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Introduction

Data Stream Processing

In the last years, as the network infrastructures kept on growing faster,

many data-intensive and network-based application (e.g. financial applica-

tions, network monitoring, security, telecommunications data management,

web applications, sensor networks) gained more and more importance in the

Information Technology area. For these applications the input data are not

available from random access memory since the beginning of the computa-

tion, but rather arrive on one or more continuous data streams. This research

field is called Data Stream Processing [BBD+02], in short DaSP.

In this data stream model, data items continuously arrive in a rapid, time-

varying, possibly unpredictable fashion. Furthermore, the dimension of the

stream is potentially unbounded, or anyway it does not permit the mem-

orization of all the data as it is possible in a traditional memory-bounded

application.

Another important consideration is that, in data streaming applications, more

recent data are considered to be more important with respect to the older

ones [Gul12]. This feature derives from the unbounded nature of the streams

and confirms that data are not sent to a processing node in order to be

stored; rather, data are sent in order to produce new results as soon as possi-

ble, i.e. on the fly. Considering for example Data Base Management Systems

(DBMS), in the streaming context, a query is no longer something that is

sporadically executed by a user (or periodically triggered). On the contrary,

a specific query is performed continuously and its computation is updated

any time new informations are available (continuous query). Obviously, the

i
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algorithm that is computed must be able to keep pace with the arrivals from

the stream.

This last consideration introduces another key factor in data stream process-

ing: keeping the latency of the application as small as possible. For example,

in online trading scenarios involving credit card transactions it is imperative

to provide low latency as these kind of applications must complete their tasks

with really strict time limitations.

Many studies about DaSP have been made in the Data Base Management

Systems research field. As already said, in streaming applications, it is pos-

sible to maintain in memory only a portion of the information received. In

order to make the computation possible with this assumption a new concept

has been introduced in DBMS: the idea is to compute functions over portions

of the incoming data (referred to as windows). Windows are used to main-

tain only the most recent part of a stream. It is important to distinguish two

different semantics that the concept of window can assume:

• The window’s size tells the application which are the more recent data

that are important. It is given as an input of the application. This is

the most common case.

• The window’s size is chosen considering the trade-off between available

memory and the precision of the results that will be obtained.

Windows can also be classified in two different types: time-based windows are

defined over a period of time (e.g. elements received in the last 10 minutes)

while count-based windows are defined over the number of stored inputs (e.g.

last 50 received elements).

Important research studies and analysis of data streams were also done from

an algorithmic perspective [DM07]. When limited to a bounded amount

of memory, it is often possible and acceptable to have approximate results.

There is a trade-off between the accuracy of the solution and the memory

required. A series of approximation techniques have been proposed, e.g.

sketches [RD09], wavelets [CGRS01], histograms [IP99].

Because of the unique features described, pre-existing applications cannot

be simply adapted to the streaming context. This introduces several new



INTRODUCTION iii

research problems.

High Performance Computing

In recent years, a substantial improvement in computer and network tech-

nology made available parallel and distributed architecture capable of reach-

ing unprecedented performance. Over the last decade, an important tech-

nological revolution has taken place: Chip MultiProcessors (CMP), simply

known as multi-cores, almost replaced uniprocessor-based CPUs for both the

scientific and the commercial market. They can be considered multipro-

cessors integrated on a single chip, thus many theoretical results found for

classical shared memory architectures are also valid for multi-cores. Accord-

ing to new interpretations of the Moores law, the number of cores on a single

chip is expected to double every 1.5 years. It is clear that so much computa-

tional power can be used at best only resorting to parallel processing.

High Performance Computing (HPC) [Van09, Van12] deals with hardware-

software architectures and applications that demand high processing band-

width and low response times. Shared memory multiprocessors (SMP, NUMA)

are a notable example of HPC systems. To be exploited efficiently, these sys-

tems require the development of parallel applications characterized by high

levels of performance and scalability.

The change from single-core to multi-core architectures impacted also the

programming model scenario introducing the need for efficient parallel pro-

gramming paradigms and methodologies. The spread of a parallel program-

ming methodology is acquiring a great importance in the scientific commu-

nity. In structured parallel programming (or skeleton-based parallel program-

ming) a limited set of parallel paradigms (skeletons) is used to express the

structure of the parallel applications. Properties like simplicity and compos-

ability, as well as parametric cost models, make structured parallel program-

ming a very attractive approach to dominate the complexity of the design

and the evaluation of parallel and distributed applications. In structured

parallel programming, an application can be seen as a graph of communicat-

ing modules that can have a parallel implementation exploiting one of many
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existing skeletons (e.g. farm, pipeline, map).

Thesis contribution

Despite both the theory behind structured parallel programming and

DaSP are quite solid, it does not exist a large literature in parallel Data

Stream Processing. The DBMS community addressed the problem because

classical data bases universally store and index data records before making

them available for query activity. Such outbound processing cannot deliver

real-time latency, as required by DaSP. To meet more stringent latency re-

quirements, the DBMS community introduced the Stream Processing En-

gines (SPEs) that adopt an alternate model where query processing is per-

formed directly on incoming messages before (or instead of) storing them.

We began our thesis work with the study of the main results obtained in the

SPE context, but we did not stick just with DBMS on stream issues.

Our thesis work aimed to introduce a parallel streaming methodology that

adapts to streaming problems, independently from the application context. In

order to adapt the well known results in structured parallel programming, we

propose a parallel module for streaming applications based on existing parallel

paradigms (e.g. farm, data parallel, stencil).

One of the main issues in parallel data stream is the distribution of the ele-

ments to the parallel workers of the module. At this point it is worth noting

that stream windows can also overlap: a parameter called slide determines

how many elements or time instants to wait for the beginning of the suc-

cessive window. If the slide is equal to the windows size, and thus windows

do not overlap each other, we have tumbling windows, otherwise we fall in

the sliding window model and different windows share some elements. Much

effort has been put in exploiting distribution to transform a sliding window

stream computation in a tumbling window one without changing its seman-

tic. We noticed that, if windows do not overlap (tumbling window case) and

we are able to make our parallel module not a bottleneck, than we can reuse

classical parallel paradigms with small modifications. This happens because

every tumbling window can be considered as an independent data structure

received on stream.
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In our thesis work we also addressed a significant stream problem that does

not fall under the tumbling window hypothesis. The problem we dealt

with is the Stream Join: it consists in continuously performing the classical

data bases join on the tuples coming from two different unbounded streams.

Stream join has sliding windows and it is a time-based streaming problem.

We choose to address stream join because there are parallel solutions in litera-

ture that we can compare with and also because it falls in a class of streaming

problems (sliding windows) that we did not analyse previously. At first, we

studied formally the problem and found the theoretical maximum output rate

of the module implementing a stream join algorithm, then we proposed a par-

allel solution to the problem.

Our solution is based on a data parallel paradigm (stencil) and takes advan-

tage of the results obtained in the previous chapters of the thesis about the

distribution of input elements.

We performed different kind of tests on our application parJoin:

• We studied how parJoin behaves by measuring its scalability and its

output rate with respect to the theoretical one.

• We compared parJoin with handshake join [TM11] which is the fastest

solution in literature to the best of our knowledge.

Structure of the thesis

This will be the structure of the thesis.

Data Stream Processing state of the art We here formally introduce DaSP

and highlight the concepts that we are going to exploit in our parallel

model.

Distribution techniques Distribution techniques for parallel modules op-

erating on streams. In some cases we are able to transform sliding

windows streams into tumbling windows streams.

Computation on tumbling windows Here we show how we can exploit

well known data parallel paradigms for data stream processing on tum-
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bling windows. We describe a data stream problem and we solve it in

four different manner.

Parallel Stream Join In this chapter we analyse the stream join problem

and we show our proposed solution along with its implementation. Test

results are discussed and a comparison with an existing solution is

presented.

Conclusions Final remarks and future works.



Chapter 1

Data Stream Processing state

of the art

In this chapter we will analyse the background on the Data Stream Pro-

cessing (DaSP). This research topic has been studied from many different

points of view (data base, financial data analysis, network traffic monitoring,

telecommunication monitoring), here we try to highlight the concepts that

we want to reuse for our model. Later we define the general parallel module

structure.

1.1 Background

In order to describe the data stream unique challenges we present a pos-

sible application: the Data Stream Management System (DSMS) [BBD+02].

DSMSs are data base systems designed specifically to elaborate queries, ex-

pressed through a SQL-like syntax, on data streams. Three key features of

these DSMSs are:

• the ability to execute continuous queries on a data stream.

• the focus on producing updated outputs as new tuples arrive on the

input stream.

1
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• the fact that the input data are not completely available at the begin

of the computation

It is particularly meaningful to use an example coming from the data base

context because much effort was put on data stream research by this com-

munity in the last ten years.

Some existing framework based on data stream management system concepts

are the Stanford’s STREAM [ABB+04], Wisconsin’s NiagaraST [UoWM,

NDM+01], Oldenburg’s Odysseus [oO], MIT’s Borealis [AAB+05, ACC+03]

and Berkeley’s TelegraphTQ [CCD+03].

A traditional database management system (DBMS) is not designed for rapid

and continuous loading of individual data items, and do not directly support

the continuous queries that are typical of data stream applications. DBMS

focus largely on producing precise answers computed by stable query plans.

Usually classic queries are executed on demand and are called one-shot query.

DBMSs assume to have available the entire data set on which the queries are

performed; on DSMSs this is not true, queries are evaluated on incoming

data continuously.

A possible application domain for a DSMS is network traffic management,

which involves monitoring network packet header information across a set of

routers to obtain information on traffic flow patterns. Consider the network

traffic management system of a large network [BBD+02], e.g. the backbone

network of an Internet Service Provider (ISP). Such systems monitor a vari-

ety of continuous data streams that may be characterized as unpredictable

and arriving at a high rate, including both packet traces and network per-

formance measurements. A data stream system that could provide effective

online processing of continuous queries over data streams would allow net-

work operators to install, modify, or remove appropriate monitoring queries

to support efficient management of the ISPs network resources. In these case

the element of the input stream are packets, seen by the DSMS as tuples of

elements. We can imagine different kinds of operations that the DSMS can

perform over its data stream: it can be interesting for the user to know how

many packets are directed toward the same destination, to find the number of

packets produced by the same application level protocol, or to find the peak

of traffic over a certain time. In this case, all the functions used (COUNT,
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SUM, MAX and MIN) are aggregate functions. This does not mean that

all the possible operations on stream are aggregate. Imagine that the user

wants to compare a certain field (e.g. the TCP time to live) of the packets

between all elements in two different flows. The computation will operate on

two different streams and will consist of consecutive join operations that are

not aggregate.

We now try to individuate the unique challenges related to Data Stream

Processing.

Unbounded memory requirements Since data streams are potentially

unbounded in size, the amount of storage required to compute an exact

answer to a data stream query may also grow without bound. External

memory solutions are not well suited to data stream applications since

they do not support continuous elaboration and are typically charac-

terized by high latency. For some problems a certain capacity of data

storage will be unavoidable.

Low latency computation New data is constantly arriving even while the

old data is being processed; the amount of computation time per data

element must be small, otherwise the latency of the computation will

be too high and the algorithm will not be able to keep pace with the

data stream.

We can here foresee a relation between the input buffering and the latency

of the successive elaboration. In the next chapters we will try to study this

relation especially from the point of view of a parallelization methodology.

Now we formalize the basic concepts of Data Stream Processing.

1.2 The Data Stream Model

In Data Stream Processing the input data are not available on disk or

on local memory, but arrive on one or more data streams. The streams are

potentially unbounded in size and the application has no control over the

order in which data elements are received. The inter-arrival time of the

streams may be unknown, highly variable and/or characterized by peaks of
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burst traffic.

It is worth showing some example of applications generating an unbounded

sequence of data [Gol06].

• Networks of sensors with wireless communication capabilities are be-

coming increasingly ubiquitous. Sensor networks are used for environ-

mental and geophysical monitoring, road traffic monitoring, location

tracking and surveillance, and inventory and supply-chain analysis. The

measurements produced by sensors (e.g. temperature readings) may be

modelled as continuous data streams.

• The World Wide Web offers a multitude of on-line data feeds, such

as news, sports, financial tickers and social network databases. These

data may be processed in various ways from the classical DB queries

to the creation of linked graph.

• An overwhelming amount of transaction log data is generated from

telephone call records, point-of-sale purchase (e.g. credit card) trans-

actions, and Web server logs. On-line analysis of transaction logs can

identify interesting customer spending patterns or possible credit card

frauds.

• As said, in the networking and teletraffic community, there has been

a great deal of recent interest in using a Data Stream Management

System for on-line monitoring and analysis of network traffic. Specific

goals include tracking bandwidth usage statistics for the purposes of

traffic engineering, routing system analysis and customer billing, as

well as detecting suspicious activity such as equipment malfunctions or

denial-of-service attacks. In this context, a data stream is composed of

IP packet headers.

The more common data stream applications work on large amounts of

input data and are characterized by requirements of low latency and high

bandwidth.

What the computation receives on the stream can be:
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1. A finite or infinite series of independent and, from the computation

viewpoint, unrelated values.

2. A finite or infinite succession of elements related by some data depen-

dency.

3. A single data structure unpacked to be sent onto a finite stream.

4. A single data structure changing over time, unpacked to generate an

infinite stream.

5. A finite or infinite set of data structures unpacked.

The application run-time can try to compute online or it can buffer some

values in temporary data structures, which size is to be minimized according

to the memory constraint of the computation. However, to store and access

data on memory may result in high latency operations which a data stream

computation may not be able to sustain. It is important to note that the

size of the memory is negligible with respect to the size of the stream. A first

issue arises: a data stream computation must be able to store as little input

data as possible in order to have a small latency in data access.

In the simplest case, the computation is applied on the single values of the

input stream independently. Having a sequential algorithm for this case, we

can exploit all the theory about stream parallel and data parallel compu-

tation to study and implement efficient solutions for this kind of problems

[Van09, Van12].

The main case that we want to address in this thesis coincides with com-

putations applied to the whole input stream or to a part of it. In these

applications one output value is obtained by applying a function to a sub-

set of values received from one or more input streams. The focus of these

computations is on recent data; for this reason a mechanism that allows to

elaborate latest elements is needed. These computations usually exploit the

concept of sliding window.
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1.2.1 Sliding windows

In the sliding window model [BBD+02, DM07] only the newest elements

arrived from the stream are considered relevant at any moment. There are

two different ways to choose the elements:

• In the count-based windowed model, there is a fixed value N called

window size. Only the last N elements are part of the current window.

• Using the time-based method, the windows are composed by all the

elements received in a fixed time frame.

r  q  p  o  n  m  l  k  j  i  h  g  f  e  d  c  b  a

N

sN - s

Figure 1.1: Concepts of window size and slide in sliding windows

In both cases we have a window size and a slide. The slide value represents

how many elements to wait for the beginning of the next window. It also

indicates whether or not two consecutive windows overlaps; given a window

with window size N (in the count-based model) and a slide of s, then the last

N − s elements are in common with the successive window. If N = s the

windows of the stream do not overlap and we are talking of tumbling windows

instead of sliding windows.

Every element is characterized by the notion of unique id (or time-stamp in

the time-based model), which corresponds to the position of a data element

inside the stream, in order to determine the position of an input in every

windows it belongs.

The sliding window model emphasizes recent data, which in the majority

of the data stream application are more important. This technique also

represent an approximation method for infinite streams. In this case, the size

of the windows must be decided accordingly to the results that we want to

obtain from the computation, their approximation degree and the time that
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we want to wait between two different results. However it is a deterministic

approach, so there is no danger that unfortunate random choices will produce

a bad approximation. In other cases, the window size is more algorithm-

dependent: for example consider algebraic computations on matrices where

the dependencies over the elements are not arbitrary.

As we have pointed out, memory occupation saving is a main issue in data

stream processing. Having overlapping windows may lead to buffering: the

common set of data between two or more input windows must be buffered

by the application to be reused for different computations. We will see in the

next chapters that, even after parallelizing the data stream computation, the

overlapped parts of the stream may require some replication and/or buffering.

1.2.2 Approximation Techniques

As described in the previous section, when we are limited to a bounded

amount of memory, it is not always possible to produce exact answers; how-

ever, high-quality approximate answers are often acceptable in many data

stream applications. In other cases approximation is needed because the ap-

plication cannot sustain some peaks of traffic in the stream. We will now

review some of these techniques.

sketches Sketching [RD09] techniques summarize all the inputs as a small

number of random variables. This is accomplished by projecting the

domain of the input on a significantly smaller domain using random

functions. In this way the data are summarized using a limited amount

of memory.

random sampling and load shedding These techniques [BDM07] rely on

dropping some part of the input. Usually sampling and load shedding

rely on heuristics but for some kind of computation like query responses

systematic approaches exist.

batches Rather than producing a continually up-to-date answer, the data

elements are buffered as they arrive, and the answer to the query is

computed periodically as time permits [BBD+02]. In this case the re-
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sults are not approximate but arrive with a time delay due to buffering.

It is also a good approach when data streams are bursty.

histograms These are data structures [IP99] that allows to summarize data

sets and to quantify the error in the approximation of the computation.

wavelets Wavelets [CGRS01] are often used as a technique to provide a sum-

mary representation of the data. Wavelets coefficients are projections

of the given set of data values onto an orthogonal set of basis vec-

tor. The choice of basis vectors determines the type of wavelets. The

wavelet decomposition can be used to effectively generate compact rep-

resentations that exploit the structure of data. Furthermore, wavelet

transforms can generally be computed in linear time, thus allowing for

very efficient algorithms.

Approximation introduces an important trade-off in data stream applica-

tions between the accuracy of the results produced and memory utilization.

As much as the accuracy of the outputs decreases also the buffering require-

ments of the application drops. Obviously the same trade-off can be seen in

terms of latency and accuracy: more approximation gives a smaller latency

and also implies less memorization and precision. In order to choose one of

these technique, a deep comprehension of the computation is necessary. For

our purposes it will not be important whether or not approximation is used

because the parallelization of a data stream computation will not affect the

sequential algorithm used.

1.3 Basic counting

In this section we present a very simple problem on single stream that

can be useful to better understand the sliding window model, the dependen-

cies over data and the trade-off between the accuracy of the solution and the

memory required.

Basic Counting [DM07]

Given a stream of data elements, consisting of 0’s and 1’s, main-
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tain at every time instant the count of the number of 1’s in the

last N elements.

This problem can be seen as a simplification of a more realistic problem in a

network-traffic scenario. Imagine an high speed router that maintains statis-

tics over packets. In particular we do a prefix match to check if a packet

originates from the unipi.it domain. At every time instant we want to

compute the number of packets, among the last N, which belonged to that

specific domain. In our Basic Counting problem a 1 represents a packet

from the unipi.it domain.

The nature of the problem leads to the utilization of the sliding window

model. In particular, a window will have a size of N because we want to

count the number of 1’s over N successive elements. At every time instant

we want to compute the result, therefore the slide between the windows will

be s = 1.

A sequential trivial solution for this problem requires O(N) bits of space. In

particular, an exact algorithm utilizes a counter of logN bits for the result

and a FIFO queue containing the last N elements received. In this way every

time a new element arrives its value is added to the counter while the value

of the element extracted from the queue is subtracted.

In [DM07] the authors present an approximation technique called Exponen-

tial Histogram that solves the problem requiring O(1
ε
log2N) bits of memory

and provides a result accurate within a factor of 1 ± ε. These results are

extended also for the following problems:

• sum, variance, Lp norm sketches

• k-median, similarity, rarity

• approximated count, min/max, quantile

We can see that there is a trade-off between the accuracy of the solution and

the memory required for the buffering because of the overlapping windows.
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1.4 DaSP parallel module structure

Input Stream

Distributor
Workers

Collector

Figure 1.2: Generic Data Stream Processing parallel module

In order to parallelize a Data Stream Processing (DaSP) computation, we

will utilize the well-known model with computation graphs made of parallel

modules communicating through typed channels [Van09, Van12].

The parallel computation will be composed of a distributor, a certain number

of workers (internally implemented in a sequential or a parallel manner) and

a collector.

Figure 1.2 shows a DaSP module composed of:

• a distributor D which sends the elements of the stream to the workers.

The distribution methods and the possible replication of the elements

will be described in chapter 2.

• W workers which implement the computation of the desired function

over the input elements. The workers can be internally implemented

in a parallel manner. The execution phase and the organization of the

workers will be analysed in chapter 3.

• a collector C which receives all the results computed by the workers.

The number of workers W, which represents the parallelism degree of the

DaSP module, has to be chosen accordingly to the cost model in order to



CHAPTER 1. DATA STREAM PROCESSING STATE OF THE ART 11

obtain the desired completion time or the needed memory occupation.

If a worker receives only input elements belonging to non overlapping win-

dows (cf. tumbling windows in section 1.2.1), we can observe some positive

effects. In this case the worker schedule is:

1. compute over the N elements of a window

2. obtain a result

3. restart an independent computation over the successive N elements

There is no need for additional memory because there are no shared elements

among the windows received. Therefore, from the worker viewpoint, it would

be desirable to receive input elements that belong to non overlapping win-

dows. Delivering the elements to the workers, we can obtain the case of

independent computations under some conditions that will be described in

chapter 2.

The execution phase in the workers is another important aspect of a DaSP

module structure that will be analysed in chapter 3. In all the cases, work-

ers can utilize any approximation technique presented in section 1.2.2, after

parallelization is enabled.



Chapter 2

Distribution techniques

In this chapter we analyse distribution techniques for parallel computa-

tions working on streams of data. Data Stream Processing can be parallelized

partitioning the input data over different workers. To do so we utilize the

well-known model with computation graphs made of parallel modules com-

municating through typed channels [Van09, Van12]. The final graph will have

in general a distributor (also called emitter), a certain number of workers (in-

ternally implemented in a sequential or a parallel manner) and a collector.

In DaSP applications, the most interesting case occurs when a result depends

on many (all the) elements of the stream. In general, the output of a compu-

tation is obtained from a subset of successive elements of the input stream.

For most data streaming computations, recent data are more useful than

older data; the processing is done on a subset of the last elements received

from the input stream. These applications utilize the sliding window model

already described in section 1.2.1.

In this overlapping windows scenario some elements belong to more than one

window; computing on different windows involve the memorization of shared

elements or the replication of the computation.

Elements belonging to different windows can be elaborated in parallel be-

cause there are no data dependencies among different windows. In order to

parallelize the computation, each worker has to process different windows

(which represents independent subsets of data). Therefore the distribution

of the input elements is a crucial phase of the parallelization because it can

12
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impact on the efficiency and the resources utilization.

2.1 Distribution techniques for one stream

In this section we present different forms of distribution of the elements

to the workers. The first scheme is a window-based distribution exploiting

some elements replication. Then we introduce the concepts of panes (window

subsets) and batches (windows aggregates).

2.1.1 Distribution with replication

If the slide is equal to the size of the window (s = N) and we are in

presence of tumbling windows the input stream can be simply partitioned

among workers because each element belongs to exactly one window.

In general, when s < N , the distribution strategy employs replication of

some elements because we fall in the sliding windows scenario where some

elements belong to more than one window and therefore must be processed

by more than one worker. In particular each element belongs to dN
s
e differ-

ent windows and this is the number of time it should be replicated among

different workers.

From this reasoning we can deduce two cases to be considered when in pres-

ence of window-based distribution with replication:

number of workers ≥ dN
s
e Here we can distribute the input elements in

such a way that the workers receive independent and non overlapping

windows. This is the desired effect described in section 1.4: from the

point of view of the worker it is like working with the tumbling windows

model. This behaviour is feasible because we have enough workers to

handle overlapping windows separately. Every element is replicated as

many time as necessary among a certain number of workers (i.e. mul-

ticast).
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number of workers < dN
s
e In this case the number of worker is not suffi-

cient to replicate the elements as many time as necessary, and therefore

a worker will receive windows that still overlap each other. From the

point of view of the worker we are still in a sliding windows model and

some buffering of the inputs elements is needed, or an approximation

technique must be used if the memory occupation becomes a problem.

Every element is replicated among all the workers (i.e. broadcast).

In both the cases described the emitter has to replicate a certain number of

elements among the workers. A round-robin scheduling strategy can be used,

however this strategy is not the only one possible. For example an on-demand

strategy is also feasible, but it has to be done with respect to the windows

instead than the single input elements. In general, the emitter has to be

aware of the window size N and the size of the slide s in order to distribute

the elements in the desired manner. It has also to determine the begin and

the end of every window that has to be sent to a specific worker. To solve this

problem each element of the stream has a unique id (count-based model, cf.

section 1.2.1) or a time-stamp (time-based model, cf. section 1.2.1) that can

be used along with the information of N and s to recognize the boundaries

of every window.

Figure 2.1 shows an example where the number of workers (W = 5) is

greater than dN
s
e. In this particular case the window size is N = 4 and the

slide is s = 1. The computation done by the workers could be the Basic

Counting shown in section 1.3 or any other function that works on sliding

windows with slide one.

In steady state, each element will be replicated dN
s
e = 4 times and will be

sent to four different workers. Each worker computes the function over N

elements, sends the result to the collector and restarts the computation on

the successive N elements. If the problem to be solved is Basic counting, the

worker needs only the counter to store the sum of the N elements. There is

no need for the additional FIFO queue and therefore the memory occupation

for each worker is O(logN). Of course we should remind that the number of

worker in this case is W > dN
s
e = N .

The emitter does not need additional memory to store some elements, it
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W1
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N = 4
S = 1
W = 5

W >   
�N
S

�

Figure 2.1: Distribution with replication where W > dN
s
e

just sends each element in multicast to the proper workers in a round-robin

fashion. The impact of the multicast on the total computation should be

considered to check if the emitter becomes a bottleneck of the computation

graph. When it becomes a bottleneck and its distribution time (Lscatter) is

bigger the the inter-arrival time (TA) some buffering may be necessary also

in the emitter.

The second example where the number of workers (W = 2) is smaller

than dN
s
e is shown in figure 2.2. In this case the window size is N = 6 and

the slide is s = 2. The computation performed by the workers could be any

function that can work on sliding windows with slide two; it is possible to

imagine also a generalization of the Basic Counting for this case.

In steady state, the emitter just replicates the input stream to all the workers

with a broadcast. Every element will be replicated W = 2 times (which is
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N = 6    S = 2    W = 2     W < 

W1
 10  9  8  7  6  5  4  3  2  1

W2
  12 11 10  9  8  7  6  5  4  3

window 2 window 1

window 2 window 1

F([1-6])F([5-10])

F([3-8])F([7-12])

�N
S

�

Figure 2.2: Distribution with replication where W < dN
s
e

smaller than dN
s
e) and sent to all the workers as shown in figure 2.2.

From the point of view of the worker this case is similar to the sequential

one because the elements received belong to overlapping windows. However

the number of elements shared among windows are less than the sequential

case and therefore the memory required for the buffering is smaller in ev-

ery worker. If there is not enough memory for the temporary storage, the

approximation techniques can be used in each worker without changing the

emitter logic.

The impact of the broadcast on the total computation should be considered

to check if the emitter becomes a bottleneck of the computation graph. In

this case we don’t have the maximum number of replication (dN
s
e) of the

elements and the impact of the broadcast should be smaller than the one of

the multicast in the first case described.

The negative aspect of this case, with respect to the first one, is that in

each worker we have to pay additional memory occupation. This is due to

the buffering of the elements shared among windows received by the same

worker.
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2.1.2 Pane-based distribution

Figure 2.3: Division of windows in panes

The idea behind this form of distribution is to divide the windows in

smaller subsets of elements called panes which are then assigned to the work-

ers [BT11, LMT+05]. This method gives a finer grain with respect to the

precedent one which is window-based.

The panes are disjoint subsets of elements and do not overlap each other.

Given a problem with window size N and slide s, the stream is separated

into panes of size GCD(N, s). Each window of size N is therefore composed

of N
GCD(N,s)

consecutive panes as shown in figure 2.3 (adopted from [BT11]).

Every pane is distributed to a different worker in a round-robin fashion avoid-

ing replication for the emitter module. The computation is performed on

panes and not on windows any more; we are decreasing the computational

grain. The workers communicate each other on a ring topology sending the

panes necessary to compute the complete result on the whole window. From

the point of view of the worker it is like working with the tumbling windows

model because the panes received are not overlapping each other.

If the function to be computed is aggregate the messages sent between the
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workers are not the original panes but the partial results obtained elaborat-

ing the panes. In this case there is also no replication of the computation,

while in the other case there is replication among the workers.

W 1

W 2

W 3

10 9 8 7 6 5 4 3 2 1

2 1

4 3

6 5

8 7

F(3, 4)

F(5, 6)

F(1,2,3, 4)

F(3,4,5, 6)

F(7, 8)

F(5,6,7,8)

10 9

N = 4
s = 2

pane  size = GCD(N,s) = 2

Figure 2.4: Pane-based distribution

Figure 2.4 shows an example of distribution with panes in presence of

an aggregate function. Each worker computes a partial result on the pane

received from the emitter (in black) and sends it to next worker on the ring.

Then it receives from the previous worker on the ring a result (in blue) that

will be utilized to complete the computation on the assigned window.

The pane-based distribution is very useful in presence of aggregate func-

tions because it avoids replication of input elements done by the emitter and

avoids replication of computations in the workers. Of course there is a inter-

worker communication to be considered. This distribution scheme can be

seen as a data-parallel computation with stencil. Indeed we have an emitter,

a collector and some workers communicating with a ring topology.
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2.1.3 Batch-based distribution

In this section we present a distribution method of the windows which

has an approach opposite to the one with panes.

Figure 2.5: Aggregation of windows in batches

A number of consecutive windows is grouped into a batch as shown in

figure 2.5 (adopted from [BT11]). The key idea behind this coarser-grained

partitioning scheme is to reduce the element replications over workers by re-

ducing the overlapped part across the new data partitions (batches).

Given a problem with window size N , slide s and a batch size of B (number

of windows in the same batch), then the number of elements that can fit in

a batch-window is wb = N + (B − 1) ∗ s and slide sb = B ∗ s. Unlike the

window-based partitioning case, if multiple windows are in the same batch,

then common data elements do not need to be replicated to multiple work-

ers. This is the advantage of this distribution scheme: to further reduce the

replication done by the emitter and decrease the latency of the distribution

phase.

From the point of view of the worker this case is very similar to the sequen-

tial one because the received elements belong to overlapping windows with

the same slide size and window size. Therefore we can still apply all the

considerations on the trade-off between the accuracy of the solution and the

memory required for the buffering.

While in the window-based distribution scheme each element belongs to dN
s
e
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windows, in the distribution with batches each element belongs to dwb

sb
e =

dN+(B−1)∗s
B∗s e < dN

s
e. Obviously the benefit of this approach would increase

with a larger batch size but this also implies a larger execution time for the

workers. The decision of the correct batch size is crucial and impacts on the

total computation cost because tends to reduce the latency of the distribu-

tion phase and increase the computation time of the workers with respect to

the window-based case.

An interesting hybrid solution could exploit both the techniques of panes

(cf. section 2.1.2) and batches. In particular the windows are grouped in

batches and the shared parts of the batches are divided in panes and dis-

tributed with the ring among the workers.

Choosing the correct size of batches and panes, the replication of the ele-

ments done by the emitter will be avoided totally at the expense of a greater

execution time in the workers and an additional communication phase be-

tween the workers.

If the function is aggregate the data exchanged on the ring will not be the

original elements of the stream but the partial results of the computation of

each worker with a benefit for both the execution time in the workers and

reduced communications between the workers.

2.2 Distribution techniques for multiple streams

In this section we discuss how having multiple input streams impact on

our distribution techniques. Our aim is to reuse as much as possible the

methods we have already introduced for the single stream scenario.

We proceed under the following assumptions:

• m input streams with the same windows size N.

• workers compute F (e1, e2, ...em) where ei = {k | k ∈ streami} and

|ei| = |ej| ∀i 6= j.

We describe two different solutions: the first one aggregates elements coming

from different streams to create a single stream with a new type; the second
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one modifies the distributor in order to have m parallel and independent

sub-distributors.

2.2.1 Aggregation

D1 D2

W

.

.

.

N

N

N

m streams

m

mN

W

W

mN

mN

Distributor

Figure 2.6: First solution for m input streams

We logically divide the distributor in two sub-modules called D1 and D2

as shown in figure 2.6. D1 takes care of receiving data from all the streams

and generates new messages containing one element from each stream. This

new messages of size m are sent to the second distributor. In this way D2

works on a single stream and can exploit all the techniques showed in previous

sections to distribute the input elements to the workers. The only difference

is that the input elements of D2 are tuples containing m elements.

In figure 2.6 D2 distributes windows of size mN (N tuples of size m) among

its workers. In general D2 can utilize all the described techniques such as

replication, pane-based distribution and batching.

We note that, if the streams do not have the same inter-arrival time, both

in presence of count based or time based window, this solution introduces a
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buffering time in D1 that will impact on the service time of the computation.

The buffering delay is due to the waiting of m different elements necessary to

create the new tuple to be sent to D2. Moreover is it difficult to evaluate a

bound for the memory used by D1; we must take in consideration the inter-

arrival times of m different streams and consider the bursty traffic situations.

Note that this technique is not suitable when windows have different number

of elements.

From the point of view of the workers the input messages and the input

channels are modified. Instead of m input streams, a worker has only one

input stream carrying messages containing one element from each original

stream. The worker logic, in this case, may need to be changed in order to

support the new communication channels and the new type of messages.

2.2.2 Parallelization

W

W

W

D1

D2

DM

.

.

.

.

.

.

Distributor

Figure 2.7: Second solution for m input streams

In this case the distributor is logically composed by m independent mod-

ules Di, one for every input stream (figure 2.7). Here we can apply the
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techniques proposed in the previous sections among every Di and the work-

ers. The main drawback of this solution is the high number of communication

channels between the distributor and the workers.

Depending on the function to be computed by the workers, the distribution

strategy adopted by each Di may be different.

For example, in the case of two input streams, one distributor could utilize

replication of the input data while the other could partition the windows

among each worker.

From the point of view of the workers the input messages and the input

channels are not modified. A worker still has m input streams as in the se-

quential case.

Summary

In this chapter we studied possible distribution techniques for parallel

DaSP modules.

At first we analysed modules with only one input stream, we investigated

how the number of workers of the module and the size of the windows im-

pact on distribution of sliding windows. Then we presented two optimization

techniques existing in literature that can be exploited also by our distribution

schemes: pane and batch-based distributions. These two techniques allow us

to change the grain of the windows and can be also mixed together. Finally,

we showed how to reuse obtained results in the case of multiple input streams.



Chapter 3

Computation on tumbling

windows

In this chapter we show how we can exploit and characterize well known

parallelism schemes [Van09, Van12] for Data Stream Processing on tumbling

windows. We already described in chapter 2 how, from the point of view of a

single worker, some computations on sliding windows can be transformed in

computations on tumbling windows by using an appropriate form of distribu-

tion. Here we want to study how a parallelism scheme adapts to a streaming

computation and how this context impacts on its performance parameters.

To do this we will utilize an example; the idea is to study how our paral-

lel computation behaves for the execution phase instead of the distribution

one. We decided to study the behaviour of a stream computation consid-

ering a single window because the completion time obtained can be seen as

the service time of the computation operating on a stream of elements in the

tumbling windows model. This assumption has no impact on the semantics

of our computation because we assumed to work on tumbling windows. Our

example will highlight how we can parallelize the computation of a single

window belonging to a finite or infinite stream.

It is worth noting that the solutions shown in this chapter may be seen as

the structure of a macro-worker inside a DaSP module (cf. section 1.4) or as

an entire DaSP module composed of a single macro-worker.

24
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3.1 Problem

In order to analyse different implementations of a macro-worker we eval-

uate the following vector computation:

i n t A[N] , B[N] , R[N ] [N ] ;

∀ i = 0 . . . N−1:

∀ j = 0 . . . N−1:

R[ i ] [ j ] = F(A[ i ] , B[ j ] ) ;

This simple program is composed of two nested cycles and computes N2

elements given 2N inputs; every element in A must be paired with every

element in B.

We will proceed in this way: we propose four different forms of parallelism

to solve the problem. For each form of parallelism, we first present the data

parallel solution that does not work on stream, then we analyse how the

same solution behaves working on stream. To do so we compare two differ-

ent approaches. The first consists of reusing the data parallel solution after

buffering all the inputs from the stream, while the second tries to compute

as soon as possible with the inputs it receives on the fly. Intuitively the first

case will give us a result in the form:

TBuffer + TC

where TBuffer is the time necessary to buffer all A and B from the stream

and TC is the completion time of the standard data parallel solution.

In the second case we will obtain just a TC2 and we need to study how it

relates to the other case. Our study will proceed under some important

assumptions:

• the streams share the same inter-arrival time

• the workers are capable to overlap the execution of the function F with

one send and one receive.

• A and B will be received on two different streams.
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In figure 3.1 are displayed all the cases we are going to address in the next

sections. The data parallel paradigms are two: map and stencil. For both we

first partition array A and then replicate it on all the nodes obtaining four

different parallel solutions. At this point we show the difference utilizing

buffering or working purely on-stream.

Map

Stencil

no

replication

no

replication
replication

replication

no

buffering

no

buffering

no

buffering

no

buffering
bufferingbuffering

bufferingbuffering

Figure 3.1: Different cases we are going to address
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3.2 Map

In this section we present a solution to our problem based on the map

data parallel structure. We apply the Virtual Processor (VP) model [Van09,

Van12] to obtain a map computation with N2 VPs.

Every virtual processor receives from two input channels just one element

R[1][1] R[1][2] R[1][3] R[1][N]

R[2][1] R[2][2] R[2][3] R[2][N]

R[3][1] R[3][2] R[3][3] R[3][N]

R[N][1] R[N][2] R[N][3] R[N][N]

. . .

. . .

. . .

. . .

.

.

.
.
.
.

.

.

.
.
.
.

N VP

N
 V

P

Figure 3.2: VP organization for the map with N2 VPs

from A and one element from B. When the VP has received both A[i] and

B[j], it computes one R[i][j] = F(A[i], B[j]). After the computation the VP

will send R[i][j] on an output channel to the collector.

In order to have an efficient distribution, we assume to have two emitters

that work in parallel: these modules send the same element of A or B to N

VPs sequentially implementing replication of the inputs. With this solution

we obtain O(N2) parallel computations and O(N2) communication channels:

• The emitter that distributes A has N2 output channels, one for every

VP.

• The emitter that distributes B has N2 output channels, one for every

VP.
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• The collector has N2 input channels, one for every VP.

Now, supposing to have n workers, we fix the computational grain as

g = N√
n
because N elements must be partitioned among

√
n workers. Then,

every partition is replicated
√
n times, as shown in figure 3.2.

In order to calculate the completion time of the computation, we search for

the latencies of the scatter and the gather. In the next formulas Tsend(g) =

Tsetup + gTtransm is the latency necessary to send an element of size g on a

channel.

Lscatter = nTsend(g)

One emitter sends an element of size g to
√
n workers. To distribute all

elements of A (or B) it must execute its routine for
√
n times, thus we obtain

a total of n send of size g.

Lgather = Tsend(g
2)

We can observe a pipeline effect in our computation: part of the com-

munications are overlapped with the computation of the workers. For the

gather, we can consider just the latency of the last send to arrive to the col-

lector because all the others are overlapped. The number of elements that a

worker produces is g2.

For the completion time, we just need to consider the execution time of a

worker once. This happens because of the pipeline effect that we already

mentioned: all the other service times are overlapped with the latency of the

scatter and the execution time of the workers that we are considering.

TC = Lscatter + g2TF + Lgather = O(nTsend(ng + g2))

Now we examine the memory requirements of the map computation. In ev-

ery worker we just need two buffers for the inputs and one for the output.

Memory per node is O(g2) = O(N2/n). To obtain the total additional mem-

ory that the computation needs we just multiply the number of nodes times

their buffers size and add the total size of the inputs. The total memory is

O(N + ng2) = O(N2).
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3.2.1 Map: streaming and total buffering

At this point we introduce the streaming context in our problem: A and

B are unpacked and received on two streams. We suppose that the size of

the elements that the emitters receive on their stream is g, the grain of the

computation.

Initially we analyse the solution that utilize the map described above (with-

out changes) after buffering all the inputs received.

We can write the completion time of this solution as

TC =
√
nTA + Lscatter + g2TF + Lgather

where TA is the inter-arrival time from the stream.

The TBuffer in this case is equal to
√
nTA, because the input will be decom-

posed as
√
n different messages (g = N√

n
).

The memory in the workers is the same as in the data parallel case while the

emitters have to buffer all the input array (A or B).

3.2.2 Map: streaming only

In this subsection we take advantage of the streaming context letting

the emitters begin to distribute the inputs as soon as they arrive from the

streams. We still have two emitters working in parallel and messages of size

g. Every emitter distributes the input coming from the stream in a round-

robin fashion. Every worker still behaves like in the data parallel case: after

receiving its two inputs it computes the results and sends it to the collector.

In this case the ratio between the inter-arrival time of the streams and the

time to distribute the elements to the worker impacts on the computation

behaviour.

If TA <
√
nTsend(g) a buffer will be needed in the emitters; this happens

because the distributors become the bottleneck of the computation. The

buffer size must be decided carefully using queueing theory concepts (ex-

pected number of users in the waiting line) and, in the worst case, can be up
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to all the input size (as the solution with total buffering). For the completion

time we have to consider, after the first inter-arrival time, the latency needed

to distribute all the inputs to all the workers.

If TA ≥
√
nTsend(g) then the emitter can keep up with the arrivals so,

for the completion time, we have to consider the total input arrival time to

the emitters. Then we can consider the latency needed to distribute the last

element of the stream and the latency that we must wait to compute the last

result.

TC =


TA + nTsend(g) + g2TF + Tsend(g

2) , if TA <
√
nTsend(g)

√
nTA +

√
nTsend(g) + g2TF + Tsend(g

2) , if TA ≥
√
nTsend(g)

Now let us compare the streaming with buffering solution and the pure

streaming one; this comparison makes sense assuming the same parallelism

degree n.

When TA <
√
nTsend(g) the completion times of the two solutions differ for

the following addends:

TA + nTsend(g) (pure streaming) and
√
nTA + nTsend(g) (buffering).

Therefore we can see that in the streaming case we save
√
nTA in the comple-

tion time with respect to the solution with total buffering. It is worth noting

that
√
nTA < nTsend(g) is the common part that we pay in both solutions;

we are saving on the smallest factor of the formula.

On the other hand when TA ≥
√
nTsend(g) the completion times of the two

solutions differ for the following addends:

√
nTA +

√
nTsend(g) (pure streaming) and

√
nTA + nTsend(g) (buffering).

Therefore we can see that in the streaming case we gain (n −
√
n)Tsend(g).

Also in this case we are saving on the smallest factor because

(n−
√
n)Tsend(g) <

√
nTA.
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Instead of making a comparison using the same parallelism degree n it is

also possible to compute the optimal parallelism degree for the pure stream-

ing solution and obtain the minimum completion time. Although this case

may have a different optimal n, if the dominant factor in the completion time

formula is g2TF + Tsend(g
2), the order of magnitude will remain the same.

By modifying n the grain g is modified and, therefore, the total arrival time

of the input data (
√
nTA) changes.

While for the workers we need the same buffer size as in the other map

solutions, the memory requirements can change strongly in the emitter.

3.3 Map with replication

In this section we still focus on a map computation, but this time we

replicate the array A on all the nodes. After a VP receives the entire array A

it stores it in its local memory. The VP will then perform the computation

of F among all the elements of A and the received partition of B. Now the

VPs are N and the computational grain is defined as g = N
n
. In this case we

have one emitter: it distributes B according to the grain g and broadcasts A

to all the workers in one message.

The workers receive from one input channel the values from the emitter;

only when a worker has received its partition of B and all the elements of

A it begins its computation. After the computation, the worker sends all

its gN results in one message on its output channel to the collector. Using

this form of parallelism we obtain O(N) elements computing in parallel and

O(N) communication channels: the distributor has N output channels, one

for every worker, and the collector has N input channels as shown in figure

3.3.

In order to calculate the completion time of the computation, we search for

the latencies of the communications for the partitioning of B, the replication

of A and the collection of the results.

Lscatter+multicast = nTsend(g +N)
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Figure 3.3: VP organization for the map with N VPs and replication of A

The emitter sends a partition of B of size g and the whole array A in one

message to all the n workers. Therefore we obtain a total of n send of size

g+N.

Lgather = Tsend(gN)

Also in this case we can observe a pipeline effect in our computation: part

of the communications are overlapped with the computation of the workers.

For the gather, we can consider just the latency of the last send to arrive to

the collector because all the others are overlapped. The number of elements

that a worker produces is gN .

For the completion time, we just need to consider the execution time of the

last worker. This happens because of the pipeline effect that we already

mentioned: all the other service times are overlapped with the latency of the

scatter and the execution time of the workers that we are considering.

TC = Lscatter+multicast + gNTF + Lgather

Now we examine the memory requirements of the map with replication

computation. Every VP needs the space necessary to buffer the entire array

A plus a partition of the array B and the result of its computation. This

last factor is the largest and thus we obtain a memory per node which is
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O(gN) = O(N
2

n
). For the total memory consumption we have to consider n

times the memory required by a node plus the space necessary for the inputs.

Therefore, the total memory required is O(ngN) = O(N2)

We can note that also if the number of the worker is N the memory required

by the workers will be at least 2N because A is entirely replicated and there

are N results.

3.3.1 Map with replication: streaming and total buffer-

ing

From this point our module receives the two input data structures (A,

B) on two different streams. We suppose that A and B have the same inter-

arrival time and that the size of the elements that the emitter receive on the

streams is g. First we analyse the solution that exploits the map described

above after buffering all the inputs.

TC = nTA + Lscatter+multicast + gNTF + Lgather

The TBuffer in this case is equal to nTA, where TA is the inter-arrival time

from the stream. The input will be decomposed in n different messages be-

cause g = N
n
.

The memory required in the workers is the same as in the data parallel case

while the emitter has to buffer all the arrays A and B.

3.3.2 Map with replication: streaming only

In this case we take advantage of the streaming context by beginning the

computation of a single result as soon as its inputs are available. We still

have one emitter that receives the input elements of A and B with size g

from two streams with the same inter-arrival time TA. When it receives a

partition of B (of size g), it forwards the message only to one worker. Then,

when a partition of A (of size g) is received, the emitter broadcasts it to all

the nodes to obtain the replication of A.
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Now the workers behave differently from the data parallel case: each worker

receives non deterministically from its two input streams and when it has

received at least one partition of A and its partition of B it begins to com-

pute F . When a result (g2 elements obtained by applying F to all possible

combinations of g elements of B and g elements of A) has been computed,

the worker immediately sends it to the collector on its output channel.

Also in this case the ratio between the inter-arrival time of the streams

and the time spent by the emitter to distribute the elements impacts on the

computation’s behaviour. This is due to the fact that the emitter becomes a

bottleneck of the computation.

If TA < nTsend(g) a buffer will be needed in the emitter; its size must

be decided using queueing theory notions (expected number of users in the

waiting line) and, in the worst case, can be up to all the input size (as the

solution with total buffering).

Now we discuss the completion time. We have to consider, after the first

inter-arrival time, the latency needed to distribute the inputs necessary to

have all the workers computing. We suppose the same inter-arrival time for

the two streams and that the emitter sends the partition of B before broad-

casting the partition of A. After the distribution of the first n−1 partitions of

A and B, all but the last worker are computing. We consider the time needed

to sent in broadcast n−1 partitions of A to n workers plus the latency to par-

tition B (n messages) among n workers in order to enable the computation

also of the last worker. According to our reasoning this first part of the com-

pletion time becomes: Lscatter = (n− 1)nTsend(g) + nTsend(g) = n2Tsend(g).

We now consider that the last worker to receive its partition of B will take

advantage of the time necessary to replicate A in order to begin its compu-

tation. The last worker to receive its g elements of B will be also the last to

receive the final g elements of A, because of the sequential implementation

of the scatter. Therefore this worker can compute g(N − g) results with the

inputs it has already received.

We will consider the maximum between three different times that overlap.
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• The first is the time to broadcast the last g elements of A (nTsend(g))

that is also the time that the last worker has to wait to receive the last

partition of A.

• The second time we consider is the time that takes for the n-th worker

to compute F over all the elements of A and its partition of B, obtaining

gN results.

• The last time we consider is the time necessary to the worker to send

all its result to the collector (nTsend(g
2)).

As said before, we considered the workers capable of computing and ex-

ecuting one send in parallel. In any case, we must consider the latency

necessary to compute the last g2 results and the corresponding send of size

g2 which cannot be overlapped.

Lexecution+gather = max(nTsend(g), g(N − g)TF , (n − 1)Tsend(g
2)) + g2TF +

Tsend(g
2)

In the case where TA ≥ nTsend(g) the Lscatter is completely overlapped by

the time necessary to receive the inputs (nTA). For the execution time we

obtain the same result as in the other case using the same reasoning.

TC =

TA + n2Tsend(g) + Lexecution+gather, if TA < nTsend(g)

nTA + Lexecution+gather, if TA ≥ nTsend(g)

If n is the same, we can try to compare the formulas of the completion time

with total buffering and with pure streaming.

We study the mathematical difference between the completion time of the

solution with total buffering and the solution with pure streaming: this dif-

ference represents the time gained (if positive) or lost (if negative).

When TA < nTsend(g), whichever is the maximum in the formula with

pure streaming, the difference has both a positive factor (different in the

three cases) and a negative factor (always n2Tsetup). Therefore this difference

could also be negative and the solution on stream could be worse than the

solution with the buffering of all the input data. This happens because the
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replication of the array A is done with repeated broadcast of grain g to all

the processes instead of one broadcast of grain N. In this way we pay n2Tsetup

instead of nTsetup and this factor could be greater than the time saved avoid-

ing the buffering.

For the case where TA ≥ nTsend(g), table 3.1 shows the mathematical

differences between the completion time of the solution with total buffering

and the solution with pure streaming.

Lexecution+gather Completion time difference

nTsend(g)
N2(n−1)

n2 (TF + Ttransm) + nNTtransm

g(N − g)TF nTsetup + (N + nN + N2(n−1)
n2 )Ttransm

(n− 1)Tsend(g
2) N2(n−1)

n2 TF + Tsetup + (N + nN)Ttransm

Table 3.1: Completion time values in function of Lexecution+gather

Considering the same n, in the streaming case we always have a positive

difference and we are gaining time with respect to the solution with total

buffering.

Now we analyse the memory usage in the streaming case. For sure, like

in the data parallel case, any worker needs N + g bytes to store A and its

partition of B. Differently from the data parallel case, a worker needs just g2

bytes to contain the results of the computation of F on g elements of A and g

elements of B. This happens because in the streaming case we send results on

the fly while in the data parallel case we wait for all the results. Memory per

node in the streaming case becomes O(N + g2) = O(N + N2

n2 ). As every pure

streaming solution, the memory in the emitter must be evaluated knowing

the values of TA and Lscatter.

The total memory is O(nN + N2

n
) = O(N2).
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Figure 3.4: VP organization for the stencil with N2 VPs

3.4 Stencil

In this section we utilize a stencil solution (shown in figure 3.4) to solve

the problem. This solution is similar to the first solution with the map (cf.

section 3.2) because there are N2 virtual processors. Every virtual processor

still receives only one element of A and one element of B to compute one

element of R. The difference with respect to the map solution is in the way

the two arrays are distributed.

The two emitters send messages only to a limited number of virtual proces-

sors; particularly each emitter will communicate with N VPs (one side of

the square of virtual processors). When a virtual processor receives an ele-

ment, forwards it to the next virtual processor on the same row or column

depending on which input channel the element was received. A VP begins
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its computation only after it has forwarded both the values it receives. The

communications are static, fixed and happen only among neighbours.

With this solution we obtain O(N2) parallel computations and O(N2) com-

munication channels:

• The emitter that distributes A has N output channels, one for every

VP of the side of the square.

• The emitter that distributes B has N output channels.

• The VPs are interconnected through O(N2) channels.

• The collector has N2 input channels, one for every VP.

In order to have n workers the computational grain can be defined as

g = N√
n
. Each worker will compute g2 results using 2g input elements.

We spend now some time showing the behaviour of the stencil computation.

Figure 3.5 depicts the order in which the input elements are received by the

workers.

Each worker needs to wait that its corresponding input elements are sent by

the emitters and then forwarded by all the previous workers on the same row

and column. We can see that the last worker to start the computation is the

one on the bottom right corner of the workers matrix. The workers on the

same diagonal in the figure start the computation at the same time.

We need to compute the latencies of the communications in order to

obtain the completion time of the computation.

Lscatter =
√
nTsend(g)

Both the emitters have to partition the array A (or B) sending elements of

size g to
√
n workers. Therefore we obtain a total of

√
n send of size g.

Lcommunications =
√
nTsend(g)

Using a stencil we have to consider the impact of the communications among

workers. Each worker forwards the messages received to the successive worker

on the same row or column. For the completion time we just need to consider

the entire path of the last element from the emitter: it has size g and will be

forwarded among
√
n workers. All the other communications are overlapped.
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Figure 3.5: Stencil execution scheme

Lgather = Tsend(g
2)

Also in this case we can consider just the latency of the last send to arrive

to the collector because all the others are overlapped with the computation

of the workers.

For the completion time we just need to consider the execution time of a

worker once. All the other execution times are overlapped with the latency

of the communications and the execution time of the n-th worker.

TC = Lscatter + g2TF +
√
nTsend(g) + Lgather

We have the following results for the memory requirement: the memory

per VP consists just of the send and receive buffers while in the total memory

we must consider the size of the inputs. Therefore the memory per worker is

O(g2) = O(N
2

n
) and the total memory is O(N + ng2) = O(N2).
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3.4.1 Stencil: streaming and total buffering

At this point we suppose to receive and buffer all the elements of the two

arrays before starting the computation. The size of the messages that the

emitters receive on their stream is g.

TC =
√
nTA + Lscatter + g2TF +

√
nTsend(g) + Lgather

As in the map solution, the TBuffer is equal to
√
nTA, where TA is the inter-

arrival time from the stream. The input will be decomposed as
√
n different

messages because g = N√
n
. The memory occupation is the same of the data

parallel case.

3.4.2 Stencil: streaming only

In this subsection we try to exploit the stencil to compute results as soon

as elements arrive on the input streams.

The emitters keep working in parallel and messages are of size g. Also the

workers keep the same behaviour as in the data parallel case.

First, we study how the ratio between the inter-arrival time of the streams

and the time to distribute an element to the worker impacts on the compu-

tation behaviour.

If TA < Tsend(g), the time necessary to receive A and B is completely

overlapped with the latency of the scatter because the emitter becomes a

bottleneck for the computation. So, for the completion time, we consider the

execution time of the last worker to receive the inputs, the latency of the

gather, of the scatter and of the inter-workers communications. The emit-

ters will need a buffer which size must be determined using queueing theory

(expected number of users in the waiting line) because they cannot keep up

with the inter-arrival time of the stream.

The completion time becomes

TC = TA +
√
nTsend(g) + g2TF +

√
nTsend(g) + Tsend(g

2)

Considering the same n, using pure streaming we gain a factor
√
nTA with



CHAPTER 3. COMPUTATION ON TUMBLING WINDOWS 41

respect to the solution with total buffering. We are gaining on the smallest

factor of the completion time formula because
√
nTsend(g) >

√
nTA.

If TA ≥ Tsend(g) all the distribution times, except the last, are overlapped

with the time necessary to receive all the inputs from the streams. In order

to obtain the completion time formula, we sum
√
nTA to the latency needed

to distribute and forward the last elements of the streams and the latency

that we must wait to compute the last result.

We obtain a completion time equal to

TC =
√
nTA + Tsend(g) + g2TF +

√
nTsend(g) + Tsend(g

2)

Therefore we can see that, considering the same n, in the streaming case

we save
√
nTsend(g). Also in this case we are gaining on the smallest factor

because
√
nTsend(g) <

√
nTA.

The memory used by the workers is the same as in the data parallel so-

lution without streams.

3.5 Stencil with replication

In this section a stencil solution is still utilized, but we replicate the array

A on all the nodes. Now there are N VPs and the computational grain is de-

fined as g = N
n
. In this case we have two emitters: one distributes g different

elements of B to every worker and the other sends A to the first worker. The

array A is forwarded by each worker to the next one in order to obtain the

replication. Each worker behaves like this: first it waits to receive non deter-

ministically A or its partition of B; as soon as it receives A it forwards it to

the next worker; when the worker has forwarded A and received the partition

of B, it begins its computation. In this way the communications are static,

fixed and happen only among neighbours creating a pipeline distribution of

the array A.

Using this stencil solution there are O(N) computations in parallel. The
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Figure 3.6: VP organization for the stencil with N VPs and replication of A

communication channels are O(N):

• The distributor of B has N output channels, one per VP.

• The distributor of A has one output channel.

• The VPs are interconnected through O(N) communication channels.

• The collector has N input channels.

In order to obtain the completion time of the total computation, we need to

compute the latencies of the communications and observe if there are some

overlapping.

Lscatter = Tsend(N)

In this case one emitter sends all the array A to the first worker while the

other emitter distribute the array B among all the workers. We should pay

Tsend(N) + nTsend(g) for the latencies of the emitters, but as we will see, the

second term can be omitted because it overlaps with the communications

among workers.

Lcommunications = nTsend(N)
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Each worker forwards the array A to the successive worker. Therefore the

time spent to transmit the array A from the first to the last worker is

nTsend(N). This time is overlapped to the communication of the emitter

which implements the scatter of B (nTsend(g) < nTsend(N)).

Lgather = Tsend(gN)

We can consider just the latency of the last send to arrive to the collector

because all the other are overlapped with the computation of the workers.

Finally, we just need to consider the execution time of the last worker. All

the other execution time are overlapped with the latency of the communica-

tions and the execution times of the workers that we are considering.

TC = Lscatter + gNTF + nTsend(N) + Lgather

It is worth noting that the final formula for the completion time is equal

to the formula for the map with replication (with a difference of one Tsetup).

Therefore, fixing the same parameters, we will have the same results of the

map with replication in the case without stream.

Let us examine the memory requirements of this solution. Every VP

buffers the entire array A plus a partition of the array B and the result of

its computation. This last factor is the largest and thus we obtain a memory

per worker which is O(gN) = O(N
2

n
). For the total memory consumption

we have to consider n times the memory required by a node plus the space

necessary for the inputs. The total memory becomes O(ngN) = O(N2)

We can note that also if the number of the worker is N the memory required

by the workers will be at least 2N because A is entirely replicated and there

are N results.
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3.5.1 Stencil with replication: streaming and total buffer-

ing

Also in the case with stream and total buffering the formula for the com-

pletion time is equal to the formula for the map with replication.

TC = nTA + Lscatter + gNTF + nTsend(N) + Lgather

Again, fixing the same parameters, we will have the same results of the map

with replication.

3.5.2 Stencil with replication: streaming only

In this subsection we try to exploit the stencil with replication to compute

results in the worker as soon as possible, that is as soon as the partition of

B is received.

We still have two emitters working in parallel and messages of size g. One

emitter distributes B among all the workers and the other sends the elements

of A to the first worker. The elements of A are then forwarded by each worker

to the next one in messages of grain g.

Now the workers have a different behaviour from the data parallel case. Each

worker receives non deterministically from its two input streams and begins

to compute F as soon as it has received its partition of B and at least one

partition of A. When a result (g2 elements) has been computed, the worker

immediately sends it to the collector on its output channel.

Also in this case the ratio between the inter-arrival time of the streams and

the time to distribute an element to the worker impacts on the computation

behaviour.

If TA < Tsend(g) a buffer will be needed in the emitters which become bot-

tlenecks of the computation; its size must be decided carefully using queue-

ing theory notions (expected number of users in the waiting line) and, in

the worst case, can be up to all the input size (as the solution with total

buffering).
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Now we discuss the completion time. After the first inter-arrival time we

have to consider the latency needed to distribute all the partitions of B in

order to enable the computation on all the workers. The first part of the

completion time therefore becomes: Lscatter = nTsend(g).

When the last worker receives its partition of B it can start the computation

utilizing the elements of A already received. For sure it does not have the last

partition of A yet: it has to wait the forwarding of the message among the

workers which takes (n− 1)Tsend(g). As in the case of map with replication

(cf. section 3.3.2) we can consider a maximum between three different times

that overlap.

• The first is the time that the n-th worker waits to receive the last par-

tition of A ((n− 1)Tsend(g)).

• The second time is the execution time of the n-th worker that have to

produce gN results.

• Finally, we consider the time necessary that the worker takes to send

all the results to the collector.

The worker sends a result as soon as possible obtaining a gather time equal

to nTsend(g
2). In any case we must consider that the computation (g2TF )

and the collection (Tsend(g
2)) of the last result cannot be overlapped.

Lexecution+gather =

= max((n− 1)Tsend(g), g(N − g)TF , (n− 1)Tsend(g
2)) + g2TF + Tsend(g

2)

= max(g(N − g)TF , (n− 1)Tsend(g
2)) + g2TF + Tsend(g

2)

We can omit (n − 1)Tsend(g) from the maximum because (n − 1)Tsend(g) <

(n− 1)Tsend(g
2).

If TA ≥ Tsend(g) then the stencil can keep up with the arrivals so, for

the completion time, we have to consider the total input arrival time to the
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emitters instead of the Lscatter. For the execution and the collection time the

same reasoning of the first case still applies.

TC =

TA + nTsend(g) + Lexecution+gather, if TA < Tsend(g)

nTA + Lexecution+gather, if TA ≥ Tsend(g)

Now let us observe the difference between the solution with total buffering

and the pure streaming one. If n is the same, we can compare the formulas

of the completion time.

The mathematical difference between the completion time of the solution

with total buffering and the solution with pure streaming represents the time

gained (if positive) or lost (if negative) adopting the second solution.

For the case where TA < Tsend(g), this difference is shown in table 3.2.

Lexecution+gather Completion time difference

g(N − g)TF nTA + Tsetup + (nN + N2(n−1)
n2 )Ttransm

(n− 1)Tsend(g
2) nTA + (2− n)Tsetup + nNTtransm + N2(n−1)

n2 TF

Table 3.2: Completion time values in function of Lexecution+gather

We can see that, when g(N − g)TF is the maximum and we consider the

same n, we always have a positive difference and in the streaming case we

obtain a smaller TC with respect to the solution with total buffering. On the

other hand when (n− 1)Tsend(g
2) is the maximum, the difference could also

be negative and the solution on stream could be worse than the solution with

the buffering of all the input data. This happens because the replication of

the array A is obtained using n sends of grain g to the first worker instead

of one send of grain N. In this way we pay nTsetup instead of Tsetup and this

factor could be greater than the time saved avoiding the buffering.

For the case where TA ≥ Tsend(g), the difference is shown in table 3.3.

We can see that, considering the same n, in the streaming case we always
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Lexecution+gather Completion time difference

g(N − g)TF (n+ 1)Tsetup + (N + nN + N2(n−1)
n2 )Ttransm

(n− 1)Tsend(g
2) 2Tsetup + (N + nN)Ttransm + N2(n−1)

n2 TF

Table 3.3: Completion time difference values in function of Lexecution+gather

have a positive difference and the computation has a smaller completion time.

Now we examine the memory requirements of the stencil computation

with replication. Each worker needs N + g bytes to store the whole array A

and its partition of B. While in the data parallel case without streaming a

worker needs gN bytes to store all the results, in this case just g2 bytes are

needed. This happens because in the streaming case we send results on the

fly while in the data parallel case we wait to have all the results.

3.6 Comparisons and numerical examples

In this section we compare all the studied solution (figure 3.1) from the

point of view of the memory occupation and the completion time.

For every performance parameter that we want to analyse, the ratio between

the inter-arrival time TA of the streams and Lscatter is to be taken under

consideration because it determines if the emitter is a bottleneck or not. At

this point it is important to note that using the shedding and dropping tech-

niques (cf. section 1.2.2) we can modify the inter-arrival time. In this way we

can switch from the case TA < Lscatter to the other one (but not vice versa).

Obviously, some kind of problems cannot accept the result’s approximations

that these techniques induce.

3.6.1 Memory occupation

First let us look at the memory consumption. We can affirm that with a

pure streaming solution we are saving in the emitter at most the size of the
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input data. This best scenario verifies when TA > Lscatter and the emitter

needs only the receive buffer of size g for the input elements. In the other

case (TA < Lscatter), our parallel module becomes a bottleneck and a bigger

buffer will be needed in the emitter. The size of this buffer depends on dif-

ferent factors (streams inter-arrival time distribution, latency of the scatter,

execution time of the workers) and can be evaluated considering the module

as a queueing system. If the buffer size is not big enough, it can force the

emitter to drop some inputs.

The memory required by a worker for the computation in the streaming cases

remains the same as in the data parallel case. What may change is the size

of the receive and send buffers in the workers. In the streaming solutions we

tried to minimize as much as possible the total memory of the parallel mod-

ule by adapting the grain of the computation to the grain of the stream. An

example of this can be seen in the map with replication (section 3.3.2) and

stencil with replication (section 3.5.2). In the data parallel and streaming

with buffering solutions we reduced the number of messages by replicating

the array A in just one message per worker. In the pure streaming solutions

a worker sends many smaller results to the collector instead of one bigger

message containing all the results the worker computed, avoiding additional

buffering in the workers (see tables 3.4, 3.5 and 3.6).

Map/Stencil
Memory occupation

DP and Buffering Pure Streaming

Worker (n) 2 N√
n
+ N2

n
2 N√

n
+ N2

n

Emitter (2) N N√
n
≤ x ≤ N

Total 2
√
nN +N2 + 2N 2

√
nN +N2 + 2x

Table 3.4: Memory occupation comparison without using replication
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Map with replication
Memory occupation

DP and Buffering Pure Streaming

Worker (n) N
n
+N + N2

n
N
n
+N + N2

n2

Emitter (1) 2N 2N
n
≤ x ≤ 2N

Total 3N + nN +N2 N + nN + N2

n
+ x

Table 3.5: Memory occupation comparison using Map with replication

Stencil with replication
Memory occupation

DP and Buffering Pure Streaming

Worker (n) N
n
+N + N2

n
N
n
+N + N2

n2

Emitter (2) N N
n
≤ x ≤ N

Total 3N + nN +N2 N + nN + N2

n
+ 2x

Table 3.6: Memory occupation comparison using Stencil with replication

3.6.2 Completion time

In this subsection we analyse the completion time of all the solutions

adopted. As said in the opening of this chapter, we wanted to study the

behaviour of a stream computation considering a single window because the

completion time obtained can be seen as the service time of the computation

operating on a stream of elements in the tumbling windows model.

In order to have some numerical validation to our ideas and have deduc-

tions from real data, we fix some values for our problem:

Tsetup = 103τ

Ttransm = 102τ

N = 103 bytes

TF = 64 ∗ 102τ
TCseq = 6, 4 ∗ 109τ
where τ is the length of the clock cycle.

Tables 3.7, 3.8, 3.9 and 3.10 show the completion time for each form of par-

allelism studied: map, stencil, map with replication and stencil with replica-

tion.
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In every case we first computed nbuf which is the optimal parallelism degree

to minimize the completion time in case of total buffering. Then, in order

to make a comparison, this parallelism degree was utilized to compute the

completion time in the case with pure streaming.

For the pure streaming solution, we also tried to obtain the best completion

time possible finding the optimal parallelism degree nmin. In some cases nbuf

and nmin are the same (or very similar) and the completion time does not

change.

Inter-arrival time Parallelism degree
Map

Buffering Pure Streaming
TA = 103 nbuf = nmin = 1681 9, 6 ∗ 106 9, 6 ∗ 106

TA = 106
nbuf = 484 3, 8 ∗ 107 3, 5 ∗ 107
nmin = 529 3, 5 ∗ 107

Table 3.7: Completion times comparison using Map without replication

Inter-arrival time Parallelism degree
Stencil

Buffering Pure Streaming

TA = 103
nbuf = 26569 9, 3 ∗ 105 7, 7 ∗ 105
nmin = 34596 7, 6 ∗ 105

TA = 106 nbuf = nmin = 529 3, 5 ∗ 107 3, 5 ∗ 107

Table 3.8: Completion time comparison using Stencil without replication

Inter-arrival time Parallelism degree
Map with replication

Buffering Pure Streaming

TA = 103
nbuf = 252 5, 1 ∗ 107
nmin = 130 7, 9 ∗ 107

TA = 106 nbuf = nmin = 76 1, 6 ∗ 108 1, 6 ∗ 108

Table 3.9: Completion times comparison using Map with replication

From the results obtained we can see a general behaviour in the buffering

solutions. When the inter-arrival time is small (TA = 103), the total buffering
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Inter-arrival time Parallelism degree
Stencil with replication

Buffering Pure Streaming

TA = 103
nbuf = 252 5, 1 ∗ 107 2, 5 ∗ 107
nmin = 2509 5, 1 ∗ 106

TA = 106 nbuf = nmin = 76 1, 6 ∗ 108 1, 6 ∗ 108

Table 3.10: Completion time comparison using Stencil with replication

time is negligible with respect to the completion time of the computation.

By increasing the inter-arrival time, nbuf decreases. This happens because

Tbuffer becomes the main factor in the completion time and the parallel mod-

ule slows down to adapt.

Comparing the pure streaming completion time with the buffering one,

different cases can occur, as our examples highlighted.

• The two completion times are quite the same.

• One of the two completion times has a better scale factor than the

other, but the order of magnitude remain the same.

• One of the two completion times outperforms the other by an order, or

more, of magnitude

In the examples presented the second case is the more common, with the

pure streaming solution performing better then the buffering one, however

all the cases have occurred.

We discuss here the reasons to all the behaviours.

In the cases without replication, we utilized the same distribution and collec-

tion schemes in both the solutions with total buffering and pure streaming.

However in the pure streaming solution, we computed the results in the work-

ers as soon as the input elements were available. Therefore as predicted, if

TA < Lscatter we save the time necessary to buffer all the input elements

(Tbuffer), otherwise we are able to overlap the distribution time with inter-

arrival time. As pointed out many times previously, we always save the
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smallest factor between the buffering time and the distribution time.

In the stencil with replication case, when TA < Lscatter, comparing the

solutions with their optimal n, we can see that the pure streaming solution

saves an order of magnitude on the completion time with respect to the

solution with total buffering. This happens because of the computation re-

organization in the distribution and collection phases. Indeed we were able

to overlap in every worker the computation with the internal communication

obtaining a pipeline effect (cf. section 3.5.2).

In the solutions exploiting replication, the pure streaming case could be

worse than the one with the buffering of all the input data. This happens be-

cause the replication of the array A is obtained using many sends of smaller

grain instead of one send containing the whole array. In this way we pay

a larger time for the setup of the communications and this factor could be

greater than the time saved avoiding the buffering.

In particular, in the map with replication case when TA < Lscatter, we ob-

tain a completion time with the same order of magnitude (107) but a worst

constant even if we are using about half the workers of the solution with

buffering. Using the parallelism degree of the solution with total buffering

we would obtain a worse completion time even if the parallelism degree is

greater. As we know having a greater parallelism degree doesn’t imply a

smaller completion time. (In this case it is worth noting that also the grain

g of the input data is changed and the total arrival time.)



Chapter 4

Parallel Stream Join

In this chapter we present the join problem over two streams of data.

This kind of computation is very common in Data Stream Management Sys-

tem (cf. section 1.1).

The main strategy to evaluate stream join is still sequential, but some par-

allel solutions have been presented in literature [GBY09, TM11].

We are interested in stream join because the computation works with time-

based sliding windows. We show how the methodology and the parallel

paradigms proposed for count-based computations can be adapted to solve

this problem.

We present the Data Stream Processing application developed during our

thesis (parJoin) and a comparison with an existing solution. Our implemen-

tation targets shared memory architectures.

4.1 Stream Join semantics

The problem we want to address is the join on two streams of elements.

Given two elements x and y, we denote as join the generic computation

z = F (x, y). For example the typical case of an equi-join is defined as

follows:

F (x, y) =

x ◦ y if x.attr = y.attr

nil if x.attr 6= y.attr

53
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that is, the result of the join is the concatenation of the two elements if

and only if the attribute attr is equal for the two tuples; no result is produced

otherwise. Obviously it is possible to apply more complex operators to the

computation.

In the DaSP context, the join operation between elements of two streams R

and S (potentially infinite) is realized using the concept of sliding windows.

In the count-based version the window size and the slide are expressed in

number of elements (tuples). We will focus instead on the time-based version,

in which the window size T and the slide are expressed in temporal duration

(every element x of the stream has associated a time-stamp attribute tx

representing the instant of reception). Therefore the number of elements

that belong to a window is not fixed: it is dependent on the rate of arrival

of the stream.

When the join is computed over two sliding-windows streams the compu-

tation is performed on all the tuples contained in the last window of the two

streams. With last window we mean the window containing all the elements

received in the last period of duration T (window size).

The exact semantics for sliding-windows joins can be derived by the three-

step procedure presented in [KNV03] as described in [TM11].

For x ∈ R and y ∈ S, the tuple x ◦ y belongs to the join result R 1p S iff:

• x arrives after y (tx > ty) and y is in the current S window when x

arrives (i.e. tx < ty + TS)

• x arrives earlier than y (ty > tx) and x is still in the current R window

when y arrives (i.e. ty < tr + TR)

and x and y pass the join predicate p.

Figure 4.1 shows two streams R and S with sliding windows of size TR

and TS respectively. Following the semantics explained above, the join com-

putation over the elements of the two streams will produce the following

matchings (if they pass also the predicate p):

• x1 ◦ y1 because x1 arrives after y1 and y1 is in the current S window

when x1 arrives (rule (a))
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x1

tx1
tx2

x2

y2y1

ty1 ty2

R

S

TR

TS

TR

TS

Figure 4.1: Stream Join example

• x2 ◦ y1 because tx2 > ty1 and tx2 < ty1 + TS (rule (a))

• x2 ◦ y2 because x2 arrives earlier than y2 and x2 is still in the current

R window when y2 arrives (rule (b))

x1 ◦ y2 cannot be a result because ty2 > tx1 but ty2 > tx1 + TR.

4.2 Sequential Algorithm

Stream join algorithm is composed by three main steps (Kang et al.

[KNV03]). In order to explain these phases, we suppose to have just re-

ceived an element x from the stream R (elements of the stream S are named

y):

1. insert x in stream R window.

2. scan S window and for every y if tx < ty + TS (meaning that the

element is not expired) compute the join of x and y.

3. remove all the expired elements in S window.
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Kang’s original algorithm removes expired elements from stream R window,

instead of S window. Note that elements are always compared by their

timestamps before computing the join, therefore the two solutions are se-

mantically equivalent (cf. section 4.1). However our solution presents an

advantage: both, the join and remove operations (steps 2 and 3), can be

performed in the same scan of the S window. If the elements are inserted

in the window ordered by their time-stamp and we begin to scan from the

most recent item, when we find an expired element we can discard also all

the successive because they have been received earlier. In this way we avoid

useless comparisons and useless scans too: Kang’s algorithm would scan S

window to compute the join and then the R window to remove expired ele-

ments while we just scan S window once. If an element y from the stream S

is received, the operations performed are symmetrical and equivalent.

4.3 DaSP module formalization

M

x : tupleR

y : tupleS

x ◦ y
R

S

Figure 4.2: The Module M : its inputs and its output

We can imagine the DaSP module M that has two input streams, R and

S respectively; the elements coming from R will have type tupleR, and the

ones coming from S will have type tupleS (figure 4.2). The two input streams

are characterized by two inter-arrival times λR and λS.

M produces an output stream that consists of pair of tuples, one tupleR and

one tupleS. We describe the behaviour of the module as follows:
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TupleR windowR [ ] ; TupleS windowS [ ] ; channel in ch R , ch S ;

channel out ch r e s ;

TupleR x ; TupleS y ;

a l t e r n a t i v e {
r e c e i v e ( ch R , x ) do

{
windowR = windowR ∪ x ;

f o r each y ∈ windowS {
i f (F (x , y ,WINSIZER,WINSIZES) )

send ( ch res , ( x , y ) ) ;

}
}

or r e c e i v e ( ch S , y ) do

{
windowS = windowS ∪ y ;

f o r each x ∈ windowR {
i f (F (x , y ,WINSIZER,WINSIZES) )

send ( ch res , ( x , y ) ) ;

}
}

}

windowR and windowS are the windows of the two streams containing non

expired tuples.

The stream join sequential algorithm, described in section 4.2, is implemented

by the function F . From now on, we just assume that this function outputs

true with probability p (also called hit-rate), and false with probability 1−p.

The F function takes four parameters which are two tuples, coming from

different streams, and the size in seconds of the two windows. These two

parameters are user-defined fixed value, so we just described them as constant

in the pseudo-code. We will discuss the detailed implementation of F in the

next chapter, because here we just want to focus on the module M .

We ask ourselves if it is possible to find the ideal maximum output rate BidM

that M can reach. In the classical theory of graph computations [Van09,

Van12], the simplest case is the one in which there is only one stream and to

every input corresponds exactly one output. In that case the ideal maximum

output rate of the module is equal to the input rate.
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The stream join problem is more complex because we have two streams, the

number of outputs is in general quadratic with respect to the input elements

and it depends on the window sizes and the hit-rate. For this reason we are

going to find a mathematical formula to evaluate BidM .

Intuitively, given a time interval [t0, t1], the maximum output rate is the one

that allows the module to output all the results computed for [t0, t1] just at

the end of the time interval. So, in order to find BidM , we must look at the

number of results generated by the inputs received in [t0, t1]. However this

number depends on many parameters like λR, λS, p, t1 − t0 and the average

number of elements that the windows will contain.

Let’s start from this last parameter: we will name ||WR|| (||WS||) the average
number of tupleR (tupleS) present in windowR (windowS) at any moment,

and |WR| the size in seconds of windowR(windowS). Therefore:

||WR|| = |WR| · λR

Now we are ready to define the maximum number of outputs thatM can com-

pute in [t0, t1] supposing both windows have respectively ||WR|| and ||WS||
elements at t0:

Ωt0,t1 = [λR(t1 − t0)||WS||+ λS(t1 − t0)||WR||)]× p

= λRλS(t1 − t0) · (|WS|+ |WR|)× p
(4.1)

λR · (t1 − t0) is the average number of tupleR received in [t0, t1]; multiplying

this number for ||WS|| we obtain the expected number of execution of F

triggered by elements received from R. We can set up a similar reasoning for

the second addend in the formula for tupleS. At this point it is clear that

the first factor in Ωt0,t1 represents the average number of F computations

triggered by the tuples received in [t0, t1]. By multiplying it for the hit-rate

p we find the average number of outputs that M will produce for the inputs

received in [t0, t1].

Now we can easily found BidM :

BidM =
Ωt0,t1

t1 − t0
= λRλS · (|WS|+ |WR|)× p (4.2)

Using (4.2) we are able to know whether or not M is a bottleneck: if the



CHAPTER 4. PARALLEL STREAM JOIN 59

output rate of M is smaller than BidM then the module is a bottleneck and

it can be parallelized internally, if otherwise the output rate is equal to BidM

then M is not a bottleneck. We will validate in section 4.7 all the formulas

showed in this section.

4.4 Existing implementations

4.4.1 CellJoin

An interesting scalable parallel solution to the stream join problem for the

Cell Processor has been described in [GBY09]. The Cell processor is a sin-

gle chip multiprocessor with nine processing elements that share a coherent

memory. Eight of the cores, called Synergistic Processing Elements (SPEs),

are 128-bit RISC processor specialized for big-data, compute-intensive SIMD

applications. Each SPE has a 256KB private local cache to hold both in-

struction and data; the element accesses the memory through direct memory

access commands. The ninth PE is the Power Processor Element (PPE): a

general purpose dual-threaded 64-bit RISC Processor that is connected to

the main memory through two level of caches. In addition to coherent ac-

cesses to the main memory, there are several other ways for the PPEs and

the SPEs to communicate with each other, such as mailboxes and signals.

For an extensive description of the Cell processor see [Gsc07, Gsc06].

In [GBY09] the stream join is parallelized by replicating the last received

tuple to each SPE and partitioning the join window of the other stream

among the SPEs. This happens dynamically for each SPE when it receives

tuples regardless of the stream. PPE takes care of storing received tuples

in windows in the main memory and of their removal. In order to increase

the grain of the computation, the authors exploited batching on partitioned

tuples. In this way a join window is transferred once from the main memory

to the local stores of SPEs for each unit of job. Each SPE is assigned a

partition of the join window in parallel and the authors claim that the load

is well-balanced, independently of the number of tuples fetched. Finally, the

results are collected at the PPE-side.

This solution is designed for a specific architecture (Cell processor) and it



CHAPTER 4. PARALLEL STREAM JOIN 60

would be inappropriate to compare the results obtained on a different system.

Furthermore, the Cell processor has only eight SPEs and it is not possible to

evaluate the scalability of the solution using more processing units.

4.4.2 Handshake join: How soccer players would do

stream joins

In [TM11], Teubner et. al present handshake join, a parallel scheme for

time window-based stream join.

The basic idea behind this solution is illustrated in figure 4.3 (adopted from

Figure 4.3: Handshake join

[TM11]). The two streams of tuples flow in opposite directions and the com-

parisons happen in the middle, as the tuples from different sources encounter

each other. The authors compare this behaviour with soccer players walking

by each other and shaking hands with every player of the opposite team at

the beginning of a game.

This solution, like our proposal, produces out of order outputs. Nevertheless,

the comparisons performed follow the semantics of the stream join presented

in section 4.1. At the arrival, a tuple enters the comparisons area (corre-

sponding to the window of the stream) and it exits when expires.

Each tuple that flows in a window pushes the others toward the end. When

a tuple of a stream encounters a tuple of the other stream (moving in the
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opposite direction) the comparison is performed. These comparisons can be

parallelized because more than one handshake happens at the same time.

In order to parallelize the handshake join over the available computing

Figure 4.4: Handshake join parallelization

resources, R and S windows are partitioned among the processing units as

shown in figure 4.4 (adopted from [TM11]).

Basically this parallel scheme can be seen as two pipelines paradigms flowing

in opposite directions. The tuples comparisons are performed locally inside

each worker. The communications are static, fixed and happen only among

neighbours.

This solution proposed by Teubner et al. arises a synchronization problem.

If two tuples flowing in opposite directions are sent on the communication

channels by neighbouring workers at the same time, they might never en-

counter each other inside a worker. In this case the two tuples will never be

compared and there would be some outputs missing. In order to solve this

problem, handshake join implements a communication protocol based on ac-

knowledgement messages sent between workers in addition to the tuples.

Another issue addressed by handshake join is the load balancing problem.

In order to keep even the amount of tuples in each worker, tuples forwarding

is based on local windows size. Each worker checks its own local window

size and, when it becomes bigger than the successive worker window size,

forwards a tuple. This strategy ensures that all the workers perform roughly

the same number of comparisons.

This solution is not designed for a specific system and the source code is

available at [TM]. Therefore it is possible and meaningful to compare the
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results obtained using a different solution on the same architecture. Further-

more, it is also possible to evaluate the scalability of the solution using any

number of core available.

4.5 Proposed parallel solutions

In this section we propose our parallel solution for the stream join algo-

rithm. A possible way to parallelize the computation consists in utilizing a

partitioning and/or a replication of the windows over the available process-

ing units. To do that, we adopted the so-called Virtual Processors approach

[Van09, Van12] that, starting from the sequential computation, is able to

derive the basic characteristics of a data parallel computation such as the

identification of a stencil and its shape.

Using the virtual processor approach we derive an abstract representation

of the equivalent data parallel computation which is characterized by the

maximum theoretical parallelism degree compatible with the computation

semantics. Because it is a maximal parallelism degree version, the grain size

of data partitions is the minimal one. However we must not forget that data

stream processing have some important differences with respect to the stan-

dard data parallel paradigm: our data structures, consisting of the two input

streams, are potentially infinite and we must consider the concept of window

too.

The minimal computational grain is the join of two tuples (figure 4.5).

Each virtual processor is the computation of one result starting from two

tuples. These tuples must have compatible timestamps, i.e. they should not

have been expired. If we suppose that all the input tuples are available at

the beginning of the computation, all the virtual processors can be executed

in parallel because there are no data dependencies for the computations of

different join results.

Actually the tuples arrive at a certain time and each comparison becomes

possible after a specific moment. We have to assign each virtual processor

(one comparison) to a real worker, and this assignment has to be dynamic

because all the input tuples are not immediately available. Furthermore,
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x y

x ◦ y

V P

Figure 4.5: VP with minimal grain of data

the stream is potentially infinite, as the number of windows; this implies an

infinite number of comparisons and thus an infinite number of VPs to be

assigned to a finite number of real workers. Each virtual processor will be

assigned to one and only one worker.

It is important to note that many VPs share the same data and some input

x y

x ◦ y

V P V P

z
z ◦ y

worker

Figure 4.6: Two VPs sharing a tuple executed in the same worker

elements have to be replicated among different VPs. When mapping the vir-

tual processors on real workers, we must consider this fact in order to reduce

the replication and increase the locality of data partitions in the workers

(figure 4.6). For this reason we will try to allocate on the same worker VPs

that shares some data.

We can utilize a stencil solution similar to the one proposed in section 3.4
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and adapt it for the time-based sliding-window join problem. The input ele-

ments needed for the join computations in a single worker must be carefully

chosen in order to reduce the replication of input tuples.

The solution proposed in section 3.4 was intended to be implemented in each

macro worker of the DaSP module. The distributor was used to transform

the input stream in order to have tumbling windows from the point of view

of the workers. Each worker internally was implemented as a stencil.

For the parallel stream join instead, we utilize just one macro-worker imple-

mented as a stencil.

Figure 4.7 summarizes what we are going to describe in the next sections.

Stencil

time− based

distribution

round− robin

distribution

column based

mapping

block based

mapping

row based

mapping

Figure 4.7: parJoin different implementations

First we are going to present a solution for the distribution of the input el-

ements which is simple but suffers of performance issues. Then we describe

a second distribution technique, based on a round-robin strategy, that is the

one we actually implemented in parJoin.

We utilized different mappings of input data onto workers, represented by

the leaves of the tree.
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4.5.1 Time-based distribution solution

0,0  0,1  0,2

 1,0  1,1  1,2
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Figure 4.8: Partitioning of a window among workers

In the count-based version of the problem the number of elements in each

window is fixed and well-known because it is a user-defined input of the prob-

lem itself: W .

The main difference in the time-based case is that we cannot predict the

number of elements that will be present in a window at any given time. This

happens because the window is bounded by time and not by a number of

elements. The rate of arrivals is also unknown to the module or can change

over time.

A possible solution is to directly start with the workers, setting their num-

ber arbitrarily (e.g. N2). As shown in figure 4.8, we can logically split the
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time-based window, whose size is T , in N same sized slot.

As already discussed in chapter 2, the distribution of the input elements is

a crucial phase of the parallelization because it can impact on the efficiency

and the resources utilization.

Consider the R stream. The distribution will partition the input elements

over the columns and utilize replications over the rows of workers. worker∗,j

will receive elements of the stream that belongs to [Tk+ j T
N
, Tk+ (j +1) T

N
)

time-slots with k ∈ N. Therefore a certain number of contiguous elements

will be received by the same worker. The sliding behaviour of the window

has to be implemented by each worker with the removal of expired elements.

Unfortunately, this distribution does not guarantee a balanced partitioning

of the tuples; the number of elements that a worker receives in different slots

is not necessarily the same because the inter-arrival time may suffer of some

variations. Moreover, as a consequence of the time-based distribution, if the

slot size is very large with respect to the computation time of the workers

this parallel paradigm may not exploit its full potential. In the worst case,

at every time instant, this computation would have only one row and one

column of workers active in parallel.

The behaviour of a generic worker is clarified by the following pseudo-

code:

s e t Join&Remove( Tuple x , Set Y) {
i n i t W = ∅ ;
f o r each y ∈ Y {

i f (x.timestamp < y.timestamp) {
i f (y.timestamp− x.timestamp < TR )

W = W ∪ Join (x , y ) ;

}
e l s e {

i f (x.timestamp− y.timestamp < TS )

W = W ∪ Join (x , y ) ;

e l s e

Y = Y \ y ; // remove the element

}

}
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re turn W;

}

Worker i , j : :

i n i t : X = ∅ , Y = ∅ , Z = ∅ ;

a l t e r n a t i v e {
guard 1 , r e c e i v e ( IN [ i −1, j ] , x ) {

X = X ∪ x ; //INSERT in ORDER

send (OUT[ i +1, j ] , x ) ; //FORWARD

Z = Join&Remove(x , Y) ;//JOIN and REMOVE

send (RIS [ i , j ] , Z) ;

}

guard 2 , r e c e i v e ( IN [ i , j −1] , y ) {
Y = Y ∪ y ; //INSERT in ORDER

send (OUT[ i , j +1] , y ) ; //FORWARD

Z = Join&Remove(y , X) ;//JOIN and REMOVE

send (RIS [ i , j ] , Z) ;

}
}

The code describes faithfully the algorithm previously presented in section

4.2; we added the communications between the workers. As can be seen in

the comments, we suppose that the insertion of the elements in the windows

is performed in order.

We can note that every worker needs to store in memory its local windows X

and Y . The size of these buffers cannot be known a priori because it depends

on the inter-arrival times of the streams and on the number of unexpired

received elements.

4.5.2 Round-robin distribution solution

In order to solve load balancing and under-usage issues of the previous

parallel paradigm, we propose a modification. What we are going to change

is the distribution scheme without altering the workers behaviour.

The emitter will now distribute the elements from the stream to the worker
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in a simple yet effective round-robin fashion (figure 4.9). At any given instant

of time, the number of elements sent to each worker will be the same (± one

element) and will not be influenced by the inter-arrival times of the input

streams. Furthermore, all the workers computing on the same number of

elements will have very similar service times because the join function does

not have a great variance in time. In this way, the distribution will ensure

load balancing.

The final distribution technique utilized is the one with multiple streams pre-

sented in section 2.2.2. There are two logically independent distributors, one

for each stream, utilizing a round-robin strategy. Each worker still has two

input channels as in the sequential case.

We now want to be sure that the semantics of the computation is still cor-
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Figure 4.9: Round-robin distribution of elements

rect (cf. section 4.1). In order to prove it, we set up the following reasoning.

Take in consideration one window of the stream R: its elements will be parti-
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tioned over the columns of the workers matrix, and replicated over the rows.

On the contrary, tuples in a S-window will be partitioned over the rows and

replicated over the columns. In this way, each pair of tuple (x ∈ R, y ∈ S)

will be received by only one workers in the matrix and all the pairs of tuple

will be processed eventually.

The only difference with the previous version is that elements of the same

stream received by a given worker are not contiguous. This strategy will lead

to have out of order outputs, but the correctness is still guaranteed. Worker’s

sequential algorithm ensures that every join computation is executed thanks

to the check of the timestamps at step 2.

4.5.3 Possible mappings of input data onto workers

Let us now discuss about some possible implementation schemes of our

last proposed parallel paradigm. We suppose to have three kinds of entities:

emitter, collector and worker. There will be more than one worker. Each

worker will perform the computations that belong to a set of V Ps (i.e. a set

of join computation). We want to focus on the mapping of the input data

onto the workers, so we will suppose to have N real processors executing our

matrix of infinite virtual processors.

We can imagine, in general, a rectangular matrix of workers. The two streams

elements are replicated and/or partitioned over rows and/or columns of the

matrix. In particular, we can consider two limit cases: square matrix of work-

ers (block based mapping), one row/column of workers (row/column based

mapping).

• Block based mapping. We have a square matrix of workers as shown

in figure 4.10.

This solution performs partitioning and replication on both streams.

The advantage of this mapping is that both the stream windows are

evenly partitioned over the same number of workers, therefore this con-

figuration can be used when the two input rates are similar. The total

number of workers is a square number, therefore we could be forced to
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Figure 4.10: Block based mapping

under-utilize the available processing units.

The number of communication channels of this solution is O(N): every

worker has two input channels (i.e. from left and up) and three output

channels (i.e. towards right, down and for the results) except for the

workers on the sides of the matrix that have two or one output chan-

nels; the emitter has 2
√
N output channels; the collector has N input

channels.

• Row based mapping. We have only one row of workers as shown in



CHAPTER 4. PARALLEL STREAM JOIN 71

figure 4.11.

In this configuration we perform total replication of the current win-

x1 x2 x3

y3 y2y1 y2y1 y2y1y2y1 y2y1

x1 x2 x3

w1 w2 w3

Figure 4.11: Row based mapping

dow of stream S on every worker, while the current window of R is

partitioned among all the workers.

This mapping may be very useful when the stream S is characterized

by a bigger inter-arrival time with respect to the one of R. Under these

hypothesis the number of elements received from S in every window

will be smaller than the one received from R. It is more convenient to

replicate the elements of the slower streams (less elements in the cur-

rent window) and to partition the tuples that comes from the faster

stream.

Removal of elements from a window stream happens in the workers

only at the arrival of an element from the other stream: this may cause

the workers to keep in memory many expired items.

The number of communication channels of this solution is O(N): every

worker has two input channels (i.e. from left and up) and two output

channels (i.e. towards right and for the results) except for the last

worker that has only one output channel; the emitter has N +1 output
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channels; the collector has N input channels.

4.6 Implementation

4.6.1 Assumptions

In order to implement our application we made some important assump-

tions. The solution has been designed to target shared memory architectures.

We supposed that the inter-arrival times of the input streams are unknown

to parJoin. The two streams, named R and S, are composed by fixed length

time-based windows. We call TR and TS the lengths of the R window and

the S window respectively.

Every element x in each stream is marked with a time-stamp tx that deter-

mines its position in the stream. The time-stamp is put on the tuples by the

generator of the stream, that is an external module to parJoin.

4.6.2 Tuples attributes and join predicate

We aimed at comparing our application with already existing solutions,

so we decided to use the same tuples of CellJoin [GBY09] and handshake join

[TM11] (cf. section 4.4).

• Tuples of stream R have attributes: attr1:int, attr2:float, attr3:char[20].

• Tuples of stream S have attributes: attr1:int, attr2:float, attr3:double,

attr4:bool.

Both type of tuples have also a timestamp attribute used to check when they

are expired.

The tuples are joined using the following predicate:

tupleS.attr1 ∈ (tupleR.attr1 - 10, tupleR.attr1 + 10)

AND tupleS.attr2 ∈ (tupleR.attr2 - 10, tupleR.attr2 + 10)

The two attributes utilized by the join predicate are generated with a uniform



CHAPTER 4. PARALLEL STREAM JOIN 73

random distribution in the interval [1, 10000]. Therefore the hit-rate becomes

p =
20

10000
· 20

10000
=

1

250000
= 4 · 10−6

4.6.3 Tuples memory organization

As pointed out in [GBY09], there are two basic types of memory organi-

zations for storing tuples in memory, namely row-oriented (tuple oriented)

and column oriented (attribute oriented).

In the first approach, different tuples are stored within contiguous regions
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Figure 4.12: Column-oriented memory organization for tupleR

of memory. On the opposite side, column oriented organization stores the at-

tributes contiguously as it can be seen in figure 4.12 for tupleR. This is more

convenient for a memory-read intensive application like the stream join: we

can exploit both spatial and temporal locality by prefetching the attributes

in lower levels of the memory hierarchy and by not deallocating them until

the corresponding tuples expire. Note that the stream join algorithm needs

to pair only few attributes of tuples, in our case two.

The row-oriented solution is commonly used by traditional DBMS, whereas

column-oriented organization is exploited by read-optimized databases [SAB+05].

Like the Cell-Join and the Handshake-Join, we utilized the column-oriented

organization for our software.

In figure 4.13 it is shown how we adapted the column-oriented memory
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Figure 4.13: parJoin memory organization

organization to our data partitioning and replication scheme. In the example

we can see a matrix of nine workers (three columns and three rows); generally

speaking we have a number of column-oriented structures for stream R equal

to the number of columns in the matrix and as many column-oriented struc-
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tures for stream S as the number of rows. The partitioning is exploited by

dividing the single column-oriented structure in many smaller ones, while the

replication can be seen in the fact that one small column-oriented structure

is shared by the workers on the same row (or column).

4.6.4 Inter-thread communications: FastFlow queues

FastFlow (FF) [ADKT13] is a C++ framework for structured parallel

programming targeting both shared memory and distributed memory archi-

tectures. It is composed by several layers which abstract the underlying

architecture. The abstraction provided by these layers is twofold: to simplify

the programming process offering high-level constructs for data parallel and

stream parallel skeletons creation and, at the same time, to give the possibil-

ity to fine tune the applications using the mechanisms provided by the lower

layers.

At the base level FF offers single producer/single consumer (SPSC) queues

[ADK+12] which can be used as communication channels between software

threads. These queues are characterized by the absence of locking mecha-

nisms. SPSC queues can be classified in two main families: bounded and

unbounded. Bounded SPSC queues, typically implemented using a circular

buffer, are used to limit memory usage and avoid the overhead of dynamic

memory allocation. Unbounded queues are mostly preferred to avoid dead-

lock issues without introducing heavy communication protocols in the case

of complex streaming networks, i.e. graph with multiple nested cycles.

We exploited FastFlow SPSC bounded queues to implement the communica-

tion channels needed by our application. The communication channels were

used to connect the emitter and the collector with the workers and the work-

ers with each other.

The elements passed in the queues are just pointers to the real data that are

stored in shared memory. The tuples, or their attributes are not copied from

a memory location to another.
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4.7 Tests

In this section we present the tests we performed and the results obtained.

Our experiments were made to study the performance of our solution and to

compare it with handshake join [TM11].

We utilized two types of shared memory architectures for our experi-

mental evaluations. The first type is an Intel Xeon Processor E5-2650 at 2

GHz. The number of physical cores is 16, but exploiting the available Hyper-

Threading they become 32 virtual cores. We used two machines (pianosa,

pianosau) of this type linked together with InfiniBand: one to generate the

streams, the other to implement the module performing the stream join.

The second type of architecture utilized during the tests is an AMD Opteron

Processor 6176 at 2.30GHz with 24 cores. We used one machine of this type:

titanic.

We have performed different types of experiments. Initially, we studied

only the behaviour of our own solution in order to evaluate its scalability and

to understand if it can reach the ideal output rate. Then we have compared

our solution with handshake join, utilizing the source code available at [TM].

The comparisons were done for symmetric input rates utilizing parJoin with

block mapping and for asymmetric input rates utilizing parJoin with column

mapping (cf. section 4.5.3).

For all the experiments that we will present in this section we computed

also the ideal output rate of the stream join module. In order to compute its

value we divided the number of generated outputs for the generation time:
Ωt0,t1

(t1 − t0)
.

The number of outputs generated in a time interval [t0, t1] can also be fore-

seen, before running the experiment, utilizing formula (4.1) already presented

in section 4.3.

Ωt0,t1 = λRλS(t1 − t0) · (|WS|+ |WR|)× p



CHAPTER 4. PARALLEL STREAM JOIN 77

This formula holds when the two windows are already full of elements at time

t0. If we want to evaluate the total number of outputs generated from the

beginning of the computation, we can ignore all the comparisons done in the

filling phase state, when the two windows are not completely filled yet. The

formula becomes:

Ωt0,t1 = λRλS(t1 − t0) · (|WS|+ |WR|)× p− λR|WR| · λS|WS| × p

During the experiments we measured the actual hit-rate that resulted to be

p = 3.6 · 10−6. It is very similar, but not equal, to the theoretical one:

p = 4 · 10−6. Using this hit-rate in the formula to predict the total number

of generated outputs, we obtained a percent error ≤ 0.34% as shown in table

4.1.

|WS |, |WR| λR λS Generation time Predicted Actual Percent error
300 400 400 900 259200 259595 0.15
300 600 600 900 583200 583775 0.09
300 800 800 900 1036800 1037995 0.11
300 1000 1000 1200 2268000 2275781 0.34
300 2000 2000 900 6480000 6492230 0.18
300 800 1200 900 1555200 1558455 0.20
300 800 1600 900 2073600 2077731 0.19
300 800 2000 900 2592000 2598837 0.26
300 200 800 900 259200 259799 0.23
600 1000 1000 1200 3888000 3899042 0.28
600 1500 1500 1200 8748000 8766142 0.20
600 2000 2000 1200 15552000 15578172 0.16

Table 4.1: Percent errors for the predicted numbers of outputs generated

Therefore we can say that our formula is a very good approximation for

the number of generated outputs and it is possible to predict the ideal output

rate before running the tests and collecting the results. This can be useful

during the computation to understand if the parallel module is still a bottle-

neck and can be further parallelized adding other workers or if it has already

reached the maximum bandwidth.
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4.7.1 parJoin

Our first set of experiments focus just on parJoin in order to evaluate its

behaviour with different input rates. These tests were run utilizing two ma-

chines (pianosa, pianosau). On pianosa we executed the generator send-

ing the tuples of the two streams, while on pianosau we executed the parallel

module implementing the stream join. The two machines are connected with

InfiniBand and the communications are implemented using standard TCP

sockets. This is as close as possible to a real stream join application in which

the streams are received from external sources.

We created two set of tuples, one for each stream, and utilized the same two

sets for all the computations performed. This means that all the different

experiments produce exactly the same results because the tuples attributes,

the timestamps and the window sizes utilized are always the same. In these

tests the generator does not send the tuples according to their timestamps,

but it generates the stream with different input rates. This is done in order

to study the changes in the parallel module behaviour and to study its scal-

ability.

The timestamps of the tuples are generated in order to have an average input

rate of 1000 tuples per second. The window sizes are fixed to 100 seconds,

therefore on average, in steady state, there are 100000 tuples in each stream

window.

The number of tuples sent for each stream is 240000, therefore the genera-

tion time is 240 seconds if the tuples are sent according to their timestamps.

Actually, in this set of experiments, as already said, we send the tuples with

input rates different from the one dictated by the timestamps.

By sending the same tuples with increasing input rates, we can observe how

our solution performance changes and see if it reaches the ideal output rate

with a certain parallel degree or if it remains a bottleneck. We can also study

the scalability of the module in presence of different input rates.

From the following figures we can see that our parallel module performs

very well utilizing input rates in the range [4000tuples/s, 8000tuples/s]. We

utilized very high input rates in order to stress the application and to exploit
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bigger parallel degrees.

The scalability obtained in all the cases is almost ideal as shown in figure

4.17. Furthermore, with lower input rates we reach the ideal output rate uti-

lizing 16 workers, while in the remaining ones the module is still a bottleneck

and could be further parallelized. As expected, with higher input rates we

need a greater parallel degree in order to reach the ideal output rate.
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4.7.2 Comparison with literature using symmetric in-

put rates

The second set of experiments focus on comparing our parJoin with the

existing handshake join, the best published result for stream join performed

in parallel. In order to make a fair comparison with handshake join we needed

to have the generator of the streams on the same machine. Indeed handshake

join utilizes additional threads for sending the tuples instead of an external

process. The tuples are retrieved directly from memory instead of being sent

on TCP sockets as done in the previous set of experiments. These experi-

ments were performed utilizing one machine (titanic).

In these test we utilized the code of handshake join to create the set of tuples,

stored them in files and given them in input to our solution. In this way we

have a significant comparison because the tuples attributes, the timestamps

and the window sizes utilized are always the same for both the applications.

Furthermore the input rate utilized is the same for handshake join and our

solution.

The generation of the tuples timestamps is done (by handshake join) with

a continuous uniform distribution. Timestamps start from zero and are in-

creased conveniently in order to obtain the desired average input rate.

The timestamps of the tuples are generated in order to have different average

input rates for each experiment. The window sizes are instead always fixed

to 300 seconds.

In these experiments the tuples are always sent according to their times-

tamps. We wanted to study the differences between handshake join and our

solution to see if they both reach the ideal output rate with a certain parallel

degree.

From figures 4.18, 4.19a and 4.19b we can see that our parallel mod-

ule performs better than handshake join utilizing input rates in the range

[800tuples/s, 1200tuples/s] for a 5 minutes window. Our module tends to

scale very well in all these cases.

As expected, with greater input rates our solution needs a greater parallel

degree in order to reach the ideal output rate. Specifically, with 800 tuples/s
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we reach the ideal output rate utilizing 9 workers, while in the remaining

cases our module is still a bottleneck and could be further parallelized with

more than 16 workers. Nevertheless, in all these cases we never stabilize on

a non-optimal output rate.

On the other hand, handshake join does not increase substantially its out-

put rate with more than 4 workers. With small parallel degrees, handshake

join performs better, because it utilizes some optimization techniques such

as batching that can be useful to improve the performance also for sequen-

tial computations. The lack of scalability may be due to the communication

protocol based on acknowledgement messages between workers.
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Figures 4.20 and 4.21 show comparisons done utilizing very high input

rates: 4000tuples/s and 5000tuples/s with 5 minutes windows. We want to

point out again that in these experiments the tuples are sent according to

their timestamps. Increasing the input rates, also the number of comparisons

to be done and the number of results will increase substantially. In order to

fit the ideal input rates in the plots we utilized a logarithmic scale.

With these input rates both the solutions remain bottlenecks despite increas-

ing the parallel degrees. The output rates reached are not very significant

because they are very far from the ideal ones and the applications are not

able to keep pace with the arrivals from the streams.

Handshake join performs better than our parallel module but does not in-

crease its output rate with more than 9 workers and remains far from the

ideal output rates. The shapes of the output rate functions suggest that

adding more workers would not be useful.
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4.7.3 Comparison with literature using asymmetric in-

put rates

The last set of experiments still focus on comparing our solution with

handshake join, but utilizes the column mapping of the windows data onto

the workers. We wanted to test this mapping in presence of asymmetric in-

put rates. Furthermore, with this configuration we can exploit more parallel

degrees and we are not fixed to utilize only square numbers of workers.

These experiments are similar to the previous ones: they are run utilizing one

machine (titanic) and the generator of the streams is on the same machine

of the parallel module.

The tuples are created by handshake join, stored in files and then given in

input to our application.

In these experiments the timestamps of the tuples are generated in order to

have different average input rate for each stream. The input rate of stream
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R is always fixed to 800 tuples/s while input rate of stream S is different for

each experiment. The window sizes are always fixed to 300 seconds in all the

tests.

Like the previous set of experiments, the tuples are sent according to their

timestamps.

From the following figures we can see that our parallel module performs

better than handshake join utilizing input rates for stream S in the range

[1200tuples/s, 2000tuples/s] and input rate of 800 tuples/s for stream R.

In all the cases handshake join does not increase substantially its output rate

utilizing more than 4 workers.

Our module tends to scale very well with an input rate of stream S equal to

1200 tuples/s and 1600 tuples/s and also reaches the ideal output rate with

9 or 16 workers.

When the input rate of stream S is very high (2000 tuples/s) our module still

performs better than handshake join but doesn’t scale ideally. Nevertheless,

our solution does not stabilize on a non-optimal output rate and continues

to increase utilizing more workers.
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Figure 4.22: Comparison with input rates of 800 tuples/s and 1200 tuples/s
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Chapter 5

Conclusions

In this chapter we summarize the thesis work and the results obtained.

As final remarks, we offer possible suggestions to further develop the research

on parallel DaSP.

Thesis summary

During the thesis we studied large part of the existing literature about

Data Stream Processing, in particular for the parallel case. Starting from the

standard model for DaSP we developed the concept of parallel DaSP module

and discussed the main issues about the distribution of input elements to

macro-workers. We were able to formalize different distribution techniques

for DaSP modules operating on one ore more streams. The results are sig-

nificant also because we showed that, using proper distribution techniques,

many sliding windows computations can be transformed in tumbling win-

dows one.

We showed how to adapt existing parallel paradigms for tumbling windows

computations. This enables to exploit the results obtained in structured

parallel programming about performance predictability for this kind of com-

putations.

We analysed a significant streaming problem called Stream Join that is time-

based and utilizes sliding windows. Even if we could not give a formal method

to parallelize this kind of computations, we gave a specific solution to the
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problem that is strongly based on an existing parallel paradigm (stencil).

We implemented this solution and compared its performance with an exist-

ing parallel solution using the same test-bed. The results obtained where

quite good, both in terms of scalability and comparing it to the solution in

literature. These tests showed how structured parallel programming can be

adapted to DaSP with very good results:

scalability results Part of the tests were aimed to show that our solution

to the stream join problem scales very well. We achieved scalability

really close to the ideal one for the tests performed.

comparison with literature Other tests were done to compare our solu-

tion with the fastest one in literature. Fixing the window size, for

sustainable input-rates, we performed better than the existing solution

often reaching the ideal output rate.

Future works

Here we propose some future works to advance our research on structured

parallel programming for DaSP.

Tumbling windows In chapter 3, we showed how to adapt some skeletons

to DaSP on tumbling windows, but we did not implemented any of the

proposed solutions. It would be interesting to solve some real problems

with the techniques proposed, and compare the theoretical results with

the experimental ones. A possible problem to address could be the

packet inspection in a router that in some way remembers the Basic

Counting.

parJoin Our application can be further improved. In the sequential algo-

rithm we can add many optimizations like vector (or SIMD) instruc-

tions. From the point of view of the parallel implementation further

investigations can be done. For example, individuating a good batch

size for the input streams can improve the performance. Other tests

with different windows sizes and input rates can be performed for any
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configuration of parJoin (matrix, columns and rows). A new imple-

mentation, based on a rectangular matrix of workers, can be studied

and realized.

Sliding windows We still lack a parallel programming model for the stream-

ing problems in this class.



Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch

Cherniack, Jeong hyon Hwang, Wolfgang Lindner, Anurag S.

Maskey, Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,

and Stan Zdonik. The design of the borealis stream processing

engine. In In CIDR, pages 277–289, 2005.

[ABB+04] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,

R Motwani, U. Srivastava, and J Widom. Stream: The stanford

data stream management system. Technical report, 2004.

[ACC+03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-

vey, C. Erwin, E. Galvez, M. Hatoun, J. h. Hwang, A. Maskey,

A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan,

and S. Zdonik. Aurora: A data stream management system. In

In ACM SIGMOD Conference, page 666, 2003.

[ADK+12] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimil-

iano Meneghin, and Massimo Torquati. An efficient unbounded

lock-free queue for multi-core systems. In Proc. of 18th Intl.

Euro-Par 2012 Parallel Processing, volume 7484 of LNCS, pages

662–673, Rhodes Island, Greece, August 2012. Springer.

[ADKT13] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Mas-

simo Torquati. Fastflow: high-level and efficient streaming on

multi-core. In Sabri Pllana and Fatos Xhafa, editors, Program-

ming Multi-core and Many-core Computing Systems, Parallel and

Distributed Computing, chapter 13. Wiley, January 2013.

93



BIBLIOGRAPHY 94

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani,

and Jennifer Widom. Models and issues in data stream sys-

tems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, PODS

’02, pages 1–16, New York, NY, USA, 2002. ACM.

[BDM07] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shed-

ding in data stream systems. In Charu C. Aggarwal, editor,

Data Streams - Models and Algorithms, volume 31 of Advances

in Database Systems, pages 127–147. Springer, 2007.

[BT11] Cagri Balkesen and Nesime Tatbul. Scalable Data Partitioning

Techniques for Parallel Sliding Window Processing over Data

Streams. In VLDB International Workshop on Data Manage-

ment for Sensor Networks (DMSN’11), Seattle, WA, USA, Au-

gust 2011.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,

Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel Madden, Vijayshankar Raman, Freder-

ick Reiss, and Mehul A. Shah. Telegraphcq: Continuous dataflow

processing for an uncertain world. In CIDR, 2003.

[CGRS01] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and

Kyuseok Shim. Approximate query processing using wavelets.

VLDB J., 10(2-3):199–223, 2001.

[DM07] Mayur Datar and Rajeev Motwani. The sliding-window com-

putation model and results. In CharuC. Aggarwal, editor, Data

Streams, volume 31 of Advances in Database Systems, pages 149–

167. Springer US, 2007.
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