
Speeding Up Parallel Processing

Peter J . Denning

23 May 1988

RIACS Technical Report TR-88.15

NASA Cooperative Agreernclnt, Niiriiber NCC 2-387

a
(BASA-CB- 1846 46) SPPEEXliG U T FAEAELEL N89-25628

E 6 G C E S S I b i G (iioeearch Irtst. f C I advanced
Ccrputer Science) 13 F CSCL 09B

Onclas
63/62 02 179 12

RlACS
Research Institute for Advanced Computer Science

https://ntrs.nasa.gov/search.jsp?R=19890016257 2020-03-20T01:23:47+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42827497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Speeding Up Parallel Processing

Peter J . Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-88.15
23 May 1988

In 1967 Aindahl expressed doubts about the ultimate utility of multiprocessors. His
formulation, now called Aniclahl's law, became part of the computing folklore and has
inspired much skepticism etJOUt the ability of the current generation of massively
parallel processors to efficimtly deliver all their computing power to programs. The
widely publicized recent results of a group at Sandia National Laboratory -- which
showed spceriiip on a 1024 node I iy~wrci ibe of over 500 for three fixed size problems
and over 1000 for three scalable problems -- have convincingly challenged this bit of
folklorc and have given new impetus to parallel scientific computing.

This is a preprint of the column The Science of Computing for
American Scientist 76, No. 4 (July-August 1988).

Work reported herein was supported in part by-Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

Speeding Up Parallel Processing

Peter J. Denning

Research Institute for Advanced Computer Science

23 May 1988

In 1986, Alan Karp of the IBM Scientific Center in Palo Alto issued a chal-

lenge -- a reward of $100 to anyone who could design a practical program that

runs more than 200 times faster on a parallel processor than on a single proces-

sor (1). This bound is equivalent to an assumption, arising from a theory called

Amdahl's law, that practical programs contain at least half a percent of speed-

limiting sequential operations.

200 was unbreakable -- after all, he only put $100 of his own money on the line --

but he did want to stimulate algorithm developers to search for practical ways

to break this barrier.

Karp obviously did not believe that the limit of

Gordon Bell, then the head of the Computer and Information Science Direc-

torate at NSF, added to the incentives in 1987, when he offered two annual

awards of $1000 of his own money to promote parallel processing research lead-

ing to a massive speedup of practical programs. The first award was given on

Z,/Speeding Up Parallel Processing TR-88.15 (23 %fay 1988)

March 1 of this year t o John Gustavson, Gary Montry, and Robert Benner of

Sandia Sational Laboratory, who had demonstrated a near-perfect speedup for

three scientific problems on an NCUBE/ten, a hypercube with 1024 processors

(2) .

\C’ithin days of the award, major national newspapers ran stories about the

“breakthrough in supercomputing” that had been achieved a t Sandia, and even

the normally sober magazine Science got caught up in the frenzy (3). These arti-

cles suggested that a basic law of computing (Amdahl’s) had been disproved and

that the result had taken the <-omputing research community by surprise. What

is Amdahl’s law, and how startling to computer scientists was the Sandia result?

In 1967. Gene Amdahl published a paper in which he expressed doubts that

multiprocessors could significantly speed up practical programs (4) . Theoreti-

cal ly , one could expect a speedup no greater than the number of processors: if a

probleiii rc’cliilres operations, and if each of P processors could independently

perform an equal portion of those operations, the whole program could be com-

pleted in ,Y / P operation times. The difficulty with this line of reasoning,

Amdahl observed, is that the instructions of a program are not independent; for

example, the sum of two numbers cannot be computed until both numbers have

been previously computed. The best possible running time is determined by the

longest sequential path in the program. If that path contains S operations, the

best possible speedup is

TR-88.15 (23 May 1988) Speeding Up Parallel Processing/J

Time with 1 processor - N -
Time with P processors S +(N - S) / P ’

which can never exceed N / S no matter how large P is. Thus the sequential

part of the program is an inherent bottleneck blocking parallel speedup.

Known as Amdahl’s law, this formulation has been part of the computing

folklore for many years now. In 1984, when the first commercial multiprocessors

containing hundreds or thousands of processors were announced, the latent skep-

ticism about the practical utility of massively parallel processors came to the

fore. Practical programs contain many sequential steps in addition to those in

their kernel algorithms; these include the steps to obtain parameters, set up the

comput.ation, load the program into the machine, gather the results, and create

displays. In a program designed explicitly for a parallel machine, the sequential

’ steps also include operations for sending and receiving messages between proces-

sors; the total of these operations constitutes the communication time of the pro-

gram. Although many kernel algorithms can be speeded up proportionately with

more processors, it is not obvious whether many practical programs can be

speeded up by much.

Despite the widespread acceptance of Amdahl’s law outside the computing

research community, the community itself did not consider the doubts expressed

in 1967 as binding on computer performance two decades later. Far from being

surprised by the development at Sandia, many researchers were hot on the trail

of demonstrating an almost linear speedup of important practical algorithms.

4jSpeeding Up Parallel Processing TR-88.15 (2 3 May 1988)

Substantial sums of money from NSF, DOD, DOE, and other agencies are

invested in research in “scalable algorithms,” and this research has now begun to

bear fruit.

What did the Sandia group accomplish? What has been learned from their

work? I will comment on these questions, and I also recommend (highly) that

you read their paper (5) .

The Sandia group considered two approaches to using a parallel processor.

The goal of the first is to solve a fixed-size instance of a problem faster; as the

number of processors grows, the piece of the problem assigned to any one of

them shrinks, but the ratio of communication time to computation time rises

and limits the speedup. The figure of merit, which is called fixed-size speedup, is

constrained by Amdahl’s law. The goal of the sccond approach is to solve the

largest instance of the prohlem possible within H fixed time; the amount of work

assigned to each processor is held fixed, and the total computational work per-

formed scales up with the number of processors. The figure of merit in this case

is called scaled speedup. If each processor’s communication is restricted to its

immediate neighbors, the ratio of communication time to computation time will

be constant: scaled speedup is not limited by Amdahl’s law. The Sandia group

argued that scaled speedup is the more realistic approach.

It is important to distinguish between scaling up the amount of work and

scaling up the size of the problem instance. The algorithms for solving many

scientific problems involve work given by superlinear polynomial functions of the

TR-88.15 (23 May 1988) Speeding Up Parallel Processing/5

problem size, and thus the problem size can grow only as a sublinear function of

the machine's capacity. For example, an algorithm requiring n operations for a

problem of size n will need four times as many processors to handle a problem

twice as large. Thus parallel speedup produces modest benefits compared to a

new algorithms with running times of lower orders. And yet parallel speedup is

important because we want to deliver all the computing power available to a

problem (6) .

The Sandia group achieved its results, as we have seen, with an

NCUBE/ten, a hypercube consisting of 1024 processors, each with 512K bytes of

memory and speed of about 80,000 floating point operations per second. The

NCUBE is one of several commercial hypercube machines available, including the

Intel iPSC series, the FPS T series, the Ametek Cube, and the Connection

Machine. A hypercube consists of P =2" processing nodes, named with the n -

bit binary numbers 0, . . . , 2n -1 . There is a communication link between two

nodes only if their binary numbers differ by exactly one bit, and each node is

connected directly to exactly n others. When one processor needs to send a

message to another processor, that message must traverse one link for each bit

that is different in the processors' binary numbers, being relayed by a series of

intermediate nodes. The required protocol is cheap and easy to implement in the

interconnection hardware. Each node of a hypercube contains a small control

program that is able to send, receive, and relay messages by the protocol.

6:'Speeding Up Parallel Processing TR-88.15 (23 M a y 1988)

To map an algorithm onto such a machine so that (ideally) all the proces-

sors are fully utilized, it is necessary to divide the problem into parts that can be

executed on separate processors and to keep the ratio of communication time to

computational time low for each part. (If this can be accomplished by a single

method that can be automatically configured for any number P of processors,

the algorithm is called scalable.) One of the impediments to this goal on a

hypercube is that the time of the longest communication grows as log,P ; unless

the problem itself requires communication only between neighbors, the algorithm

may not be scalable.

Many scientific problems involve the solution of partial differential equa-

tions over a grid that covers a region of space. These problems are easily

mapped to a hypercube by assigning to each node a subregion as large as its

memory permits. Becaiise each grid point needs to communicate only with its

neighbors on the grid are also neighbors in the hypercube (7) , the communica-

tion time per node is independent of the size of t.he space. Thus the pract,ical

question is how to implement communication so that its time is small.

The Sandia group examined this question for three problems. The first cal-

culates the progress of a two-dimensional acoustic wave through a set of

deflectors and provides a graphic display of the resulting heavily-diffracted wave-

front. The second calculates dynamic fluid flow in a nonconducting, compressi-

ble ideal gas under unstable conditions and displays vortex formations. The

TR-88.15 (2 3 May 1988) Speeding Up Parallel Processing/7

third calculates the deflection of a beam subject to a specified load. The compu-

tation for each case consisted of a host program that loaded1024 individual node

programs into the machine and their execution. A series of runs of each case for

different problem sizes produced measurements of running time and operations

completed per second. These measurements showed that the fixed-size speedup

on the 1024-processor hypercube was over 500 for each problem (well in excess of

the 200 limit in the Karp challenge) and the scaled speedup was over 1000 for

each problem.

These impressive results would not have been possible without careful atten-

tion to several principles that minimize the communication time experienced by

each processor. The assignment of work to each processor was determined dur-

ing the algorithm’s design and remained static during the computation; no

dynamic reconfiguration or load-balancing was used. Many exchanges of data

between neighboring grid points were carried ou t siniult a ~ ~ c ~ o u s l y throughout the

machine. Each processor initiated communications with its neighbors in batches

that permitted a high degree of overlap; in the wave problem, for example, com-

munications could be completed in about one-third the sum of the individual

message-transmission times. On each processor a double-buffering scheme was

used to gather data from arrays into a single contiguous buffer prior to transmis-

sion of a message, and also to scatter data back into arrays from a contiguous

buffer just after reception of a message. Whenever possible, many items of data

were lumped into a single message. Finally, the time to load (broadcast) identi-

8,Speeding u p Parallel Processing TR-88.15 (23 May 1988)

cal information to all nodes was greatly reduced by a fan-out tree: the first node

sends the information to all its nearest neighbors, which in turn relay it to

theirs, and so on; every node will have the information after log,P relays. The

Sandia group implemented these principles by hand. The challenge now is to

find ways of automating them in compilers.

Will these results eventually be extended t o all scientific and engineering

problems? The answer is clearly no. Problems corresponding to the solution of

partial differential equations over a grid are especially suited to the type of parti-

tioning used by the Sandia group. But there are many other types of problems

for which load-balanced static partitioning is not as easy. An example is a two-

phase image processing problem: in the first phase, the picture is divided into

independent chunks for detection of local contours, and in the second, contours

are joined across chunks to construct larger features. All the processors can be

kept busy during the first phase, but in the second phase, processors whose

chunks contain few features will be idle. For computations in which the distribu-

tion of computational loads over the processors depends on the input data,

dynamic load scheduling is needed to realize the full efficiency of the machine.

The Sandia group has convincingly challenged the assumption hidden in the

folklore -- that massively parallel speedup would be elusive in practice. They

have given a new impetus to parallel computing.

TR-88.15 (2 3 May 1988) Speeding Up Parallel Processing/9

References

1. A. Karp. 1986. “What price multiplicity?” Communications A C M 29

(February): 87. (See also comments by J. Rice and C. Bajaj, Communica-

tions .4CM 30 (January 1987): 7-9. .

2. J . Dongarra, A. Karp, and K. Kennedy. 1988. “Winners achieve speedup

of -100.” IEEE Software. May, pp. 1-5.

M. M. Waldrop. 15 Apr 1988. “Hypercube breaks a programming barrier.”

Science 240: 286.

3.

4. G. Amdahl. 1967. “Validity of the single-processor approach to achieving

large-scale computer capabilities.” AFIPS Conference Proceedings 90:

483-485.

5 . J. Giistavson, G. Montry, and R. Benner. 1988. “Development of parallel

methods for a 1024-processor hypercube.” SIAM J. Scientific and Statisti-

cal Computing 9, 4 (July): 1-32.

6. L. Snyder. 1986. “Type architectures, shared memory. and the corollary of

modest potential.” Annual Review of Computer Science 1: 289-317.

7. P. Denning. 1987. “Multigrids and hypercubes.” American Scientist 75, 3 .

May-June, pp. 234-238.

10/Speeding Up Parallel Processing TR-88.15 (23 May 1988)

Measuring parallel speedup

Consider solutions to partial differential equations on an "V x N square grid by algorithms

that update grid points only from their immediate neighbors. The total computation time

required is aN2, where a is the total time per grid point. Assuming that all communication can

be done in parallel throughout the machine (the best case), the total communication time on two

or more processors is b , the total time to exchange messages between a pair of neighboring grid

points. If this problem is divided equally among P processors, the speedup is

Time on 1 processor - aN2 F = -
Time on P processors a N z / P + b

F is called fixed-size speedup, because the problem size was held constant while the machine got

larger. For many processors, F has a constant asymptote of a N z / b .

Suppose that the problem size is scaled up to follow the machine size - tha t is, N Z = e P ,

where c is the largest number of grid points assignable to one processor. When one subsitutes

the new terms in the formula for F , a new figure of merit results:

S is called the scaled speedup, because the total computational work w a s allowed to scale up

wi th t h e machine size. Note that S is linear in P .

Suppose that fixed-size speedup were constrained to 200 for practical programs, a limit sug-

gested by Alan Karp's challenge. Since the definition of fixed-size speedup supposes one processor

can accommodate the whole problem, N2=c for the fixed-size approach and ac / b =200. The

scaled speedup for this case is P /1.005, w h i c h is about half a percent smaller than P .

These formulas are approximate, because the time to load programs and da ta into the

machine has been omitted. In a hypercube, loading time is proportional to 10g2P. Accounting

for this term would reduce both figures of merit.

TR-88.15 (23 May 1988) Speeding Up Parallel Processing/ll

Both the fixed-size and scaled figures of merit can be interpreted as consequences of

Amdahl’s law that depend on differing assumptions about the relat.ion between problem size and

the number of processors.

