1,004 research outputs found

    An On-chip Trainable and Clock-less Spiking Neural Network with 1R Memristive Synapses

    Full text link
    Spiking neural networks (SNNs) are being explored in an attempt to mimic brain's capability to learn and recognize at low power. Crossbar architecture with highly scalable Resistive RAM or RRAM array serving as synaptic weights and neuronal drivers in the periphery is an attractive option for SNN. Recognition (akin to reading the synaptic weight) requires small amplitude bias applied across the RRAM to minimize conductance change. Learning (akin to writing or updating the synaptic weight) requires large amplitude bias pulses to produce a conductance change. The contradictory bias amplitude requirement to perform reading and writing simultaneously and asynchronously, akin to biology, is a major challenge. Solutions suggested in the literature rely on time-division-multiplexing of read and write operations based on clocks, or approximations ignoring the reading when coincidental with writing. In this work, we overcome this challenge and present a clock-less approach wherein reading and writing are performed in different frequency domains. This enables learning and recognition simultaneously on an SNN. We validate our scheme in SPICE circuit simulator by translating a two-layered feed-forward Iris classifying SNN to demonstrate software-equivalent performance. The system performance is not adversely affected by a voltage dependence of conductance in realistic RRAMs, despite departing from linearity. Overall, our approach enables direct implementation of biological SNN algorithms in hardware

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Towards Sensorimotor Coupling of a Spiking Neural Network and Deep Reinforcement Learning for Robotics Application

    Get PDF
    Deep reinforcement learning augments the reinforcement learning framework and utilizes the powerful representation of deep neural networks. Recent works have demonstrated the great achievements of deep reinforcement learning in various domains including finance,medicine, healthcare, video games, robotics and computer vision.Deep neural network was started with multi-layer perceptron (1stgeneration) and developed to deep neural networks (2ndgeneration)and it is moving forward to spiking neural networks which are knownas3rdgeneration of neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically-realistic models of neurons to carry out computation. In this thesis, we first provide a comprehensive review on both spiking neural networks and deep reinforcement learning with emphasis on robotic applications. Then we will demonstrate how to develop a robotics application for context-aware scene understanding to perform sensorimotor coupling. Our system contains two modules corresponding to scene understanding and robotic navigation. The first module is implemented as a spiking neural network to carry out semantic segmentation to understand the scene in front of the robot. The second module provides a high-level navigation command to robot, which is considered as an agent and implemented by online reinforcement learning. The module was implemented with biologically plausible local learning rule that allows the agent to adopt quickly to the environment. To benchmark our system, we have tested the first module on Oxford-IIIT Pet dataset and the second module on the custom-made Gym environment. Our experimental results have proven that our system is able present the competitive results with deep neural network in segmentation task and adopts quickly to the environment

    Neural Network Methods for Radiation Detectors and Imaging

    Full text link
    Recent advances in image data processing through machine learning and especially deep neural networks (DNNs) allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware through data-endowed artificial intelligence. We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration. Most existing deep learning approaches are trained offline, typically using large amounts of computational resources. However, once trained, DNNs can achieve fast inference speeds and can be deployed to edge devices. A new trend is edge computing with less energy consumption (hundreds of watts or less) and real-time analysis potential. While popularly used for edge computing, electronic-based hardware accelerators ranging from general purpose processors such as central processing units (CPUs) to application-specific integrated circuits (ASICs) are constantly reaching performance limits in latency, energy consumption, and other physical constraints. These limits give rise to next-generation analog neuromorhpic hardware platforms, such as optical neural networks (ONNs), for high parallel, low latency, and low energy computing to boost deep learning acceleration

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Object detection and recognition with event driven cameras

    Get PDF
    This thesis presents study, analysis and implementation of algorithms to perform object detection and recognition using an event-based cam era. This sensor represents a novel paradigm which opens a wide range of possibilities for future developments of computer vision. In partic ular it allows to produce a fast, compressed, illumination invariant output, which can be exploited for robotic tasks, where fast dynamics and signi\ufb01cant illumination changes are frequent. The experiments are carried out on the neuromorphic version of the iCub humanoid platform. The robot is equipped with a novel dual camera setup mounted directly in the robot\u2019s eyes, used to generate data with a moving camera. The motion causes the presence of background clut ter in the event stream. In such scenario the detection problem has been addressed with an at tention mechanism, speci\ufb01cally designed to respond to the presence of objects, while discarding clutter. The proposed implementation takes advantage of the nature of the data to simplify the original proto object saliency model which inspired this work. Successively, the recognition task was \ufb01rst tackled with a feasibility study to demonstrate that the event stream carries su\ufb03cient informa tion to classify objects and then with the implementation of a spiking neural network. The feasibility study provides the proof-of-concept that events are informative enough in the context of object classi\ufb01 cation, whereas the spiking implementation improves the results by employing an architecture speci\ufb01cally designed to process event data. The spiking network was trained with a three-factor local learning rule which overcomes weight transport, update locking and non-locality problem. The presented results prove that both detection and classi\ufb01cation can be carried-out in the target application using the event data

    Finding the Gap:Neuromorphic Motion Vision in Cluttered Environments

    Get PDF
    Many animals meander in environments and avoid collisions. How the underlying neuronal machinery can yield robust behaviour in a variety of environments remains unclear. In the fly brain, motion-sensitive neurons indicate the presence of nearby objects and directional cues are integrated within an area known as the central complex. Such neuronal machinery, in contrast with the traditional stream-based approach to signal processing, uses an event-based approach, with events occurring when changes are sensed by the animal. Contrary to von Neumann computing architectures, event-based neuromorphic hardware is designed to process information in an asynchronous and distributed manner. Inspired by the fly brain, we model, for the first time, a neuromorphic closed-loop system mimicking essential behaviours observed in flying insects, such as meandering in clutter and gap crossing, which are highly relevant for autonomous vehicles. We implemented our system both in software and on neuromorphic hardware. While moving through an environment, our agent perceives changes in its surroundings and uses this information for collision avoidance. The agent's manoeuvres result from a closed action-perception loop implementing probabilistic decision-making processes. This loop-closure is thought to have driven the development of neural circuitry in biological agents since the Cambrian explosion. In the fundamental quest to understand neural computation in artificial agents, we come closer to understanding and modelling biological intelligence by closing the loop also in neuromorphic systems. As a closed-loop system, our system deepens our understanding of processing in neural networks and computations in biological and artificial systems. With these investigations, we aim to set the foundations for neuromorphic intelligence in the future, moving towards leveraging the full potential of neuromorphic systems.Comment: 7 main pages with two figures, including appendix 26 pages with 14 figure

    Local learning algorithms for stochastic spiking neural networks

    Get PDF
    This dissertation focuses on the development of machine learning algorithms for spiking neural networks, with an emphasis on local three-factor learning rules that are in keeping with the constraints imposed by current neuromorphic hardware. Spiking neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that follow a similar graphical structure but use a processing paradigm more closely modeled after the biological brain in an effort to harness its low power processing capability. SNNs use an event based processing scheme which leads to significant power savings when implemented in dedicated neuromorphic hardware such as Intel’s Loihi chip. This work is distinguished by the consideration of stochastic SNNs based on spiking neurons that employ a stochastic spiking process, implementing generalized linear models (GLM) rather than deterministic thresholded spiking. In this framework, the spiking signals are random variables which may be sampled from a distribution defined by the neurons. The spiking signals may be observed or latent variables, with neurons whose outputs are observed termed visible neurons and otherwise termed hidden neurons. This choice provides a strong mathematical basis for maximum likelihood optimization of the network parameters via stochastic gradient descent, avoiding the issue of gradient backpropagation through the discontinuity created by the spiking process. Three machine learning algorithms are developed for stochastic SNNs with a focus on power efficiency, learning efficiency and model adaptability; characteristics that are valuable in resource constrained settings. They are studied in the context of applications where low power learning on the edge is key. All of the learning rules that are derived include only local variables along with a global learning signal, making these algorithms tractable to implementation in current neuromorphic hardware. First, a stochastic SNN that includes only visible neurons, the simplest case for probabilistic optimization, is considered. A policy gradient reinforcement learning (RL) algorithm is developed in which the stochastic SNN defines the policy, or state-action distribution, of an RL agent. Action choices are sampled directly from the policy by interpreting the outputs of the read-out neurons using a first to spike decision rule. This study highlights the power efficiency of the SNN in terms of spike frequency. Next, an online meta-learning framework is proposed with the goal of progressively improving the learning efficiency of an SNN over a stream of tasks. In this setting, SNNs including both hidden and visible neurons are considered, posing a more complex maximum likelihood learning problem that is solved using a variational learning method. The meta-learning rule yields a hyperparameter initialization for SNN models that supports fast adaptation of the model to individualized data on edge devices. Finally, moving away from the supervised learning paradigm, a hybrid adver-sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than optimize for the likelihood of target spike patterns at the SNN outputs, the training is mediated by an auxiliary discriminator that provides a measure of how similar the spiking data is to a target distribution. Because no direct spiking patterns are given, the SNNs considered in adversarial learning include only hidden neurons. A Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range of temporal data that a single SpikeGAN can estimate. Additionally, the online meta-learning rule is extended to include meta-learning for SpikeGAN, to enable efficient generation of data from sequential data distributions

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci
    corecore