90,422 research outputs found

    Parallel feature selection for distributed-memory clusters

    Get PDF
    Versión final aceptada de: https://doi.org/10.1016/j.ins.2019.01.050This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/ licenses/by-nc-nd/4.0/. This version of the article: González-Domínguez, J. et al. (2019) ‘Parallel feature selection for distributed-memory clusters’, has been accepted for publication in Information Sciences, 496, pp. 399–409. The Version of Record is available online at: https://doi.org/10.1016/j.ins.2019.01.050[Abstract]: Feature selection is nowadays an extremely important data mining stage in the field of machine learning due to the appearance of problems of high dimensionality. In the literature there are numerous feature selection methods, mRMR (minimum-Redundancy-Maximum-Relevance) being one of the most widely used. However, although it achieves good results in selecting relevant features, it is impractical for datasets with thousands of features. A possible solution to this limitation is the use of the fast-mRMR method, a greedy optimization of the mRMR algorithm that improves both scalability and efficiency. In this work we present fast-mRMR-MPI, a novel hybrid parallel implementation that uses MPI and OpenMP to accelerate feature selection on distributed-memory clusters. Our performance evaluation on two different systems using five representative input datasets shows that fast-mRMR-MPI is significantly faster than fast-mRMR while providing the same results. As an example, our tool needs less than one minute to select 200 features of a dataset with more than four million features and 16,000 samples on a cluster with 32 nodes (768 cores in total), while the sequential fast-mRMR required more than eight hours. Moreover, fast-mRMR-MPI distributes data so that it is able to exploit the memory available on different nodes of a cluster and then complete analyses that fail on a single node due to memory constraints. Our tool is publicly available at https://github.com/borjaf696/Fast-mRMR.This research has been partially funded by projects TIN2016-75845-P and TIN-2015-65069-C2-1-R of the Ministry of Economy, Industry and Competitiveness of Spain, as well as by Xunta de Galicia projects ED431D R2016/045 and GRC2014/035, all of them partially funded by FEDER funds of the European Union. We gratefully thank CESGA for providing access to the Finis Terrae II supercomputer.Xunta de Galicia; ED431D R2016/045Xunta de Galicia; GRC2014/03

    AdaBoost Parallelization on PC Clusters with Virtual Shared Memory for Fast Feature Selection

    No full text
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.International audienceFeature selection is a key issue in many machine learning applications and the need to test lots of candidate features is real while computational time required to do so is often huge. In this paper, we introduce a parallel version of the well- known AdaBoost algorithm to speed up and size up feature selection for binary classification tasks using large training datasets and a wide range of elementary features. This parallelization is done without any modification to the AdaBoost algorithm and designed for PC clusters using Java and the JavaSpace distributed framework. JavaSpace is a memory sharing paradigm implemented on top of a virtual shared memory, that appears both efficient and easy-to-use. Results and performances on a face detection system trained with the proposed parallel AdaBoost are presented

    Scalable Solutions for Automated Single Pulse Identification and Classification in Radio Astronomy

    Full text link
    Data collection for scientific applications is increasing exponentially and is forecasted to soon reach peta- and exabyte scales. Applications which process and analyze scientific data must be scalable and focus on execution performance to keep pace. In the field of radio astronomy, in addition to increasingly large datasets, tasks such as the identification of transient radio signals from extrasolar sources are computationally expensive. We present a scalable approach to radio pulsar detection written in Scala that parallelizes candidate identification to take advantage of in-memory task processing using Apache Spark on a YARN distributed system. Furthermore, we introduce a novel automated multiclass supervised machine learning technique that we combine with feature selection to reduce the time required for candidate classification. Experimental testing on a Beowulf cluster with 15 data nodes shows that the parallel implementation of the identification algorithm offers a speedup of up to 5X that of a similar multithreaded implementation. Further, we show that the combination of automated multiclass classification and feature selection speeds up the execution performance of the RandomForest machine learning algorithm by an average of 54% with less than a 2% average reduction in the algorithm's ability to correctly classify pulsars. The generalizability of these results is demonstrated by using two real-world radio astronomy data sets.Comment: In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 11, 11 page

    Adaptive Parallel Iterative Deepening Search

    Full text link
    Many of the artificial intelligence techniques developed to date rely on heuristic search through large spaces. Unfortunately, the size of these spaces and the corresponding computational effort reduce the applicability of otherwise novel and effective algorithms. A number of parallel and distributed approaches to search have considerably improved the performance of the search process. Our goal is to develop an architecture that automatically selects parallel search strategies for optimal performance on a variety of search problems. In this paper we describe one such architecture realized in the Eureka system, which combines the benefits of many different approaches to parallel heuristic search. Through empirical and theoretical analyses we observe that features of the problem space directly affect the choice of optimal parallel search strategy. We then employ machine learning techniques to select the optimal parallel search strategy for a given problem space. When a new search task is input to the system, Eureka uses features describing the search space and the chosen architecture to automatically select the appropriate search strategy. Eureka has been tested on a MIMD parallel processor, a distributed network of workstations, and a single workstation using multithreading. Results generated from fifteen puzzle problems, robot arm motion problems, artificial search spaces, and planning problems indicate that Eureka outperforms any of the tested strategies used exclusively for all problem instances and is able to greatly reduce the search time for these applications

    A Shift Selection Strategy for Parallel Shift-invert Spectrum Slicing in Symmetric Self-consistent Eigenvalue Computation

    Get PDF
    © 2020 ACM. The central importance of large-scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions that will be explored in future work
    corecore