285 research outputs found

    The Complexity Of The NP-Class

    Full text link
    This paper presents a novel and straight formulation, and gives a complete insight towards the understanding of the complexity of the problems of the so called NP-Class. In particular, this paper focuses in the Searching of the Optimal Geometrical Structures and the Travelling Salesman Problems. The main results are the polynomial reduction procedure and the solution to the Noted Conjecture of the NP-Class

    Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses

    Full text link
    Recent decades have seen the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of possible contending atomic- and larger-scale configurations and the intricate correlations between their constituents. For a detailed understanding, there is a need for tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method by invoking ideas from network analysis and information theory. Our method efficiently identifies basic unit cells and topological defects in systems with low disorder and may analyze general amorphous structures to identify candidate natural structures where a clear definition of order is lacking. This general unbiased detection of physical structure does not require a guess as to which of the system properties should be deemed as important and may constitute a natural point of departure for further analysis. The method applies to both static and dynamic systems.Comment: (23 pages, 9 figures

    Nanowires with Unimaginable Characteristics

    Get PDF

    Saving local searches in global optimization

    Get PDF

    Understanding and design of molecular dynamics based simulation methods.

    Get PDF
    Several new strategies for employing modified molecular dynamics (MD) protocols for finding energy minima were developed developed. First, we derived a new method of searching for the lowest energy conformation by employ employing the results of our work to explain "mean mean-field" molecular dynamics simulation methods. Called ensembles extracted by atomic coordinate transformations (EXACT), the method allows simulations to be performed with a variable degree of approximation. Then, we examine the previously published locally enhanced sampling (LES) approximation. The method makes copies of a small part of interest in a larger system, and allows the dynamics to unfold. The method works by making the copies invisible to each other and allowing them to interact only with the remainder of the system, called the bath. The bath, on the other hand, interacts with an averaged representation of the copied part. This averaged interaction allows the copied particles to move into geometries they might not visit in a conventional MD simulation, which allows a greater variety of structures to be sampled. We derive the algorithm by copying the entire system, and then by employing holonomic constraints between the bath particles between the various systems. Using this new approach, we explore several issues previously noted in the literature. We also use the EXACT approximation method to illustrate the nature of the LES approximation. Finally, we present another optimization method, which add adds pressure along with temperature in analogue with simulated annealing. The method is tested against simulated annealing for condensed phase systems of argon, monoglyme, and tetraglyme. The method noticeably improves the results for the glyme systems, but does not seem to hurt the results for the argon system

    MD simulations of atomic hydrogen scattering from zero band-gap materials

    Get PDF
    • …
    corecore