3 research outputs found

    Inductive learning of answer set programs for autonomous surgical task planning

    Get PDF
    The quality of robot-assisted surgery can be improved and the use of hospital resources can be optimized by enhancing autonomy and reliability in the robot’s operation. Logic programming is a good choice for task planning in robot-assisted surgery because it supports reliable reasoning with domain knowledge and increases transparency in the decision making. However, prior knowledge of the task and the domain is typically incomplete, and it often needs to be refined from executions of the surgical task(s) under consideration to avoid sub-optimal performance. In this paper, we investigate the applicability of inductive logic programming for learning previously unknown axioms governing domain dynamics. We do so under answer set semantics for a benchmark surgical training task, the ring transfer. We extend our previous work on learning the immediate preconditions of actions and constraints, to also learn axioms encoding arbitrary temporal delays between atoms that are effects of actions under the event calculus formalism. We propose a systematic approach for learning the specifications of a generic robotic task under the answer set semantics, allowing easy knowledge refinement with iterative learning. In the context of 1000 simulated scenarios, we demonstrate the significant improvement in performance obtained with the learned axioms compared with the hand-written ones; specifically, the learned axioms address some critical issues related to the plan computation time, which is promising for reliable real-time performance during surgery

    Interpretable task planning and learning for autonomous robotic surgery with logic programming

    Get PDF
    This thesis addresses the long-term goal of full (supervised) autonomy in surgery, characterized by dynamic environmental (anatomical) conditions, unpredictable workflow of execution and workspace constraints. The scope is to reach autonomy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g., dexterous manipulation of small objects in a constrained environment, as needle and wire for suturing). This will help reducing time of execution, hospital costs and fatigue of surgeons during the whole procedure, while further improving the recovery time for the patients. A novel framework for autonomous surgical task execution is presented in the first part of this thesis, based on answer set programming (ASP), a logic programming paradigm, for task planning (i.e., coordination of elementary actions and motions). Logic programming allows to directly encode surgical task knowledge, representing emph{plan reasoning methodology} rather than a set of pre-defined plans. This solution introduces several key advantages, as reliable human-like interpretable plan generation, real-time monitoring of the environment and the workflow for ready adaptation and failure recovery. Moreover, an extended review of logic programming for robotics is presented, motivating the choice of ASP for surgery and providing an useful guide for robotic designers. In the second part of the thesis, a novel framework based on inductive logic programming (ILP) is presented for surgical task knowledge learning and refinement. ILP guarantees fast learning from very few examples, a common drawback of surgery. Also, a novel action identification algorithm is proposed based on automatic environmental feature extraction from videos, dealing for the first time with small and noisy datasets collecting different workflows of executions under environmental variations. This allows to define a systematic methodology for unsupervised ILP. All the results in this thesis are validated on a non-standard version of the benchmark training ring transfer task for surgeons, which mimics some of the challenges of real surgery, e.g. constrained bimanual motion in small space
    corecore