Since the definition of fixed-size speedup supposes one processor 

can accommodate the whole problem, N2=c for the fixed-size approach and ac / b  =200. The 

scaled speedup for this case is P /1.005, w h i c h  is about half a percent smaller than  P .  

These formulas are approximate, because the time to load programs and da ta  into the 

machine has been omitted. In a hypercube, loading time is proportional to 10g2P. Accounting 

for this term would reduce both figures of merit. 
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Both the fixed-size and scaled figures of merit can be interpreted as consequences of 

Amdahl’s law that depend on differing assumptions about the relat.ion between problem size and 

the number of processors. 


