4 research outputs found

    Piecewise mapping in HEVC lossless intra-prediction coding

    Get PDF
    The lossless intra-prediction coding modality of the High Efficiency Video Coding (HEVC) standard provides high coding performance while following frame-by-frame basis access to the coded data. This is of interest in many professional applications such as medical imaging, automotive vision and digital preservation in libraries and archives. Various improvements to lossless intra-prediction coding have been proposed recently, most of them based on sample-wise prediction using Differential Pulse Code Modulation (DPCM). Other recent proposals aim at further reducing the energy of intra-predicted residual blocks. However, the energy reduction achieved is frequently minimal due to the difficulty of correctly predicting the sign and magnitude of residual values. In this paper, we pursue a novel approach to this energy-reduction problem using piecewise mapping (pwm) functions. Specifically, we analyze the range of values in residual blocks and apply accordingly a pwm function to map specific residual values to unique lower values. We encode appropriate parameters associated with the pwm functions at the encoder, so that the corresponding inverse pwm functions at the decoder can map values back to the same residual values. These residual values are then used to reconstruct the original signal. This mapping is, therefore, reversible and introduces no losses. We evaluate the pwm functions on 4×4 residual blocks computed after DPCM-based prediction for lossless coding of a variety of camera-captured and screen content sequences. Evaluation results show that the pwm functions can attain maximum bit-rate reductions of 5.54% and 28.33% for screen content material compared to DPCM-based and block-wise intra-prediction, respectively. Compared to IntraBlock Copy, piecewise mapping can attain maximum bit-rate reductions of 11.48% for camera-captured material

    On Sparse Coding as an Alternate Transform in Video Coding

    Get PDF
    In video compression, specifically in the prediction process, a residual signal is calculated by subtracting the predicted from the original signal, which represents the error of this process. This residual signal is usually transformed by a discrete cosine transform (DCT) from the pixel, into the frequency domain. It is then quantized, which filters more or less high frequencies (depending on a quality parameter). The quantized signal is then entropy encoded usually by a context-adaptive binary arithmetic coding engine (CABAC), and written into a bitstream. In the decoding phase the process is reversed. DCT and quantization in combination are efficient tools, but they are not performing well at lower bitrates and creates distortion and side effect. The proposed method uses sparse coding as an alternate transform which compresses well at lower bitrates, but not well at high bitrates. The decision which transform is used is based on a rate-distortion optimization (RDO) cost calculation to get both transforms in their optimal performance range. The proposed method is implemented in high efficient video coding (HEVC) test model HM-16.18 and high efficient video coding for screen content coding (HEVC-SCC) for test model HM-16.18+SCM-8.7, with a Bjontegaard rate difference (BD-rate) saving, which archives up to 5.5%, compared to the standard

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF
    corecore