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ABSTRACT

Many animals meander in environments and avoid collisions. How the underlying neuronal machinery can yield robust

behaviour in a variety of environments remains unclear. In the fly brain, motion-sensitive neurons indicate the presence of

nearby objects and directional cues are integrated within an area known as the central complex. Such neuronal machinery,

in contrast with the traditional stream-based approach to signal processing, uses an event-based approach, with events

occurring when changes are sensed by the animal. Contrary to classical von Neumann computing architectures, event-based

neuromorphic hardware is designed to process information asynchronously and in a distributed manner. Inspired by the fly

brain, we model, for the first time, a neuromorphic closed-loop system mimicking essential behaviours observed in flying

insects, such as meandering in clutter and crossing of gaps, both of which are also highly relevant for autonomous vehicles.

We implemented our system both in software and on neuromorphic hardware. While moving through an environment, our

agent perceives changes in its surroundings and uses this information for collision avoidance. The agent’s manoeuvres result

from a closed action-perception loop implementing probabilistic decision-making processes. This loop-closure is thought to

have driven the development of neural circuitry in biological agents since the Cambrian explosion. In the fundamental quest to

understand neural computation in artificial agents, we come closer to understanding and modelling biological intelligence by

closing the loop also in neuromorphic systems. As a closed-loop system, our system deepens our understanding of processing

in neural networks and their computations in both biological and artificial systems. With these investigations, we aim to set the

foundations for neuromorphic intelligence in the future, moving towards leveraging the full potential of neuromorphic systems.

1 Introduction1

While navigating through the environment, our proprioception informs us about our posture, our eyes look for a familiar2

direction or goal, and our ears watch-out for dangers. The brain deals with multiple data-streams in a continuous and parallel3

manner. Autonomous vehicles requiring to safely manoeuvre in their environment also have to deal with such high-dimensional4

data-streams which are conventionally acquired and analysed at a fixed sampling frequency. A fixed sampling frequency limits5

the temporal resolution of data-processing and the amount of data which can be processed. To address these limitations, two6

approaches can be combined. First, data-streams can be sparsified by sending only information when an observed quantity7

changes, i.e. when it is required. Second, the data-stream can be processed in a parallel and asynchronous fashion. This calls for8

an alternative approach to sensing and computing which, much like the brain, acquires and processes information completely9

asynchronously and in a distributed network of computing elements, e.g. neurons and synapses. To fully demonstrate the10

advantages of this approach we use the example of autonomous navigation as it is well studied and algorithmically understood11

in a variety of environments be they water1, ground2, air3, or space4. In the last decades, part of the engineering community12

has sought inspiration from animals2, 5, 6. For example, flying insects such as bees and flies share the same requirements as13

light-weight flying vehicles manoeuvring in various habitats from almost object-free terrains7 to overly cluttered forests8 via14

human-made landscapes. They need to avoid collisions to prevent damaging their wings9 and they accomplish this task by15

using limited neuronal resources (less than 1M10 and 100k11 neurons for honeybees and fruit-flies respectively). At the core of16

this machinery is a well-described subset of neurons responding to the apparent motion of surrounding objects12, 13. While the17



animal translates in its environment, the responses of such neurons provide estimates to the time-to-contact to nearby objects by18

approximating the apparent motion of the objects on the retina (i.e. the optic flow14). These neurons are thought to steer the19

animal away from obstacles15–18 or toward gaps19–21 resulting in a collision-free path.20

The collision avoidance machinery in insects is thought to be driven by a large array of motion-sensitive neurons, distributed21

in an omnidirectional visual field. These neurons operate asynchronously. Hence, biology has found an asynchronous and22

distributed solution to the problem of collision avoidance. We seek to emulate such a solution in bio-inspired neuromorphic23

hardware which has the advantage of being low-volume and low-power. More importantly, it also requires an asynchronous and24

parallel information processing implementation yielding a better understanding of neural computation.25

To date, most of the mimics of the collision avoidance machinery rely on traditional cameras from which every pixel at26

every time point (i.e. at a fixed sampling frequency) needs to be processed6, 15, 16, 22–24. The processing occurs even when27

nothing is changing in the agent’s surroundings. This constant processing leads to a dense stream of data and consequently a28

high energy consumption. To reduce this, an efficient means of communication can be employed, such as action potentials29

observed in biological neural circuits. Action potentials or spikes enable to transmit information only when necessary, i.e.30

event-driven. In an analogous way, event-based cameras send events asynchronously only when a change in luminance over31

time is observed25–29. This sampling scheme is referred to as Lebesgue sampling30. Contrary to frame-based cameras, which32

employ Riemann sampling30, bandwidth and power demands are significantly reduced (see Section Event-Based Cameras in33

Gazebo for more details).34

Open-loop collision avoidance based on optic-flow can use event-streams31–39(for more detailed comparison of mentioned35

approaches refer to39) and an insect-inspired motion pathway has been suggested for collision avoidance39. Closed-loop36

collision avoidance behaviour have been demonstrated previously using fully conventional sensory-processing (frame-based37

sensor and CPUs/GPUs) approaches23, 24 (for extensive review please refer to40, 41). These insect-inspired approaches reduce38

the computational demands for collision avoidance by reducing the bandwidth of the visual input. This reduction is achieved by39

collapsing the visual field into a left and right components. Later processing only needs to compare left versus right signals.40

These approaches, however, are hardwired processing of visual features. The hard-coded features may not be relevant in other41

environments. Mixed-system (event-based camera and conventional processing) approaches36, 42, on the other hand, do not42

reduce the visual input by separating left-right signal pathways, but utilise event-based cameras which only transmit changes.43

In contrast to biological systems, they do not, however, leverage the advantages of event-based processing until the actuation44

of the motors. Finally, fully neuromorphic (event-based camera and parallel, asynchronous processing) approaches43, 44 rely45

on spike-based information processing from sensing to actuation of motors. To date, these approaches rely on hardwired,46

deterministic decision making processing. The hard-coded decisions, i.e. creating a reflex-like machine, may lead to sub-optimal47

decisions when multiple directions to avoid collisions are viable. Here, we aim for the first time at closing the action-perception48

loop40, 41, 45, while explicitly extracting insect-inspired visual features, making active decisions, and using neuromorphic49

spike-based computation from sensing to actuation. Inspired by the collision avoidance algorithm proposed for flies and50

bees, we developed a spiking neural network (SNN)1 that profits from the parsimony of event-based cameras and is compatible51

with state-of-the-art digital and mixed-signal neuromorphic processing systems. The response of the visual motion pathway of52

our network resembles the activity of motion-sensitive neurons in the visual system of flies. We ran closed-loop experiments53

with an autonomous agent in a variety of conditions to assess the collision avoidance and gap finding capabilities of our network.54

These conditions were chosen from the biological evidence for collision avoidance obtained for flying insects (empty box46,55

corridors47–50, gap crossing8, 20, 21, and cluttered environments9). Our agent, utilising its underlying neural network, manages to56

stay away from walls in a box, centres in corridors, crosses gaps and meanders in cluttered environments. Therefore, it may57

find applications for autonomous vehicles. Besides, it may serve as a theoretical playground to understand biological systems58

by using neuromorphic principles replicating an entire action-perception loop.59

2 Results60

The SNN model proposed in this work consists of two main components, namely a retinotopical map of insect-inspired motion61

detectors, i.e. spiking Elementary Motion Detectors (sEMDs)39, and an inverse soft Winner-Take-All (WTA) network (see62

Figure 1d and Methods Figure 4). The former extracts optic flow (OF) which, during a translation, is anti-proportionally related63

to the agent’s relative distance to objects in the environment. The latter searches for a region of low apparent motion, hence an64

obstacle free direction (see Figure 1a-c). After the detection of such a path in the environment the agent executes a turn towards65

the new movement course. We characterised the network in two steps. First we evaluated the sEMD’s response and discussed66

similarities to its biological counterpart, i.e. T4/T5 neurons, which are thought to be at the core of elementary motion processing67

in fruit flies51, 52. Second, to further prove the real-world applicability of sEMD based gap finding in an SNN, we performed68

closed-loop experiments. We simulated an agent seeing the world through an event-based camera in the Neurorobotics physical69

1Spiking Neural Network: Massively parallel network consisting of populations of spike-based artificial neurons and synapses.
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simulation platform53. The camera output was processed by the SNN resulting in a steering command. We selected a set of70

parameters that yield the agent to keep at least a mean clearance of ~6 a.u.2 to objects in a box and to enter corridors only with71

a width greater than 10 a.u. (see Appendix section The Motion-Vision Network). We tested the performance of this simulated72

agent with these parameters in all reported experimental conditions hereafter. These experimental conditions were inspired by73

previous experiments with flying insects.74

2.1 Spiking Elementary Motion Detector75

The sEMD represents an event-driven adaptation for neuromorphic sensory-processing systems of the well established76

correlation-based elementary motion detector54. To evaluate the response of the sEMD in the Nest simulator55, we compared77

the normalised velocity tuning curves of its ON-Pathway (with recorded event-based camera’s input) to the corresponding78

normalised tuning curve of Drosophila’s T4 and T5 neurons56. Both velocity tuning curves are determined in response to79

square-wave gratings with 100 % contrast and a wavelength of 20° moving at a range of constant velocities (with temporal80

frequencies from 0.1 Hz to 10 Hz). The sEMD preferred direction exhibits a bell-shaped velocity tuning curve (see Figure 181

e), which has the maximum response (mean population activity) at 5 Hz. The null direction response is much lower than the82

preferred direction.83

The sEMD model, which is composed of an event-based camera, a Spatio-Temporal Correlation (SPTC) population and the84

Time Difference Encoder (TDE) (see Figure 4), exhibits a drop in its output response when the temporal frequency exceeds 5 Hz.85

This drop is, however, not anticipated from the TDE’s response (see Figure 3). We would expect the response to saturate at high86

temporal frequencies since the TDE produces interspike intervals and firing rates proportional to the time difference between87

the two inputs of the TDE. The drop in response being rather a consequence of the motion detector model itself, we suggest it88

to be a consequence of the spatio-temporal band-pass filtering installed by the SPTC layer. While low temporal frequencies89

lead to unambiguous spatio-temporally correlated and causal SPTC spikes from adjacent neurons, high temporal frequencies90

lead to anti-correlated and non-causal spikes. Thus, the TDE can no longer (spatially) match the spikes unambiguously, which91

results in a bell-shaped velocity tuning curve of the preferred direction response.92

A similar bell-shaped velocity tuning curve can be observed in Drosophila’s T4 cells12, 51, 56. While Drosophila’s velocity93

tuning curves peak at 3 Hz in a drug induced flying state, the sEMD’s preferred direction velocity tuning curve peaks at 5 Hz.94

This suggests that based on the reported parameter set of the sEMD, it is tuned to higher relative velocities. The model performs95

in a robust way for a wide range of illuminations (from 5 lux to 5000 lux) and relative contrasts (50 % response reached at96

approximately 35 % relative contrast), as shown in Figure A.2. The sEMD approximates the elementary motion processing in97

the fly brain. This processing is part of the input to the flight control and collision avoidance machinery, hence it can be used as98

an input for determining a collision-free path.99

2.2 Agent’s Behaviour100

The robot’s collision avoidance performance was evaluated in an experiment with the agent moving through environments101

with varying obstacle density. To further understand the mechanisms underlying the robot’s movement performance two more102

experiments were designed. The agent’s gap crossing behaviour and tunnel centering behaviour were investigated. These103

behaviour were analysed in insects in a plane, therefore little is known about the effect of flying altitude in most behaviour. We104

limited our agent to a 2D motion due to this limited understanding.105

2.2.1 Densely Cluttered Environments106

We evaluated the agent’s collision avoidance performance in an arena with an obstacle density3 between 0 and 38 %(0.05107

objects per square a.u.). The simulation stops either when the robot collides with an obstacle4, when it leaves the arena,108

or when the simulation real-world-time of six hours is over (see Figure 2f). At low obstacle densities (< 5%) there exist109

several collision-free paths. The robot exhibits a random walk as the decision making inverse WTA neuron population is110

receiving background spiking activity sampled from a Poisson process (see Figure 2a,f). In the absence of OF input the111

Poisson distributed background spikes dominates the inverse WTA output which results in a probabilistic decision process. The112

decisions made by the network become less probabilistic with increasing obstacle density since the robot starts to follow the113

locally low object-density paths forming in the environment (see Figure 2b,f). At obstacle densities higher than 20 % most114

of the gaps in the environment are smaller than the robot’s minimum mean obstacle clearance5 of 7 a.u. (see Figure A.5 left)115

so that the agent stays close to its start location (see Figure A.5 right and Figure 2c,f). In this range the robot starts to crash116

into obstacles reaching a minimum success rate of around 60 % at 22 % obstacle density. For higher obstacle densities the117

success rate increases again (see Figure 2i). A collision of the robot is generally caused by the robot’s too long reaction time in118

2A.u.: Arbitrary unit, distance divided by robot size, see section Closed-loop simulation in environments
3Obstacle density: Percentage of total area covered with objects.
4Collision: Simulated robot’s outline overlaps with area occupied by object
5Obstacle clearance: Robot’s distance to the center of the closest object.
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Figure 1. (a-c) Network response in a cluttered environment, (d) collision avoidance network, (e) normalised sEMD mean

response to a square wave grating and (f) robot used in real-world experiment. a) Cluttered neurorobotics platform environment.

The obstacle walls are covered with vertical square-wave-gratings only visible for the event-based camera b) Green areas:

simulated event-based camera events directly extracted from the Neurorobotics visual front-end while the agent is slowly

moving through the scene in a). c) Bright blue, orange and black dots: Spike response of left-right Time Difference

Encoder (TDE), right-left TDE and both TDEs together to the scene in a) binned over ~0.5 seconds of simulation time, pink

stripe: inverse WTA spike which indicates an obstacle free direction. This spike activates the agent’s next turning movement

(saccade) by exciting one of the two motor populations in d). The location of the winning neuron defines the direction and

duration of the upcoming turn. d) Collision avoidance network with spiking Elementary Motion Detectors (sEMDs) which

consist of an event-based camera, a Spatio-Temporal Correlation (SPTC) population and two Time Difference Encoder (TDE)

populations. Event-based camera (sensory input), SPTC population (noise filter and downsampling), TDE populations

(time-to-travel translation to spike rate and Inter-Spike-Interval (ISI)), Integrator (INT) population (reduces 2D retinotopical

map to 1D), inverse Winner-Take-All (WTA) population (detects minimum of OF, hence obstacle free direction), Escape

Turn (ET) population (triggers turn when inverse WTA can not find direction), Motor (MOT) populations (control turn

direction and duration), Optic Flow Integrator (OFI) population (modulates robot velocity), Poisson Spike Generators (POIS)

(drive decision process with Poisson spike process) and Global Inhibition (GI) population (suppresses loosing neurons in

inverse WTA population and ET population). e) Normalised preferred direction and null direction mean response of two Nest

sEMD populations to a square wave grating moving in one cardinal direction with a wavelength of 20° and 100 % relative

contrast recorded with an event-based camera at 5000 lx illumination. The standard deviation was calculated on the response of

the sEMD population. f) Robot used for real-world experiment in Figure 2d. An embedded event-based camera serves as input

to a SpiNN-5 board which drives the motor controllers through an Odroid mini-computer.

an environment with low mean obstacle clearance, hence with high obstacle density (see Figure A.5). Since the robot only119

senses visual stimuli in a 140 degrees horizontal visual field, symmetrically centered around its direction of motion, there is a120

blind-spot behind the agent. After a strong turn the simulated robot might be confronted with a previously not seen object121

and directly crash into it. Nevertheless, the agent shows a very robust gap centering behaviour in a large range of different122

environments with obstacle densities between 0 and 38 %. The robot’s mean success rate amounts to 81 %.123

While local OF is instrumental in finding gaps, global OF provides information about the clutteredness of the environment.124

Flies and bees decrease their flying speed when the clutteredness of the environment increases48, 49. Our agent regulates its125

speed based on the global OF and, consequently, moves slower in denser regions of the environment (see Figure A.7). To126

examine the effect of the velocity dependency, we ran a second experiment with the robot moving with constant velocity (see127

Figure 2i and Figure A.6). With velocity control collisions were encountered only in few runs, however, for obstacle densities128

higher than 24 percent the number of collisions significantly increased when the velocity was kept constant.129

2.2.2 Gaps130

When presented with a choice between two gaps of different size bees prefer to pass the larger gap8, 57. This behaviour decreases131

the insect’s collision probability significantly. While bees might choose the gap in a complex decision process21 our agent’s132

preference underlies a simple probabilistic integration mechanism. The simulated robot’s upcoming movement direction is133

determined by an inverse WTA spike occurring in an obstacle-free direction as shown in Figure 1a-c. When confronted with a134

4/27



Figure 2. Agent’s behaviour in different environments. a-c) Trajectories recorded in arenas with increasing obstacle densities.

d) Real-world centering behaviour of the robot shown in Figure 1f. Grey areas mark the corridor walls. Small dots indicate the

agent’s center of mass while the blue area shows the frequency of occurrence of the whole robot. For more information see

appendix section Corridor-centering in Real-World. e) Simulated robot’s trajectory in the gap crossing experiment in a large

arena. Colour represents time (t0: light blue, tend : magenta). f) Simulated robot’s performance in different environments as

shown in a-c with modulated velocity. Simulation time at which the simulated robot leaves the arena, collides or the time is

over. g) Trajectories in tunnels with a tunnel width of 15, 12.5 and 11.25 a.u.. h) Gap crossing probability in dependency of the

gap width for a large and a small arena. i) Simulated robot’s performance in cluttered environments as shown in a-c with

modulated velocity (black, calculated from data in f) and fixed velocity (grey). Agent’s success rate, hence number of runs

without collisions. j-l) Agent’s variance from tunnel center for different tunnels.

small and a large gap the probability of an inverse WTA spike appearing in the greater gap is higher. Hence, we assume that the135

robot automatically follows pathways with a larger gap size. To evaluate this assumption we observed the robot’s gap crossing136

in an arena with two alternative gaps (see Figure 2e). The robot can decide to cross any of the two gaps or stay in one half of the137

arena. There is a competition between staying in the open-space and crossing a gap. The larger the gap size is, the more likely138

the robot will cross a gap. We investigated the probability to cross gaps by having two gaps, one with a fixed gap size (10 times139

the agent width), the other with a gap size between 5 a.u and 13 a.u. We calculated the gap entering probability by comparing140

the number of passes through both gaps. As expected the entering probability increases with gap size until a width of 10 a.u.141

(see Figure 2h). For a larger gap width the entering probability does not change significantly. However, for smaller gap sizes142

the probability of a spike pointing towards open space in the inverse WTA becomes significantly higher. Therefore, the robot143

prefers to pass through gaps of larger size. Besides the gap width the arena size changes the passing probability. In a smaller144

arena the simulated robot stays closer to the gap entry which increases the relative gap size sensed by the agent. Therefore,145

a larger part of the vehicle’s visual field is occupied by the gap entry which increases the probability of a spike occurring in146

the gap area. In a smaller arena we observed that the robot’s gap entering probability is higher for gaps smaller then 10 a.u.147

than in a big arena (see Figure 2h). A decrease in arena size can be compared to an increase in obstacle density since both148

parameters reduce the robot’s obstacle mean clearance (see Figure A.5, left). Therefore, the agent tends to enter gaps of smaller149

size in densely cluttered environments. This automatic scaling mechanism keeps the agent’s collision probability very low in150

sparsely cluttered environments by staying away from small gaps. In environments with high obstacle density the robot still151

keeps its mobility by passing through smaller gaps. Finally, when the obstacle density exceeds 20 %, most gaps fall below the152

gap entering threshold so that the robot can not leave the arena anymore (see Figure A.5, right and Figure 2c,f).153
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2.2.3 Corridors154

One common experiment to characterise an agent’s motion vision response is to observe its centering behaviour in a tunnel155

equipped with vertical stripes on the walls. The simple geometry of the environment enables the observer to directly relate156

the received visual input with the agent’s actions. In bees and flies an increase in flight velocity proportionally to the tunnel157

width has been observed17, 48, 49. In very narrow tunnels insects show a pronounced centering behaviour which declines with158

increasing tunnel width. We evaluated the robot’s performance in three tunnels with different tunnel widths. Similar to the159

biological role model the robot’s velocity stands in a positive linear relationship with the tunnel width. The measured velocity160

in a.u. per second is ~0.79, ~0.75 and ~0.72 for a tunnel width of 15, 12.5 and 11.25 a.u. respectively. Furthermore, the robot161

always stays in the center of the tunnel, especially in very narrow tunnels (see Figure 2g). The deviation from the tunnel162

center is proportional to the tunnel width (for the simulated robot, see Figure 2j–l, physical robot see 2d). Therefore, similar to163

observations in blowflies, the robot’s lateral position in the tunnel changes linearly with the tunnel width49.164

3 Discussion165

Autonomous agents need to successfully avoid obstacles in a variety of different environments, be they human made or of166

natural origin. Our investigations present a closed-loop proof of concept of how obstacle avoidance could be performed in a167

parsimonious, asynchronous and fully distributed fashion. While most results reported here are based on computer simulations,168

the implementation on digital or mixed-signal neuromorphic hardware of each building block of the simulated SNN have been169

demonstrated for event-based cameras26, the sEMD39, 58 (see Figure A.2), artificial neurons59 and synapses60, as well as the170

inverse WTA61. We demonstrated for the first time a simulation of a neuromorphic system that takes informed decisions while171

moving in its environment by closing the action-perception loop. We emulated this system on neuromorphic sensory-processing172

hardware carried by a physical robot (see Figure 1f, 2d, A.8 and A.9), tested it in a corridor centering experiment, and obtained173

similar results to the simulation. These real-world experiments suggest that the underlying computational primitives lead to174

robust decision making in operational real-time. Due to the physical simulation with the engine Gazebo that capture the physics175

of the movements and our real-world proof of implementation, our simulations are likely to translate to real-world situations.176

While producing relatively simple, yet crucial decisions, the proposed model represents a critical milestone towards enabling177

parallel, asynchronous and purely event-driven neuromorphic systems.178

Our proposed SNN architecture comprises of ~300k synapses and ~4k neurons which yields a low-power, lightweight179

and robust neural algorithm. When implemented on mixed-signal neuromorphic processing hardware, e.g.62–64, the payload180

required to perform on-board processing will be drastically reduced. This reduction stems from the low volume and lower181

power requirements of neuromorphic hardware. In addition such hardware implementation would ensure operational real-time182

decision making capabilities. The features outlined above are quite desirable in the context of highly constrained autonomous183

systems such as drones or other unmanned vehicles.184

We investigated the performance of the sEMDs, the apparent motion encoders in our SNN, in detail. The sEMDs show a185

similar velocity response curve to motion-sensitive neurons (e.g. T4 and T5 neurons in the fruitfly’s brain12, 18) when presented186

with a grating of 20° spatial frequency and temporal frequencies between 0.1 and 10 Hz. Due to the logarithmic illumination187

sensitivity of the event-based cameras the motion vision apparatus is very robust against absolute brightness levels in the range188

of 5 up to 5000 lux. The sEMD model shows a much higher sensitivity regarding contrast changes than its biological role189

model. Current research suggest that Drosophila’s optical lobe performs contrast normalisation through inhibitory recurrent190

feedback to evoke a contrast independent response52. In a next step we will implement contrast normalisation in our motion191

vision network to improve its performance in natural environments.192

Besides the similarities in neural response, the agent showed many similarities to flying insects in its behaviour in spatially193

constrained environments. It meandered in cluttered terrain (Section Densely Cluttered Environments), modulated its speed as194

a function of object proximity (Section Corridors), selected wider gaps (Section Gaps), centered in tunnels (Section Corridors),195

while using an active gaze strategy known as saccadic flight control (Section Collision Avoidance Network)17, 48, 49, 57, 65. The196

agent moved collision-free through cluttered environments with an obstacle density between 0 and 38 % with a mean success197

rate of 81 %6. We further examined the simulated robot’s performance to understand the essential behavioural components198

which led to a low collision rate. The most significant ingredient in that regard was the implementation of an OF strength199

dependent locomotion velocity. This insect inspired control mechanism improved the collision avoidance performance of200

the agent from a mean success rate of 76 % to 81 % (Compare Figure 2i and Figure A.6). We propose that this velocity201

adaptation mechanism could be regulated in insects by a simple feedback control loop. This loop changes the agent’s velocity202

anti-proportionally to the global OF integrated by a subset of neurons (For further explanations see Section Collision Avoidance203

Network).204

6Several closed-loop, insect-inspired approaches have been demonstrated40, 41, however, due to a missing unifying benchmark and evaluation metric, to

compare insect-inspired collision avoidance algorithms, we cannot provide a quantitative comparison
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An OF-dependent control of locomotion velocity is only one of at least three mechanisms which decreased the agent’s rate of205

collision. When moving in environments of high obstacle density the simulated robot follows locally low obstacle density paths.206

We suggest that a probabilistic decision process in the network model automatically keeps the agent’s collision probability low207

by following these pathways. We further investigated this path choice mechanism in a second experiment. Here, the agent208

had to cross two gaps of different size. The dependence of the agent’ probability to cross the gap resembled that of bees57.209

Similar to insects the agent preferred gaps of larger size. Bees cross gaps with a gap-size as small as 1.5 times their wingspan21.210

In contrast our agent crossed gaps of 5 times its body width. This discrepancy in performance may be due to the absence of211

a goal. A goal can be understood as providing an incentive to cross a gap despite a risk of collision. Indeed in behavioural212

experiments, bees had to cross the gap to return to their home. Combining different directions, such as a collision-free path and213

a goal, require an integration of the two signal representations. Such networks have been proposed for navigating insects66.214

Integration of similar streams of information have been demonstrated to work in neuromorphic systems58, 67, 68, however, we215

envision that a dynamic competition between collision avoidance and goal reaching neural representations could allow our216

robot to cross gaps 1.5 times its width.217

The findings reported here indicate an alternative point of view how flies and bees could use motion-vision input to move218

through the environment, not by collision avoidance but by gap finding. As also stated by Baird and Dacke8, flies and bees219

might not actively avoid obstacles but fly towards open space, i.e. gaps. Looking at our network, we suggest that WTA alike220

structures in flying insect brains might integrate different sensory inhibitory and excitatory inputs with previously acquired221

knowledge to take navigational decisions. One could think of the central complex as such a structure which has been described222

recently in several insect species69.223

The third mechanism is the agent’s centering behaviour. By staying in the middle of a tunnel with similar patterns on both224

walls the simulated robot minimises its risk of colliding with a wall. The agent’s deviation from the tunnel center changes225

approximately linearly with the tunnel width. These results show a very strong resemblance with experimental data from226

blowflies (see Figure 2j–l)49. So far centering behaviour was suggested to result from balancing the OF on both eyes. Centering227

in a tunnel can be seen as crossing elongated gaps. Our agent is also able to cross gaps. Two hypothesis have been suggested to228

cross gaps in flying insects, using the OF contrast20 and the brightness8. Our results suggest that collision avoidance could229

be mediated by identifying minimum optic flow to center in tunnel, cross gaps, or meander in cluttered environment. This230

strategy has so far not been investigated in flying insects. The main hypothesis to control flight in clutter is to balance either an231

average or the maximum OF on both eyes17. Further behavioural experiments are required to disentangle between the different232

strategies and their potential interaction. Building on the work of8, the different hypothesis could be placed into conflict by233

creating a point-symmetric OF around the gap center (leading to centering), a brightest point away from the gap center, and a234

minimum OF away from the center (e.g. by using an OF amplitude following a Mexican hat function of the radius from the235

geometric center).236

Our model shares several similarities with the neural correlate of visually-guided behaviour in insects, including motion-237

sensitive neurons18, an integration of direction70, efference copy to motion-sensitive neurons71, and neurons controlling238

the saccade amplitude65. Our agent was able to adopt an active gaze strategy thanks to a saccadic suppression mechanism239

(due to an inhibitory efference copy from the motor neurons to the inverse WTA and motion-sensitive neurons). When the240

inverse WTA layer did not "find" a collision-free path (i.e. a solution to the gap finding task), an alternative response (here a241

U-turn) was triggered thanks to global inhibitory neurons and excitatory-inhibitory networks (GI-WTA-ET, for more details see242

Section Collision Avoidance Network). The neuronal correlate of such a switch, to our knowledge, has not been described in243

flying insects. Our model, thus, serves as a working hypothesis for such a neuronal correlate. Furthermore, by varying the244

connection between sEMD-inverse WTA, we could allow the agent to cross smaller gaps. We hypothesise that differences in245

clearance or centering behaviour observed between insect species8, 20 could be due to different wiring or modulation between246

motion-sensitivity neurons and direction selection layer, likely located in the central complex.247

In this study we demonstrated a system-level analysis of a distributed, parallel and asynchronous neural algorithm to248

enable neuromorphic hardware to perform insect-inspired collision avoidance. To perform a wide variety of biological-relevant249

behaviour the network comprised approximately 4k neurons and 300k synapses. The agent guided by the algorithm robustly250

avoided collision in a variety of situations and environments, from centering in a tunnel to crossing densely cluttered terrain and251

even gap finding, solved by flying insects. These behaviour were accomplished with a single set of parameters, which have not252

been optimised for any of those. From the investigation of the agent and its underlying behaviour, we hypothesise that insects253

control their flight by identifying regions of low apparent motion, and that excitatory-inhibitory neural structures drive switches254

between different behaviours. With these investigations we hope to advance our understanding of closed-loop artificial neural255

computation and start to bridge the gap between biological intelligence and its neuromorphic aspiration.256
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4 Methods257

Most experiments in this article were conducted in simulation using either the Nest spiking neural network (SNN) simulator55
258

or the Neurorobotics Platform environment53. A corridor centering experiment was conducted in a real-world corridor centering259

experiment using a robotic platform equipped with the Dynamic Vision Sensor as visual input and a SpiNN-363 board for SNN260

simulation in operational real-time. Sensory data for the sEMD characterisation were recorded with an event-based camera in261

a real world environment. The hardware, software, SNN models and methodologies used in this article are explained in the262

following.263

4.1 Spiking Neural Networks264

In contrast to conventional processing as postulated by von Neumann72 which is characterised by synchronous and inherently265

sequential processing, neural networks, whether rate-based or spike-based, feature parallel and distributed processing. Artificial266

neural networks, the rate-based counterpart of SNNs, perform synchronous and clock-driven processing, SNNs, additionally,267

feature an asynchronous and event-driven processing style. SNNs represent a promising alternative to conventional von Neu-268

mann processing and hence computing which potentially feature low-latency, low-power, distributed and parallel computation.269

Neuromorphic hardware present a solution to the aforementioned limitations of conventional von Neumann architectures270

including parallel, distributed processing73 in the absence of a central clock74, 75, as well as co-localisation of memory and271

computation76, 77. Moreover, neuromorphic processors benefit from the underlying algorithm to be implemented in a SNN.272

Emulating a SNN on a neuromorphic processor (especially a mixed-signal one) enables the network to operate in continuous273

time7 as time represents itself74. SNNs consist of massively parallel connected networks of artificial synapses and spiking274

neurons78. SNNs, as any processing algorithm, aim to structure and represent incoming information (e.g. measurements) in a275

stable, robust and compressed manner (e.g. memory). Measurements sampled at fixed time intervals have the disadvantage276

that collected data is highly redundant and prone to aliasing if the signal of interest varies faster than half the sampling277

frequency. Event-driven approaches to sampling alleviate these limitations. As incoming measurements shouldn’t be sampled278

at fixed temporal intervals (i.e. Riemann sampling), they need to be taken based on fixed or relative amplitude changes279

(i.e. Lebesque sampling) to take full advantage of the time-continuous nature of SNNs and neuromorphic hardware30. Such280

measurements can be obtained from different sensory domains (e.g. touch79, smell80, auditory81, 82 and vision83, 84), with vision281

being the most studied and well understood sensory pathway (but see85 for a critical review) both in the brain and its artificial282

aspiration. While images taken with conventional cameras can be converted to spike trains which are proportional to the pixel283

intensity8, event-based cameras directly sample only relative changes of log intensity and transmit these changes as events. A284

variety of event-based cameras have been proposed in the last two decades25–27, 84 that all feature an asynchronous, parallel285

sampling scheme9 in which changes are reported at the time of occurrence in complete time-continuous manner. The output286

of event-based cameras is hence ideally suited to be processed by an SNN implemented on a neuromorphic processor. We287

collected real-world data using the DVS128 event-based camera26 to characterise the sEMD response (see Figure 1e). The288

event-based camera comprises 128×128 independently operating pixels which respond to relative changes in log-intensity,289

i.e. in temporal contrast. When the change in light intensity exceeds an adaptive threshold the corresponding pixel produces290

an event. The address and polarity of the pixel are communicated through an Address Event Representation bus83. Light291

increments lead to ON-events, whereas light decrements lead to OFF-events. The sensor reaches a dynamic range of more292

than 120 dB and is highly invariant to the absolute level of illumination due to the logarithmic nature of the switched-capacitor293

differencing circuit26, 84.294

295

4.2 Spiking Elementary Motion Detector296

In 2018 we proposed a new insect-inspired building block for motion vision in the framework of SNNs designed to operate on297

the output event-stream of event-based cameras, the spiking Elementary Motion Detector (sEMD)39. The sEMD is inspired by298

the computation of apparent motion, i.e. optic flow (OF), in flying insects. In contrast to its correlation-based role model the299

sEMD is spike-based. It translates the time-to-travel of a spatio-temporally correlated pairs of events into direction dependent,300

output burst of spikes. While the sEMD provides OF estimates with higher precision when the entire burst is considered301

(rate-code), the interspike interval distribution (temporal-code) within the burst provides low-latency estimates. The sEMD302

consists of two building blocks, a retina to extract visual information from the environment, and the TDE which translates the303

temporal difference into output spikes (see Figure 3a). When the sEMD receives an input spike at its facilitatory pathway an304

exponentially decaying gain variable is generated. The magnitude of the synaptic gain variable during the arrival of a spike at305

7A time-continuous mode of operation, in contrast to a time-varying one, is characterised by the absence of a fixed sampling frequency
8To perform this conversion one can use a different encoding schemes including rank-order code86, timing-code87,88 or Poisson rate-code.
9Level or Lebesque sampling means that a given time-continuous signal is sampled when the level changes by fixed (relative) amount ε , whereas time

sampling, i.e. Riemann sampling, means that the signal is sampled when the time has changed by fixed amount ε30
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the trigger synapse defines the amplitude of the excitatory post-synaptic current generated. This current is integrated onto the306

sEMD’s membrane potential which generates a short burst of output spikes. Therefore, the number of output spikes encodes307

direction sensitive and anti-proportionally the stimulus’ time-to-travel (see Figure 3e) between two adjacent input pixels. We308

implemented and evaluated the motion detector model in various software applications (Brian2, Nengo, Nest), in neuromorphic309

digital hardware (SpiNNaker, Loihi) and also as analog CMOS circuit39, 58.

Figure 3. Spiking Elementary Motion Detector model adapted from89. a) sEMD model consisting of visual input and TDE

unit. Two adjacent retina inputs are connected to the facilitatory synapse (fac) and the trigger synapse (trig), respectively. The

facilitatory synapse controls the gain of the trigger synapse’s postsynaptic current (epsc) which integrates onto the Leaky

Integrate and Fire (LIF) neuron’s membrane potential which produces output spikes (out). b) Model behaviour for small

positive ∆t. c) Behaviour for large positive ∆t. d) Behaviour for negative ∆t. e) Number of output spikes over ∆t.

310

4.3 Collision Avoidance Network311

The collision avoidance network (see Figure 4) extracts a collision-free direction from its sEMD outputs and translates this312

spatial information into a steering command towards open space. The first layer, the event-based camera, generates an event313

when a relative change in log-illumination, i.e. temporal contrast, is perceived by a pixel. A macropixel consists of 2 x 2314

event-based camera pixels. Each macropixel projects onto a single current-based exponential LIF neuron (hereafter referred to315

as LIF for sake of clarity) in the Spatio-Temporal Correlation (SPTC) layer (in Nest the neuron model used throughout this316

study is called iaf_psc_exp). Each single SPTC neuron emits a spike only when more than 50% of its receptive field elicit an317

event within a rolling window of 20 ms. Therefore, the SPTC population removes uncorrelated events, which can be interpreted318

as noise. Additionally, it decreases the network resolution from 128 times 40 pixels to 64 times 20 neurons. The next layer319

extracts OF information from the filtered visual stimulus. It consists of two TDE populations sensitive to the two horizontal320

cardinal directions respectively. Each TDE receives facilitatory input from its adjacent SPTC neuron and trigger input from its321

corresponding SPTC neuron. The facilitatory input might arise either from the left (left-right population) or from the right322

(right-left population). The TDE output encodes the OF as number of spikes in a two-dimensional retinotopical map. Since the323

agent moves on the ground it only estimates the amount of horizontal OF. Hence, the subsequent INT population integrates the324

spikes of each TDE column in a single LIF neuron. This layer encodes the OF in a one-dimensional retinotopical map. The325

subsequent population, an inverse soft Winner-Take-All (WTA) determines the agent’s movement direction, a minimum of OF326

in the one-dimensional retinotopical map. Since OF encodes the relative distance to objects during a translational movement327

this direction represents an object-free pathway, hence the inverse Winner-Take-All (WTA) is inverted by sending feed-forward328

inhibition into the neural population. A population of POIS injects Poisson distributed background spikes which ensures a329

neuron within the inverse WTA to win at any moment in time even in the absence of OF. In the absence of INT input the330

inverse WTA neuron with the strongest POIS input wins and suppresses through the GI neuron the activity of all others. Local331

lateral connections in the inverse WTA population strengthen the winning neuron due to excitatory feedback (for the sake of332

clarity recurrent excitation is not shown in Figure 4).333
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Figure 4. Collision avoidance network. The macropixels (2x2

pixels) of the Event-Based Camera (EBC) project onto single

neurons of the Spatio-Temporal Correlation (SPTC) population

removing spatio-temporal uncorrelated events, i.e. noise. Two

adjacent SPTC neurons are connected to one Time Difference

Encoder (TDE) in the left-right sub-population and the right-left

sub-population respectively. Trigger and facilitator connection are

opposite in the two populations. The Integrator (INT) population

reduces the two dimensional retinotopical map to a

one-dimensional map by integrating the spikes of each TDE

column onto a single LIF neuron. The inverse

Winner-Take-All (WTA) population and Escape Turn (ET)

population become excited by Poisson spike sources. The

winner-take-all mechanism is driven by recurrent suppression

through the Global Inhibition (GI) neuron. The two Motor (MOT)

populations are activated by a spike in the inverse WTA

population. The id of the spiking inverse WTA neuron defines

which MOT becomes activated and for how long. When the ET

neuron spikes the left MOT population becomes activated for the

maximal time duration. When the MOT population is inactive the

robot moves straight forward collecting apparent motion

information. When one MOT population is active the robot turns.

All-to-all inhibition between the MOT sub-populations guarantees

to disambiguate the steering commands. Inhibition from the MOT

to the SPTC population suppresses rotational OF input which

contains no relative depth information. Inhibition from MOT to

inverse WTA hinders the network from taking any new decision

during a turn.

Due to the consistently changing nature of the POIS334

spike trains the winner changes frequently and the agent335

executes a random walk (see Figure 2a). When the agent336

approaches an object the position and relative distance337

of the obstacle is indicated by a number of spikes in the338

INT population. These spikes strongly inhibit the inverse339

WTA at the corresponding position and its closest neigh-340

bours so that this direction cannot win. Therefore, the341

active neurons in the inverse WTA always represent an342

obstacle-free direction. In case no object-free direction343

has been found for ~700 milliseconds since the start of344

an intersaccade the ET neuron emits a spike. This neu-345

ron is only weakly excited by the POIS population and346

connected to the GI neuron similarly to the inverse WTA347

population. Only when the ET has not been inhibited348

for a long time, hence the inverse WTA was not able349

to generate a spike due to strong over all inhibition, the350

ET neuron wins. The final layer called MOT population351

translates the inverse WTA population and ET neuron ac-352

tivity into a turn direction and duration using pulse-width353

modulation to control the motors. The left turn MOT354

population becomes activated by inverse WTA neurons355

on the left side and the right turn population by inverse356

WTA neurons on the right side. Since the turning veloc-357

ity is always constant the angle of rotation is defined by358

the duration of the turn. This duration of the excitatory359

wave in the MOT population relates proportionally to360

the distance of the inverse WTA neuron from the center361

of the horizontal visual field. The duration saturates for362

neuron distances higher than nine neurons. Since a left363

turn and a right turn are mutually exclusive events, strong364

inhibition between the two MOT populations assures to365

disambiguate the MOT layer outputs. In case the ET neu-366

ron emits a spike the excitatory wave passes through most367

neurons of the left MOT population. Hence, the turning368

duration is slightly higher than for any turn induced by369

the inverse WTA population. The agent turns completely370

away from the faced scene since no collision free path371

was found in that direction. During the execution of a turn372

the gap finding network receives mainly rotational OF.373

This type of apparent motion does not contain any depth374

information and therefore no new movement direction375

should be chosen during or shortly after a turn. Because376

of that the MOT layer strongly inhibits the inverse WTA377

and SPTC populations as well as the ET neuron. After378

a turn has finished and none of the MOT populations379

is spiking anymore the agent moves purely translatory.380

The movement speed during this phase vints is defined in381

equation 1 where f̄OFI is the mean firing rate of the OFI382

population. During this movement phase, called intersac-383

cade, the agent integrates translational OF information in384

its INT population. The inverse WTA population slowly385

depolarizes from its strongly inhibited state and releases a386

spike indicating the new movement direction. This spike387

triggers the next saccadic turn of the robot while the id388
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of the winning neuron defines the direction and duration389

of the movement.390

vints(
m

s
) = 1− f̄OFI ×0.001 (1)

4.4 Neurorobotics Platform391

To perform our behavioural experiments we decided to simulate the entire system, from visual input to actions, using the392

Neurorobotics Platform. This platform combines simulated SNNs with physical realistic robot models in a simulated 3D393

environment53. The platform consists of three main parts, the world simulator Gazebo, the SNN simulator Nest and the Transfer394

Function Manager Brain Interface and Body Integrator (BIBI). The BIBI middleware consists of a set of transfer functions395

which enables the communication between Gazebo and NEST via Robot Operating System (ROS)90 and PyNN adapters.396

The Closed Loop Engine (CLE) synchronizes the two simulators Gazebo and Nest and controls the data exchange through397

transfer functions. The simulation front-end virtual coach is useful to control the whole simulation procedure through a single398

python script. Furthermore, the State Machines Manager of the SMACH framework can be used to write State Machines which399

manipulate the robot or world environment during the experiment.400

4.5 Real World Robot401

The robot receives visual input from a Dynamic Vision Sensor with a horizontal viewing angle of 110 degrees. The event-based402

camera sends its events to a SpiNN-3 board which simulates a simplified version of the collision avoidance network described403

in the section Collision Avoidance Network. The network does not contain any OFI neuron and the agent moves with a404

constant velocity of around 0.1 m/s. No ET population is included. The motor control is regulated by an FPGA-based405

AERnode board. The board receives input from one SpiNNaker output neuron population. It translates the spiking input into a406

pulse-width-modulation signal to control the motors. The pulse-width of the signal depends on the id of the output neuron407

spiking on the SpiNNaker board. The motor controller drives the robot in a differential manner.408

4.6 Event-Based Cameras in Gazebo409

Kaiser et al. 201691 developed a Neurorobotics Platform implementation of an event-based camera based on the world simulator410

Gazebo. This model samples the environment with a fixed update rate and produces an event when the brightness change411

between old and new frame exceeds a threshold. We used this camera model in our closed-loop simulations as visual input412

to the collision avoidance network. Even though Gazebo produces an event-stream from regularly sampled synchronous413

frame-difference, our sEMD characterisation and open-loop experiments (see Section sEMD characterisation and39) confirmed414

the working principle of the motion detector model with real-world event-based camera data. We could further demonstrate the415

real-world fully-neuromorphic applicability in closed-loop of most parts of the simulated agent including the apparent motion416

computation by the sEMDs and the saccadic suppression92. We set the resolution of the Gazebo event-based camera model to417

128 times 40 pixels. The reduction of the vertical resolution from 128 to 40 pixels was done to speed up the simulation time418

and to make the model fit onto a SpiNN-3 board63. To further accelerate the simulation we limited the number of events per419

update-cycle to 1000 and set the refresh rate to 200 Hz. Therefore, the sEMD can only detect time differences with a resolution420

of 5 ms. We decided for a large horizontal visual angle of 140 degrees so that the robot does not crash into unforeseen objects421

after a strong turn. At the same time the uniform distribution of 128 pixels over a 140 degrees horizontal visual field leads to an422

inter-pixel angle of approximately 1.1 degrees. This visual acuity lies in a biologically plausible range of inter-ommatidial423

angles measured in Diptera and Hymneoptera which varies between 0.4 and 5.8 degrees93.424

4.7 Driving Agent425

We designed a four-wheeled simulated robot Gazebo model. The robot’s dimensions are 20×20×10 cm and it is equipped426

with an event-based camera (see Section Event-Based Cameras in Gazebo) and the husky differential motor controller plugin.427

The BIBI53 connects the robot with the collision avoidance network implemented in NEST (see Section Collision Avoidance428

Network). The connections consist of one transfer function from the vision sensor to the SPTC population and another one from429

the MOT population to the differential motor controller as well as two Poisson input spike sources. The first transfer function430

sends visual input events. The second transfer function controls the agent’s insect-inspired movement pattern. During inactivity431

of the MOT populations the robot drives purely translatory with a maximum speed of 2.5 a.u/s. The movement velocity changes432

anti-proportionally to the environment’s obstacle density as explained in the section Densely Cluttered Environments. When433

one of the two MOT populations spikes the robot fixes its forward velocity to 0.38 a.u/s and turns either to the left or to the434

right with an angular velocity of 4 ◦/s. The two Poisson spike source populations send spikes with a medium spike rate of 100435

Hz to the inverse, soft WTA population and the ET neuron (For more details see Table 7 and Table 5).436
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4.8 sEMD characterisation437

For the sEMD characterisation we stimulated an event-based camera with a 79° lens (see Section Event-Based Cameras in

Gazebo) using square-wave gratings with a wavelength of 20° and various constant velocities (from 0.1 to 10 Hz). These

recordings were performed in a controlled environment containing an event-based camera, an LED light ring and a moving

screen which projects exchangeable stimuli (see Figure A.1). The controllable light ring illuminates the screen. The camera’s

lens is positioned in the light ring’s centre to ensure a homogeneous illumination of the pattern. The screen itself is moved by

an Arduino controlled motor. During recordings, the box can be closed and thus be isolated from interfering light sources. The

contrast refers to absolute grey-scale values printed on white paper to form the screen. However, given the printed contrast we

calculated the Michelson contrast as follows:

Imax − Imin

Imax + Imin

=
Imax − Imax(1−Cprinted)

Imax + Imax(1−Cprinted)
=

Cprinted

2−Cprinted

(2)

To show the model’s robustness to a wide range of environments, we varied the following three parameters in the recordings:438

The illumination, the grating velocity and the grating’s contrast (see Table 1). Each possible parameter combination was439

recorded three times, with a recording duration of four seconds, to allow statistical evaluation of the results. The event-based440

camera was biased for slow velocities.441

The model (see Figure 4 the first three populations) was simulated in Nest with the connections and neuron parameters442

defined in Table 7 and Table 5 respectively. The network was simulated for four seconds, receiving the events as emitted by the443

event-based camera as spike-source array input. To define a response to the various stimuli, from the simulation results, the444

mean population activity of the preferred direction and null direction population were calculated (see Figure 1e). For the closest445

comparability to the biologically imposed environment parameters, we chose to compare and discuss the sEMD’s velocity446

tuning curve for a grating contrast of 100 % and an illumination of 5000 lux.447

4.9 Closed-loop simulation in environments448

Five different environments were designed to evaluate the agent’s performance, a cluttered environment with randomly449

distributed obstacles sizing 1×1 m, an environment with two arenas connected by two gaps of variable size, a tunnel with450

varying width, an empty box environment and a narrowing tunnel. No obstacles were placed in a radius of two meters around451

the agent’s start point so that the system can reach a stable state of activity before confronted with the first object. At obstacle452

densities higher than 35 percent the agent stays at its start point since no obstacle free direction can be detected anymore.453

Therefore, we limited the tested obstacle density range to 0 up to 38 percent. All obstacles placed in the environment including454

walls were covered with vertical black-and-white square-wave-gratings.455

A state-machine was written within the Neurorobotics Platform environment to automatise the experiments. The state-machine456

consists of eight states as shown in Figure 5457

Figure 5. State machine to create the cluttered environment and check the agent’s collision avoidance performance.

Additionally, a virtual coach script was composed which starts and stops the single runs in a for-loop. After creating458

the simulation environment the virtual coach script starts the simulation for 10 seconds so that the state machine becomes459

activated. After that the simulation stops for five minutes which are long enough for the state machine to place all objects460

in the environment. When five minutes have passed the simulation is activated again and the agent starts moving through461

the environment. CSV files containing the spiking data of the network, the robot position and angular alignment as well as462
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the placement of the objects in the arena were saved for all experiments. 100 data points were collected for the collision463

avoidance experiment in a cluttered environment with adaptive velocity, 70 data points were collected for the experiment with464

fixed velocity (see Figure 2f,i A.5,A.7). The tunnel centering experiment, gap entering experiment and all other simulation465

experiments in the appendix were repeated three times for each individual configuration (see Table 2).466

Obstacle densities were calculated by plotting the cluttered environment and counting the number of pixels occupied by467

the objects. The occurrence of collisions was also measured visually by plotting the cluttered environment with the robot’s468

trajectory while considering the agent size and angular alignment. Since the can_collide feature of the objects in the cluttered469

environment was turned off the agent moves through the obstacles when colliding. Therefore, an overlap of obstacle and robot470

can be interpreted as a collision. The collision avoidance run was marked as failed when such an overlap occurred and the471

first time of overlap was noted as collision time. Since there is no physical collision the robot’s size can be varied during the472

analysis to evaluate the effect of agent size on the performance. To enhance the comparability of the robotic system to the473

biological role model, flying insects, we normalised all distance measures by dividing them by the chosen robot’s size of 40x40474

centimeters. The normalised distance measures were complemented with an arbitrary unit (a.u.).475

4.10 Data Availability Statement476

The data generated during this study will be available at dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/QTOJJP.477

4.11 Code Availability Statement478
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A Appendix681

A.1 sEMD Characterization Setup682

To ensure repeatability and reproducibility we recorded the grating in a controlled environment, see Figure A.1. The Dynamic683

Vision Sensor (DVS) is mounted in a light sealed box, with a variable distance to the screen. An LED-ring (with 32 LEDs)684

homogeneously illuminates the DVS’s field of view. The LEDs them self are controlled by an external power-source. The685

moving screen consists of a thick paper tube, glued together at the ends with double-sided adhesive tape. This tube is clamped686

over two horizontally mounted cylinders. The lower cylinder is mounted with a floating bearing in the y-direction. The upper687

cylinder is driven by a stepper motor controlled by an Arduino Uno and translates its movement to the screen. The possible688

velocities of the screen range from 23 mms−1 to 210 mms−1. The grating itself is printed on dull thick paper forming the689

paper-tube and stored in the dark to avoid fading out.690

Figure A.1. Controlled environment for the recordings of the grating. The screen can move either from bottom to top or top to

bottom. The upper roll of the screen contraption is driven by an Arduino controlled stepper-motor. The LED - ring illuminates

the screen and the event driven camera is located in its center.

A.2 sEMD Implementation on SpiNNaker691

To demonstrate the sEMD’s wide range of operation and applicability on multiple platforms, we characterised the model’s692

behaviour on SpiNNaker. We further investigated the sEMD’s robustness regarding contrast and illumination. Figure A.2 a)693

shows that the model operates well in a wide range of illuminations at 100 % contrast and produces similar velocity tuning694

curves on SpiNNaker and NEST (see Figure 1e for comparison). Regarding the contrast sensitivity, we found that with the695

given parameter set, the model reaches half activity at a relative contrast of 45.9 % (see Figure A.2 b) at 5000 lux illumination696

and temporal frequency of 5 Hz. Thus the applicability of the model is limited by the occurring contrast but the offered range is697

still high and can possibly be improved by the implementation of contrast normalisation.

(a) (b)

Figure A.2. sEMD population response on SpiNNaker for varying illuminations and contrasts. a) Normalised sEMD

population preferred direction and null direction response for 100 % contrast and all illuminations from 5 lux to 5000 lux. b)

Normalised preferred direction response for 5000 lux illumination over contrasts varying from 0 % to 100 % at a temporal

frequency of 5 Hz. For further information on the model parameters see Table 4.

698

A.3 The Motion-Vision Network699

One very important parameter for collision avoidance is the knowledge of the own body size. Orchid bees with a wingspan of700

approximately 20 mm avoid to pass circular apertures smaller than 25 mm because of a too high collision risk. Some kind701
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of self-representation in the bee’s brain has to drive the insect’s decision that the gap is too small for it.19. Similarly, we can702

tune the connectivity of our SNN to indirectly include relevant body size information. Our neural network model needs to703

consider its own body measures when moving through a gap. This decision process to move or not to move through a gap can704

be purely driven by the agent’s relative perception of the gap. In our collision avoidance network this perception is modifiable705

by a change of the synaptic connections between the integrator neuron population and the inverse WTA population. OF is706

encoded in a retinotopical map of the integrator neuron population. This neuron population is initially one-to-one connected to707

the inverse WTA network. By connecting the integrator neuron to its accordant inverse WTA neuron and its closest neighbours708

the size of the perceived OF caused by an object increases. Therefore, small gaps between objects are closed with increasing709

number of neighbouring INT to inverse WTA connections which leads to an increase of a perceived gap’s minimum size. The710

angle occupied by a gap has to be bigger than gapmin to be considered a movement direction as shown in Equation 3. αINT , the711

angle of perception of a single INT neuron, amounts to ~2.2° while nconnect represents the number of neighbouring connections.712

gapmin = (2×nconnect +1)×αsEMD (3)

We evaluated how the minimum gap size entered by the robotic agent changes with the OF perception. As expected, with713

increasing number of neighbouring connections small gaps were not entered anymore (see Figure A.3). By fixing the number714

of neighbouring connections to 4 nearest neighbours for all following experiments the robot wouldn’t enter too small gaps but715

would still be able to navigate through larger corridors.

Figure A.3. Agent’s trajectories in a narrowing corridor with varied connectivity between INT and inverse WTA population

as explained in section The Motion-Vision Network. Legend refers to number of neighbouring connections. Simulated robot’s

start point is on left side.

716

A.4 The Movement Behaviour717

When exposed to a densely cluttered environment, a narrow tunnel or a nearby object flying insects decrease their movement718

velocity. This mechanisms reduces the agent’s collision probability by an increase in the time-of-flight. The agent has more719

time to react and turn away from the potential threat due to its lower speed. We tested the effect of a change in velocity with the720

agent in an empty arena. As expected, the simulated robot’s minimum wall distance was increasing with lower velocities (see721

Figure A.4a,b). Therefore, an adaptive obstacle density dependent velocity can be a helpful tool to increase the agents working722

range towards higher obstacle densities.723

A.5 Gap finding behaviour in cluttered environments724

Quantifying the relative motion perception and collision avoidance behaviour in controlled environments (see Figure A.1 and725

A.4) allows us to assess the fundamental capabilities of our agent. However, these tests do not fully capture conditions an agent726

will encounter in the real-world. These conditions include urban areas, indoors as well as outdoor forest environments. A727

simple, yet effective test environment thus should be characterised with variable amount of clutter, i.e. obstacle density, of728

vertical obstacles placed in a random configuration. We introduced the agent in an arena and varied the obstacle density from729

0% up to 38% and measured the mean clearance (see Figure A.5 a) and the maximum distance (see Figure A.5 b) as a function730

of increasing obstacle density. The mean clearance quickly drops from 25 a.u. in roughly exponential fashion to a minimum of731

5 a.u.. If the obstacle density is greater than ≈ 15 %, the mean clearance stays constant. However, the collision rate starts to732

increase (see Figure A.6). Interestingly, due to the employed adaptive movement strategy the agent’s velocity decreases almost733
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(a) (b)

Figure A.4. Agent’s trajectories in an empty box. a) Agent’s trajectory with different fixed intersaccadic velocities in a.u./s. b)

Trajectories with parameters used for cluttered environment experiment in section Densely Cluttered Environments with fixed

and adaptive intersaccadic velocity in a.u./s.

linearly with increasing obstacle density (see Figure A.7). This adaptive behaviour ensures that despite high clutter the agent734

successfully identifies gaps in the environment and steers towards them and consequently avoids collisions with its surrounding.735

736

(a) (b)

Figure A.5. Agent’s mean obstacle clearance and maximum distance to the start location calculated for the data from Figure

2d.
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Figure A.6. Agent’s behaviour in cluttered environments with the parameters from Table 5 and 7 moving with a fixed

intersaccadic velocity of 2.5 a.u./s. Top: Real world time at which the simulated robot leaves the arena, collides or the

simulation time is over. Bottom: Agent’s success rate, hence number of runs without collisions.

Figure A.7. Agent’s mean velocity over obstacle density calculated for the data from Figure 2d
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A.6 Corridor-centering in Real-World737

To prove the real-time capability and robustness of the SNN on neuromorphic hardware, we evaluated the system in a real-world738

scenario. A robotic platform described in section Real World Robot was assembled and tested in a narrow (~30 cm wide) and a739

wide corridor (~50 cm wide, see Figure A.8). The robot itself is approximately 20 cm wide. The robot centred well in nine out740

of ten runs in the wide corridors(see Figure A.9b). In the remaining run, the robot crashed into the wall at the very beginning.741

In another run, the robot did a 360 degrees turn close to the end of the corridor. In the narrow corridor, the robot never crashed742

directly into the wall (see Figure A.9a). In two out of these runs the agent slightly touched the left wall. We observed an overall743

tendency to the left of the corridor. A slight miss-alignment between the robot’s field of view and its movement direction can744

explain this tendency. In the control experiment in which the collision avoidance population of the SNN did not receive any745

visual input, the robot turned directly to the left or right. It crashed into a wall in nine out of ten cases (see Figure A.9c). In one746

case, the robot meandered through half of the tunnel before it collided with a wall. This control experiment showed that the747

visual input itself drove the robot’s centering behaviour.748

(a) (b)

Figure A.8. Robot and setup to conduct the real world experiment. a) The robot received visual input from the Dynamic

Vision Sensor. The event-based camera sends its events to a SpiNN-3 board which simulates a version of the collision

avoidance network described in section Collision Avoidance Network. For more details on the real-world robotic

implementation see section Real World Robot. b) Experimental setup for the corridor centering experiment. Results are shown

in Figure A.9. The corridor walls were covered with random checkerboard patterns. The ground of the arena consisted of metal

plates since the motors of the robot are not strong enough to move the vehicle on the carpet. A webcam and a light-ring

mounted on a tripod above the arena were used to film the robot and illuminate the arena.
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(a)

(b)

(c)

Figure A.9. Real world corridor centering experiment results from the setup shown in figure A.8. a) Robot’s movement

trajectories for ten runs through a narrow corridor moving from left to right. Dots and lines indicate the center of mass of the

robot. Blue area represents the whole area covered by the approximately 20 cm wide robot combined for all ten runs.

Frequency of occurrence increases from dark blue to light blue. b) Robot’s trajectories for ten runs in a wide corridor. c)

Control experiment. Robot’s trajectories in a wide corridor with weights from integrator population to inverse WTA set to zero.
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B Tables

printed Contrast Temporal Frequency Illumination

(Hz) (lux)

0 0.1 5

0.2 0.5 50

0.4 1.0 100

0.6 2.5 500

0.8 5.0 1000

1.0 10.0 5000

Table 1. Parameters of grating recordings. Three four second recordings were made for each possible parameter-combination.

Simulation Figures Repetitions Real time duration

(min)

Clutter adaptive velocity 2f,i, A.5, A.7a 100 360

Clutter fixed velocity 2i, A.6 70 360

Corridors 2g,j,k,l 3 per corridor width 60

Real World Corridor 2d, A.9. 10 per corridor width -

Gaps 2e,h 3 per gap size 180

Narrowing Corridor A.3 3 per configuration 90

Empty Box A.4, A.7b 3 per configuration 30

Table 2. Parameters of simulations and real world experiment.

Name Type Cm taum taure f vreset vrest vthresh tausyn_E tausyn_I Io f f set Popsize #Pop

(nF) (ms) (ms) (mV) (mV) (mV) (ms) (ms) (nA) (col × row)

DVS SSA 128×128 1

SPTC LIF 0.25 20 1 -85 -60 -50 20 20 0 32×32 1

sEMD TDE 0.25 20 1 -85 -60 -50 20 20 0 32×32 2

From To Weight (nA) Connection type Synapse type delay (ms)

DVS SPTC 0.2 (int(i/(128*4)*32) +int(i % (128*4) / 3) to i) excitatory 1

SPTC TDE top-bottom 0.2 one_to_one facilitator 1

SPTC TDE top-bottom 0.2 i to i+32 trigger 1

SPTC TDE bottom-top 0.2 one_to_one trigger 1

SPTC TDE bottom-top 0.2 i+32 to i facilitator 0.1

Table 3. Neuron Parameters and Connections on SpiNNaker for sEMD characterization.
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Name Type Cm taum taure f vreset vrest vthresh tausyn_E tausyn_I Io f f set Popsize #Pop

(nF) (ms) (ms) (mV) (mV) (mV) (ms) (ms) (nA) (col × row)

DVS SSA 128×128 1

SPTC LIF 0.25 35 1 -70 -65 -40 30 1 0 64×64 1

sEMD TDE 0.25 30 1 -70 -65 -40 100 50 0 64×20 2

INT LIF 0.25 20 1 -70 -65 -40 5 5 0 64×1 2

WTA LIF 0.25 30 1 -70 -65 -40 100 50 0 64×1 1

GI LIF 0.25 30 2 -68 -65 -50 40 5 0 1×1 1

MOT LIF 0.25 20 2 -68 -65 -50 5 5 0 96×1 2

OUTPUT LIF 0.25 20 2 -68 -65 -50 5 5 0 512×1 1

Name Type Rate (Hz) Popsize #Pop

POIS1 Spike Source 50 64×1 1

Table 4. Neuron Parameters on SpiNNaker for real-world corridor centering experiment.

Name Type EL Cm taum tre f tausyn_exc tausyn_inh Vth Vreset Vm Popsize #Pop

(mV) (pF) (ms) (ms) (ms) (ms) (mV) (mV) (mV) (col × row)

SPTC LIF -60.5 25 20 1 10 10 -60 -60.5 -60.5 64×20 1

sEMD TDE -60.0 250 10 1 10 10 -30 -85 -60 64×20 2

INT LIF -70 250 20 1 5 5 -40 -70 -65 64×1 2

WTA LIF -65 250 20 1 5 80 -50 -68 -65 64×1 1

MOT LIF -65 250 20 2 5 5 -50 -68 -65 96×1 2

GI LIF -65 250 30 2 40 5 -50 -68 -65 1×1 1

OFI LIF -80 250 200 1 100 30 -40 -80 -75 1×1 1

ET LIF -65 250 20 1 5 80 -50 -68 -65 1×1 1

Name Type Rate (Hz) Popsize #Pop

POIS1 Spike Source 100 64×1 1

POIS2 Spike Source 100 1×1 1

Table 5. Neuron Parameters from Neurorobotics Platform NEST network.
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From To Weight (nA) Connection type Synapse type delay (ms)

DVS SPTC 0.5 (i and i+1 and i+128 and i+ 129) to i excitatory 1

SPTC TDE left-right 2 34*64+i+1 to i trigger 1

SPTC TDE left-right 2 34*64+i to i facilitator 1

SPTC TDE right-left 2 34*64+i+1 to i facilitator 1

SPTC TDE right-left 2 34*64+i to i trigger 1

TDE right-left INT right-left 3 i mod 64 to i excitatory 1

TDE left-right INT left-right 3 i mod 64 to i excitatory 1

INT right-left WTA 1 one_to_one inhibitory 1

INT right-left WTA 0.75 i to i± 1 inhibitory 1

INT right-left WTA 0.5 i to i± 2 inhibitory 1

INT right-left WTA 0.3 i to i± 3 inhibitory 1

INT right-left WTA 0.25 i to i± 4 inhibitory 1

INT left-right WTA 1 one_to_one inhibitory 1

INT left-right WTA 0.75 i to i± 1 inhibitory 1

INT left-right WTA 0.5 i to i± 2 inhibitory 1

INT left-right WTA 0.3 i to i± 3 inhibitory 1

INT left-right WTA 0.25 i to i± 4 inhibitory 1

WTA(0-5) MOT1 10 i to 38 excitatory 1

WTA(6-31) MOT1 10 i to 2i + 32 excitatory 1

WTA(32-57) MOT2 10 63 - i to 2i + 32 excitatory 1

WTA(58-63) MOT2 10 i to 38 excitatory 1

WTA GI 15 all_to_all excitatory 1

GI WTA 15 all_to_all inhibitory 1

MOT1 WTA 5 all_to_all inhibitory 1

MOT1 MOT2 10 all_to_all inhibitory 1

MOT1 SPTC 50 all_to_all inhibitory 1

MOT1 MOT1 2 i to i + 1 excitatory 4

MOT1 MOT1 10 one_to_one inhibitory 1

MOT1 OUTPUT 10 4i to 188 excitatory 1

MOT1 OUTPUT 10 4i to 314 excitatory 1

MOT1 OUTPUT 10 95 to 336 excitatory 1

MOT1 OUTPUT 10 95 to 65 excitatory 1

MOT2 WTA 5 all_to_all inhibitory 1

MOT2 MOT1 10 all_to_all inhibitory 1

MOT2 SPTC 50 all_to_all inhibitory 1

MOT2 MOT2 2 i to i + 1 excitatory 4

MOT2 MOT2 10 one_to_one inhibitory 1

MOT2 OUTPUT 10 4i to 60 excitatory 1

MOT2 OUTPUT 10 4i to 442 excitatory 1

MOT2 OUTPUT 10 95 to 336 excitatory 1

MOT2 OUTPUT 10 95 to 65 excitatory 1

POIS1 WTA 2 one_to_one excitatory 1

Table 6. Neuron connections from SpiNNaker for real-world corridor experiment. Note: There might be slight differences in

the connection scheme when comparing Figure 4 with this table. This is because Figure 4 only serves for demonstration

purposes. Always use the connections from this table to rebuild the network for the robot.
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From To Weight (nA) Connection type Synapse type delay (ms)

DVS NRP SPTC default (i and i+1 and i+128 and i+ 129) to i excitatory 0.1

DVS real world SPTC 0.002 (i and i+1 and i+128 and i+ 129) to i excitatory 0.1

SPTC TDE left-right 4 one_to_one trigger 0.1

SPTC TDE left-right 4 i to i+1 facilitator 0.1

SPTC TDE right-left 4 one_to_one facilitator 0.1

SPTC TDE right-left 4 i+1 to i trigger 0.1

TDE right-left INT right-left 1 i mod 64 to i excitatory 0.1

TDE left-right INT left-right 1 i mod 64 to i excitatory 0.1

INT right-left WTA -5 one_to_one inhibitory 0.1

INT right-left WTA -3 i to i± 1 inhibitory 0.1

INT right-left WTA -2 i to i± 2 inhibitory 0.1

INT right-left WTA -1.5 i to i± 3 inhibitory 0.1

INT right-left OFI 10−4 all_to_all excitatory 0.1

INT left-right WTA -5 one_to_one inhibitory 0.1

INT left-right WTA -3 i to i± 1 inhibitory 0.1

INT left-right WTA -2 i to i± 2 inhibitory 0.1

INT left-right WTA -1.5 i to i± 3 inhibitory 0.1

INT left-right OFI 10−4 all_to_all excitatory 0.1

WTA(0-8) MOT1 10 i to 50 excitatory 0.1

WTA(9-31) MOT1 10 i to 2i + 32 excitatory 0.1

WTA(32-53) MOT2 10 63 - i to 2i + 32 excitatory 0.1

WTA(54-63) MOT2 10 i to 50 excitatory 0.1

WTA GI 10 all_to_all excitatory 0.1

ET MOT1 10 0 to 0 excitatory 0.1

ET GI 10 all_to_all excitatory 0.1

GI ET -10 all_to_all inhibitory 0.1

GI WTA -10 all_to_all inhibitory 0.1

MOT1 WTA -30 all_to_all inhibitory 0.1

MOT1 ET -30 all_to_all inhibitory 0.1

MOT1 MOT2 -10 all_to_all inhibitory 0.1

MOT1 Sensors -30 all_to_all inhibitory 0.1

MOT1 MOT1 10 i to i + 1 excitatory 10

MOT1 MOT1 -10 one_to_one inhibitory 0.1

MOT2 WTA -30 all_to_all inhibitory 0.1

MOT2 ET -30 all_to_all inhibitory 0.1

MOT2 MOT1 -10 all_to_all inhibitory 0.1

MOT2 Sensors -30 all_to_all inhibitory 0.1

MOT2 MOT2 10 i to i + 1 excitatory 10

MOT2 MOT2 -10 one_to_one inhibitory 0.1

POIS1 WTA 1 one_to_one excitatory 0.1

POIS2 ET 0.3 one_to_one excitatory 0.1

Table 7. Neuron connections from NEST network used in the neurorobotics platform. Note: There might be slight differences

in the connection scheme when comparing Figure 4 with this table. This is because Figure 4 only serves for demonstration

purposes. Always use the connections from this table to rebuild the network.
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