139,696 research outputs found

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure

    Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments

    Full text link
    With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies for analyzing large spatial datasets. Scalable spatial process models have been found especially attractive due to their richness and flexibility and, particularly so in the Bayesian paradigm, due to their presence in hierarchical model settings. However, the vast majority of research articles present in this domain have been geared toward innovative theory or more complex model development. Very limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article is submitted to the Practice section of the journal with the aim of developing massively scalable Bayesian approaches that can rapidly deliver Bayesian inference on spatial process that are practically indistinguishable from inference obtained using more expensive alternatives. A key emphasis is on implementation within very standard (modest) computing environments (e.g., a standard desktop or laptop) using easily available statistical software packages without requiring message-parsing interfaces or parallel programming paradigms. Key insights are offered regarding assumptions and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table

    Fine-Grained Multithreading for the Multifrontal QR Factorization of Sparse Matrices

    Get PDF
    International audienceThe advent of multicore processors represents a disruptive event in the history of computer science as conventional parallel programming paradigms are proving incapable of fully exploiting their potential for concurrent computations. The need for different or new programming models clearly arises from recent studies which identify fine-granularity and dynamic execution as the keys to achieving high efficiency on multicore systems. This work presents an approach to the parallelization of the multifrontal method for the QRQR factorization of sparse matrices specifically designed for multicore based systems. High efficiency is achieved through a fine-grained partitioning of data and a dynamic scheduling of computational tasks relying on a dataflow parallel programming model. Experimental results show that an implementation of the proposed approach achieves higher performance and better scalability than existing equivalent software

    Parallel paradigms for Data Stream Processing

    Get PDF
    The aim of this thesis is to address Data Stream Processing issues from the point of view of High Performance Computing. In particular our work focused on the definition of parallel paradigms for DaSP problems. An implementation of a parallel scheme for the solution of the stream join problem is given along with the tests performed and their analysis

    Integrated and adaptive water resources management: exploring public participation in the UK

    Get PDF
    Contemporary water management practices worldwide are informed by two leading paradigms: integrated water resources management and adaptive management. While previous scholarship has already studied the two paradigms, as well as their central principles, in isolation, there are few attempts only to theorise their interaction and to explore empirically their parallel implementation and coexistence. This article contributes to this emerging literature. Its ambition is to review and complement current frameworks conceptualising the impact of integrated water resources management on adaptive capacity. To this end, the article analyses the involvement of non-state actors in UK water and flood risk management, specifically in England and Wales. This is an exciting case to study: for many decades, environmental management in England and Wales had a reputation for being a technocratic exercise. In the past 15 years, however, environmental authorities undertook major efforts to lay the foundations for enhanced collaboration and stakeholder participation, amongst others encouraged by two European Union initiatives reflecting integrated and adaptive management principles: the Water Framework Directive and the Floods Directive. The empirical evidence suggests a spurious link only between the two paradigms. This contradicts conventional wisdom which, so I argue, tends to oversimplify a complex relationship. I introduce three theory-informed arguments—relating to conceptual diversity, path dependency, and the nature of the dependent variable—to address these shortcomings and to contribute to theory building

    Parallel paradigms for Data Stream Processing

    Get PDF
    The aim of this thesis is to address Data Stream Processing issues from the point of view of High Performance Computing. In particular our work focused on the definition of parallel paradigms for DaSP problems. An implementation of a parallel scheme for the solution of the stream join problem is given along with the tests performed and their analysis

    Particle-In-Cell Simulation using Asynchronous Tasking

    Get PDF
    Recently, task-based programming models have emerged as a prominent alternative among shared-memory parallel programming paradigms. Inherently asynchronous, these models provide native support for dynamic load balancing and incorporate data flow concepts to selectively synchronize the tasks. However, tasking models are yet to be widely adopted by the HPC community and their effective advantages when applied to non-trivial, real-world HPC applications are still not well comprehended. In this paper, we study the parallelization of a production electromagnetic particle-in-cell (EM-PIC) code for kinetic plasma simulations exploring different strategies using asynchronous task-based models. Our fully asynchronous implementation not only significantly outperforms a conventional, synchronous approach but also achieves near perfect scaling for 48 cores.Comment: To be published on the 27th European Conference on Parallel and Distributed Computing (Euro-Par 2021
    • …
    corecore