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Abstract

Developments in scanning transmission electron microscopy (STEM) have opened
up new possibilities for time-resolved imaging at the atomic scale. However, rapid
imaging of single atom dynamics brings with it a new set of challenges, particularly
regarding noise and the interaction between the electron beam and the specimen. This
thesis develops a set of analytical tools for capturing atomic motion and analyzing the
dynamic behaviour of materials at the atomic scale.

Machine learning is increasingly playing an important role in the analysis of electron
microscopy data. In this light, new unsupervised learning tools are developed here for
noise removal under low-dose imaging conditions and for identifying the motion of
surface atoms. The scope for real-time processing and analysis is also explored, which is
of rising importance as electron microscopy datasets grow in size and complexity.

These advances in image processing and analysis are combined with computational
modelling to uncover new chemical and physical insights into the motion of atoms
adsorbed onto surfaces. Of particular interest are systems for heterogeneous catalysis,
where the catalytic activity can depend intimately on the atomic environment. The
study of Cu atoms on a graphene oxide support reveals that the atoms undergo
anomalous diffusion as a result of spatial and energetic disorder present in the substrate.
The investigation is extended to examine the structure and stability of small Cu clusters
on graphene oxide, with atomistic modelling used to understand the significant role
played by the substrate. Finally, the analytical methods are used to study the surface
reconstruction of silicon alongside the electron beam-induced motion of adatoms on
the surface.

Taken together, these studies demonstrate the materials insights that can be obtained
with time-resolved STEM imaging, and highlight the importance of combining state-of-
the-art imaging with computational analysis and atomistic modelling to quantitatively
characterize the behaviour of materials with atomic resolution.
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Chapter 1

Introduction

Ever since its invention, the development of the transmission electron microscope
(TEM) has been driven by the desire to observe and characterize materials at the level
of single atoms. Writing in 1939, von Ardenne predicted that “sooner or later the
ultramicroscopy technique will be able to reveal single atoms and their distribution in
the object plane” [1]. Although von Ardenne was the first to propose the scanning trans-
mission electron microscope (STEM), it was the pioneering work led by Albert Crewe in
developing the modern STEM that provided the first direct images of single atoms [2–
4]. Recent advances have seen the introduction of aberration correctors, which have
combined sub-ångstrom image resolution with single-atom spectroscopy in the latest in-
struments [5]. Another notable hardware development has been increasingly sensitive
electron detectors, making it possible to image radiation-sensitive biological specimens
with unprecedented resolution [6]. Together these improvements in instrumentation
have made (S)TEM a powerful tool for materials characterization at the atomic scale.
Structural, chemical, optical and electronic properties can now be mapped and linked
directly to first-principles calculations using density functional theory (DFT), thereby
bridging the gap between experiment and atomistic modelling [7, 8].

To fully realize the capabilities of (S)TEM characterization, these hardware develop-
ments must be matched by innovations in software, particularly in processing and
analyzing the large, multi-dimensional datasets that can now be acquired. Significant
progress has been made in recent years in applying machine learning techniques to
electron microscopy data, opening up new ways of interpreting and understanding the
wealth of information the instrument provides. It is vital that the applications of com-
putational imaging are explored further because it provides the robust, objective and
reproducible methods necessary for working with large and noisy data [9]. Developing
an automated pipeline from data acquisition all the way through to visualization will
not only uncover new materials insights, but also drive the design and optimization of
experiments, ensuring data is collected in an informed and efficient manner.
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One of the most exciting prospects for the modern electron microscope concerns the
time-resolved imaging of dynamics at the atomic scale. In its various guises, electron
microscopy can provide insights into the behaviour of materials over a substantial
range of timescales, from the femtosecond imaging of chemical bond breaking to the
millisecond observations of diffusion and surface reconstructions [10]. For STEM
imaging in particular, it is the potential applications at longer timescales that are most
relevant, since ultrafast imaging typically requires conventional TEM illumination
conditions with nanosecond electron pulses [11, 12]. Of course, time-resolved imaging
at the atomic scale is not without its difficulties. Issues with image noise, electron beam
damage, and identifying and tracking atoms typically limit investigations to stable
crystalline systems or to short sequences of only a few atoms. These are not typically
sufficient to examine atomic dynamics in detail, thus highlighting the potential role
of computational imaging in fully exploiting the temporal applications of the electron
microscope.

The capabilities of STEM for studying atomic motion were first recognized in the
earliest findings from Crewe’s laboratory [13–15]. Atomic diffusion at surfaces plays a
pivotal role in many areas of science, not least in epitaxial growth, Ostwald ripening
and heterogeneous catalysis [16–18]. Most models of diffusion are based on idealized,
crystalline surfaces, but there is an increasing body of evidence suggesting that diffu-
sion in heterogeneous environments departs from the classical picture of Brownian
motion, giving rise to so-called anomalous diffusion [19]. In much the same way that
fluorescence microscopy has revolutionized the study of molecular transport inside
cells [20, 21], STEM has the potential to uncover a wealth of previously unknown
information about diffusion at the atomic scale.

Notwithstanding the desire to understand fundamentals such as surface diffusion,
the continuing efforts in nanotechnology towards the fabrication of ever smaller de-
vices is a major factor in driving the development of aberration-corrected electron
microscopy. From transistors to sensors to catalysts, at the nanoscale, the interactions
and behaviours of individual atoms are integral to the optical, electronic and catalytic
properties of the system. To ultimately control these properties thus requires a full un-
derstanding of the local structure with the highest possible resolution. A prime example
is the field of heterogeneous catalysis, which combines high-surface area supports with
metal nanoparticles for highly efficient and selective catalysts [22]. Common catalysts
include the expensive Pt-group metals, which are typically deposited as nanoparticles
over a substrate to maximize the available surface area for the reaction.

However, many important catalytic reactions take place at single sites on the surface
of nanoparticles, indicating that there is still a significant amount of redundant and
expensive metal that plays no part in the reaction [23]. Recent research has shown that
spatially-isolated single atoms [24–26] and nanoclusters [27, 28] offer the potential for
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highly selective and efficient catalytic reactions, while reducing the amount of the metal
catalyst required to the bare minimum. Optimizing this selectivity requires a detailed
understanding of the interaction between catalyst and industrially-relevant substrates,
which include functionalized materials such as graphene oxide (GO) [29] or graphitic
carbon nitride [30]. These materials are low-cost and straightforward to fabricate, and
controlling the functionalization to tune the dispersion of the metal atoms enables
the optimization of the selectivity and efficiency of the catalyst system [31, 32]. The
importance of understanding the distribution and character of these functional groups
means aberration-corrected STEM has a significant role to play in understanding the
structure of single atom heterogeneous catalysts. Furthermore, the recent development
of the environmental STEM raises the prospect of using electron microscopy to track
the behaviour of single atoms during catalytic reactions [33–36], thus providing new
insights into catalysis.

The aim of this thesis is twofold: first, to develop a computational framework for
time-resolved STEM imaging at the atomic scale; and second, to apply these methods
to explore and understand the dynamic behaviour of single atoms on technologically-
important surfaces. The next chapter provides a general overview of aberration-
corrected STEM and its applications, with a focus on single atom imaging. In Chapter 3,
the role of machine learning in electron microscopy is discussed, and two novel analysis
techniques for time-resolved imaging are presented. Chapter 4 builds on the theme
of temporal analysis to explore the challenges in identifying atoms and tracking their
motion over time.

Having developed an analytical toolbox for time-resolved STEM, Chapters 5–7 highlight
example applications of the various techniques. Chapter 5 is an investigation of the
anomalous diffusion of copper adatoms on graphene oxide, whilst Chapter 6 presents
results on the structure and behaviour of small copper clusters on GO. Copper clusters
have been identified as a low-cost alternative to Pt-group catalysts [37], and these
two chapters assess the structure and stability of single atoms and clusters on an
industrially-relevant substrate. A separate study of atom dynamics on a crystalline
surface is described in Chapter 7. This explores the dynamic behaviour of the silicon
surface under the electron beam alongside the beam-induced motion of Pt adatoms, and
demonstrates the applicability of the computational imaging methods to both crystalline
and disordered substrates. Finally, concluding remarks and possible directions for
future research are given in Chapter 8.





Chapter 2

Single atom electron microscopy

2.1 Introduction

Electron microscopy is, in its various forms, a widely-used tool for studying the struc-
ture and properties of materials at scales beyond the reach of optical microscopy.
Resolutions of 0.5 Å are now possible with the latest generation of aberration-corrected
instruments [5], while the interaction between the imaging electrons and the specimen
also enables chemical characterization with excellent sensitivity [38]. The wealth of
information provided by the electron microscope makes it an ideal tool for studying ma-
terials with atomic resolution, and also forms the basis of the idea of “multi-dimensional
electron microscopy” [39, 40], which seeks to combine different signals to uncover
behaviours and properties that any single mode would not detect.

A cornerstone of multi-dimensional electron microscopy is the scanning transmission
electron microscope (STEM), with its sensitivity to both light and heavy elements,
imaging intensity that scales with atomic number, and simultaneous acquisition of mul-
tiple spectroscopic signals for studying bonding, composition and resonance properties.
This chapter introduces the STEM and its various operating modes, as well as the devel-
opments that have enabled single atom sensitivity. Section 2.3 briefly discusses some of
the alternative techniques for direct atomic-scale imaging for comparison with STEM.
In the last part of the chapter, the major challenges faced when performing single atom
microscopy with STEM are outlined, with a particular focus on time-resolved imaging
for observing the dynamic behaviour of atoms at this scale.
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Specimen

ADF

EELS

Focused probe

ABF

Figure 2.1: Schematic of the STEM setup, with a focused probe and two detectors: annular
bright-field (ABF) and annular dark-field (ADF). Here the central beam passes through to an
EELS detector, but this can be replaced with a detector for bright-field (BF) imaging.

2.2 Scanning transmission electron microscopy

Transmission electron microscopy (TEM) uses a beam of accelerated electrons to
illuminate a thin specimen. These electrons interact with the material as they pass
through, where the exiting beam is focused and magnified onto a detector to form an
image [41]. The smaller wavelength of accelerated electrons compared to photons
makes the resolution of a TEM significantly higher than an optical microscope, and the
range of possible interactions between electrons and the sample enables many types of
signals to be recorded for both structural and compositional investigation.

Scanning transmission electron microscopy differs from conventional TEM in that a
focused electron probe is scanned pixel-by-pixel across a region of the specimen, rather
than illuminating the entire region at once (Figure 2.1) [42]. The two techniques are
related by the principle of reciprocity [43], and in STEM the resolution and image
contrast is controlled by the probe-forming lens and aperture before the specimen, and
the geometry of the detector placed after it. By using different detectors it is possible
to separately record and investigate unscattered, elastically and inelastically scattered
electrons [44]. Annular detectors allow the undiffracted beam to pass through to a
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detector for electron energy loss spectroscopy (EELS), enabling simultaneous analysis
and characterization [45].

One of the important advances of Crewe and coworkers in the development of atomic-
resolution STEM was the use of a high-brightness electron source, the field emission
gun (FEG) [2]. The FEG offers a low energy spread of emitted electrons, which is
important for both imaging and spectroscopy (see below), while the high brightness
maximizes the available probe current for a given probe size, thus maximizing the
signal that can be acquired.

The magnetic lenses used in the electron microscope suffer from imperfections, or
aberrations, that degrade their performance and the ultimate resolution of the micro-
scope. Particularly important are spherical and chromatic aberrations. In the former
case, electrons travelling at high angles to the optical axis are focused too strongly
by the lens, while in the latter case electrons with different energies are focused
by differing amounts. An energy-filtering slit (or monochromator) can be used to
reduce the effects of chromatic aberration at the expense of the probe current, but
for the case of spherical aberration it was the development of computer-controlled
aberration correctors in the 1990s that marked a turning point in the capabilities of
STEM [46–48]. Aberration correctors involve breaking the rotational symmetry that
causes spherical aberration, and enable the formation of atom-sized probes with an
achievable resolution of ca. 0.5 Å [49]. Alongside this improvement in resolution, fo-
cused probes facilitate atom-by-atom spectroscopy, thus revealing not only the position
of single atoms but also their identity and bonding with unprecedented resolution
[50–52].

2.2.1 Bright-field and annular bright-field imaging

In bright-field (BF) and annular bright-field (ABF) imaging, the detectors lie within
the cone of illumination, and much of the transmitted intensity comes from electrons
that have experienced little or no scattering. Coherent BF imaging can be used to
determine crystallographic information about the specimen through diffraction and
phase contrast from overlapping diffraction discs [42]. In an ABF imaging setup, the
central portion of the beam does not fall onto the detector (Fig. 2.1) [53], which
reduces the sensitivity to the phase of the waves scattered by the object. ABF has been
shown to be particularly sensitive to light elements such as oxygen and lithium, and
has also been used to obtain the first images of hydrogen atomic columns in metal
hydride systems [54, 55].
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2.2.2 Annular dark-field imaging

Annular dark-field (ADF) imaging further suppresses the phase influence of the scat-
tered waves by averaging features over the detector plane [42], and collects electrons
scattered beyond the typical Bragg scattering angles of BF imaging. Nellist & Penny-
cook showed that for a large annular detector the observed intensity depends only
on the probe intensity and the fraction of electrons scattered out to the appropriate
angles [56]. The ADF image is thus described as a convolution between the STEM
probe intensity and an object function O. The ADF intensity at the probe position r0 is
then:

I (r0) = O (r0) ∗ |ψ (r0)|2 (2.1)

where ψ is the electron wavefunction. The object function O determines the intensity
fraction scattered by each atom. The incoherency makes ADF imaging directly inter-
pretable, since there is no longer any possibility of contrast reversal as in BF-STEM and
conventional TEM imaging. This interpretability is a major factor in the popularity of
the technique for atomic-scale materials characterization.

In the incoherent ADF imaging mode the signal intensity scales approximately with
atomic number as Z1.5–2, as electrons passing close to the nucleus are deflected to high
angles. This is akin to Rutherford scattering, although effects such as screening of the
nucleus reduce the Z exponent. Importantly, the intensity scaling with atomic number
means that ADF images can be directly interpreted and analyzed to collect quantitative
data for atom identification and counting [57–59]. The exact value of the exponent will
also depend on the geometry of the ADF detector, and here it is noted that the terms
high-angle ADF (HAADF) and medium-angle (MAADF) are commonly used in the
literature. Generally, HAADF refers to an inner detector angle of ca. 80 mrad or more,
while MAADF images may use an inner angle of 30 mrad. The smaller inner angle
enhances the contrast of lighter elements such as carbon, which are weak electron
scatterers. In this work the general term, ADF, is used throughout; actual detector
settings are given where relevant.

While ADF-STEM images are convenient to interpret directly, careful consideration
must be taken to consider all of the interactions between the sample and the electron
probe. Phonons and thermal motion of atoms in a crystal will displace them slightly
from their ideal positions, leading to diffuse scattering of the electrons. It is this diffuse
scattering that breaks the image coherence in the z-direction parallel to the optic axis,
since the instantaneous atomic displacements are random [60]. An additional problem
with ADF for characterization is that when a crystal is orientated along a zone axis, the
electrons will preferentially “channel” down the atomic column, binding tightly to the
atoms and possibly leading to higher recorded intensity [61].
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2.2.3 STEM image simulation

The development of the theory of electron scattering and electron-sample interactions
make it possible to simulate the image produced by an electron microscope, incorpo-
rating effects such as aberrations, thermal diffuse scattering and more. By simulating
images one is able to compare experimental results with models constructed using
other information such as DFT calculations, or even to solve the structure itself by
iterating the model until the simulation and experiment match.

There are two well-used methods for (S)TEM image simulation: the Bloch wave
method [61], and the multislice method [62]. Of the two, the latter is arguably
more flexible in its approach of slicing the structure into thin slices and propagating
the electron wave from slice to slice. The Bloch wave method on the other hand
is typically a much more demanding calculation, although advances in computing
resources mitigate this to some extent, and it is particularly useful for separating out
the contributions of different structural features to the final image. Unless otherwise
stated, the approach taken in this thesis is the multislice method, using the “Dr. Probe”
software package [63].

STEM image simulation software is able to incorporate the effects of aberrations on
the electron probe for comparison with experimental results. As well as aberrations,
the shape of the electron probe also depends on the size of the electron source (which
is not a point source, otherwise the probe current would be zero), and a large source
size will limit the image resolution. The typical approach is to convolve the simulated
image with a function representing the effective source size [64, 65].

Figure 2.2 is a demonstration of the multislice simulation approach, showing the image
contrast produced by BF, ABF and ADF imaging modes applied to the same sample
(the perovskite SrTiO3). This simulation uses an aberration-corrected probe with an
accelerating voltage of 300 kV and incorporates thermal effects using the “frozen-
phonon” approximation. The differences between the two bright-field modes is clear,
as the removal of the central portion of the beam in ABF leads to both contrast reversal
and an improved contrast of the light oxygen atomic columns (Fig. 2.2b). The 80 mrad
ADF detector in Figure 2.2c is referred to by some in the literature as high-angle ADF
(HAADF); this is to distinguish it from smaller medium-angle ADF (MAADF) detectors.
The main effect of changing the inner angle is to change the exponent α in the Zα

intensity relationship, with larger inner angles such as the 80 mrad HAADF detector
(Fig. 2.2c) having a higher α. The general term ADF is used throughout the rest of this
work, and the specifics of each simulation or experiment are given to clarify the results
obtained.
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a) b) c)

Figure 2.2: Simulated aberration-corrected STEM images of a 25 nm thick sample of SrTiO3,
viewed down the (001) direction. The probe convergence semi-angle was 25 mrad, and the
accelerating voltage was 300 kV. (a) BF detector (0–5 mrad). (b) ABF detector (12–25 mrad).
(c) ADF detector (80–250 mrad). Positions of Sr (blue), Ti–O (green) and O (orange) atomic
columns are marked. Scale bar: 0.5 nm.

2.2.4 Spectroscopy in the STEM

The majority of electrons passing through a thin sample are elastically scattered and
so do not lose energy before arriving at the detector. Some electrons do lose energy,
however, through inelastic scattering, and as a result contain information about the
sample response to the accelerated electrons over a large range of energy losses. These
responses can include quasi-elastic phonon scattering, plasmon scattering, or the
ionization of inner-shell electrons [44]. The amount of energy lost will depend on the
elements and oxidation states within the material, and so the inelastic electrons can
be used for spectroscopic analysis in conjunction with the standard modes of image
formation. One method is to filter out electrons of a specific kinetic energy before
the detector, meaning the image formed depends on the energy loss and therefore,
indirectly, the composition of the sample. This is known as energy-filtered TEM
(EFTEM) [41].

Instead of filtering out specific electron energies, an alternative is to record a spectrum
of energy losses, which will have features again dependent on the sample composition.
This is known as electron energy loss spectroscopy (EELS), and as shown in Figure 2.1,
the use of annular detectors in STEM means that EELS and ADF imaging can be carried
out simultaneously. The low-loss region of the energy spectrum can, for example, be
used to determine optical properties of the system, whilst at higher energy losses the
ionization edges can be used for identifying elements and understanding the bonding,
coordination and band structure of the specimen [52]. Crucially, the focused probe
facilitated by aberration correctors provides the ability to map elemental and chemical
properties of a specimen at very high spatial resolution, and be matched closely with
the ADF image. The low energy spread of the FEG as an electron source is also an
important factor in EELS imaging.
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As well as the absorption spectroscopy of EELS, further mapping can be conducted
using emission spectroscopy, namely recording the energy of emitted X-ray photons
resulting from the electron-sample interaction. This is known as energy-dispersive
X-ray spectroscopy (EDS or EDX) [66, 67]. Both EDS and EELS have lower scattering
cross-sections than ADF-STEM, so dwell times must be longer (or probe currents higher)
for quantification and characterization using these spectroscopic methods. This can
cause problems with noise when imaging beam-sensitive materials, or with temporal
resolution when attempting to analyze dynamic behaviour in which the sample is
changing over time.

2.2.5 Electron tomography

Transmission electron microscopy is by its very nature a two-dimensional imaging
technique, with each image being a projection of a 3D object. For a successful,
complete characterization of a material, extracting and understanding the 3D structure
is often crucial. Reconstructing a 3D structure from 2D projections or slices is known
as tomography, and its applications are by no means limited to electron microscopy;
tomography is also widely used in medical contexts with X-ray imaging and magnetic
resonance imaging (MRI). Here the discussion is limited to (S)TEM tomography, where
a series of 2D projections are recorded by rotating the sample about one or more tilt
axes, and a processing algorithm applied to reconstruct the 3D object.

A number of tomographic reconstruction methods have been developed for both
general and EM-specific applications, and two particular approaches stand out in
STEM imaging. The compressed sensing (CS) approach of Leary et al. utilizes powerful
aspects of mathematical theory that enable the robust recovery of undersampled signals
using a small number of carefully-selected observations [68]. The CS technique not
only reduces many of the reconstruction artifacts of other algorithms, but the need for
a smaller number of projections vastly improves the time necessary for acquiring a tilt
series (important for time-resolved tomography) and also reduces the total electron
dose received by the sample, which is crucial for beam-sensitive specimens such as
zeolites, polymers and biological materials [69].

The second technique of interest is the discrete tomographic approach of van Aert
et al. [70], which utilizes the quantitative nature of ADF-STEM imaging to count the
number of atoms in a projected atomic column and combine this information with
prior knowledge about the crystallographic structure of the material. The number of
projections needed for a successful reconstruction is again reduced, bringing benefits
to preventing beam damage, whilst resolution down to the level of single atoms is
obtained. Quantitative ADF imaging has also been used alongside atomistic modelling
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for the reconstruction of nanoparticles in 3D using only a single projection and a set of
sensible assumptions about the structure [71, 72].

In contrast to acquiring many projections of a single object around a tilt axis, a common
methodology in the biological sciences is to take a single image of many thousands of
identical objects frozen onto a support in random orientations. Aligning and clustering
the images by similarity provides the necessary information for the 3D structure to
be recovered [73]. This is known as single particle cryo-electron microscopy [74],
and the main motivation is that biological specimens are much more sensitive to the
electron beam and so cannot withstand more than a single exposure, let alone sufficient
images for a tilt series. Hardware and software developments have led to significant
advances in cryo-EM capabilities [75], and near-atomic-resolution reconstructions are
now possible [76].

As well as the tomographic reconstruction methods mentioned above, the stable,
focused probes facilitated by aberration correctors enable the use of the reduced
depth-of-field to recover information in the z-direction parallel to the optic axis. By
systematically varying the focus of the microscope the specimen is “depth-sectioned”
in a fashion similar to optical confocal microscopy. While the resolution in the image
plane is often sub-ångstrom, the depth resolution is typically more limited. The
technique has, for example, been used to successfully image screw dislocations in
gallium nitride [77].

2.2.6 In-situ electron microscopy

Electron microscopes typically require near ultra-high vacuum (UHV) conditions to
protect the electron source and to make the passage of the high-energy electrons
through the column to the detector as smooth as possible. UHV conditions are atyp-
ical of the environments most catalysts and nanoscale devices operate in, making it
crucial to understand the difference in behaviours observed in the microscope and in
real operating environments. An even better solution is to develop methods for con-
ducting reactions inside the electron microscope, otherwise known as in-situ electron
microscopy [78].

One approach to in-situ electron microscopy involves the use of a cell sandwiched
between two semi-transparent windows and integrated into the sample holder. Liquids
or gases can then be introduced into the cell and reactions observed through the
transparent windows [79]. The thickness and transparency of the windows and the
cell itself is crucial in determining the achievable signal-to-noise ratio and resolution.
An alternative approach devised by Gai & Boyes is the environmental STEM (ESTEM),
which uses differential pumping to allow gases into parts of the electron column while
protecting the electron source [34], thus removing the need for the windows of a liquid
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cell. Combined with further developments with heating and cryo-holders to control
the temperature and microelectromechanical systems (MEMS) devices to incorporate
strain and measure mechanical responses, it is now possible to follow the development
of reactions in controlled, relevant environments all the way down to the scale of single
atoms [36].

2.3 Alternative methods for single atom imaging

Electron microscopy is a powerful technique for imaging and characterization at the
atomic scale. However, it is only the development of aberration correctors and related
hardware in the last 20 years that has enabled “routine” imaging of single atoms. Prior
to these advances, scientists interested in structure of materials at this level relied on a
number of other techniques, each with their own advantages and disadvantages. Two
of the main techniques for direct imaging of single atoms are discussed below, and
later chapters will examine how atomic resolution STEM can provide complementary
information to these techniques.

2.3.1 Field ion microscopy

Field ion microscopy (FIM) was the first technique to “see” individual atoms, a result of
work by Müller and Bahadur in 1955 [80]. A sharp needle specimen inside a chamber
is positively charged such that the electric field at the tip is very large. The chamber
is filled with an imaging gas, typically He or Ne, and at the tip the gas atoms are
ionized and accelerated away onto a fluorescent screen, mapping the electric field
distribution at the tip. This can then be related directly to the topography of the
surface of the tip, and, by maintaining the sample at a low temperature (ca. 50 K), the
spatial resolution is sufficient to image surface atoms directly [81]. Figure 2.3 shows
an FIM image of the surface of a platinum needle produced using a He–Ne imaging
gas, with the sample cooled to ca. 4 K [82]. Increasing the temperature encourages
thermally-activated surface diffusion, and FIM has been used to study diffusion in
a vast number of systems [83]. If the electric field is increased further, the surface
atoms themselves are ionized and evaporate, enabling the specimen to be investigated
layer-by-layer. This leads to the related technique of atom probe tomography (APT) for
the 3D reconstruction of samples with single-atom resolution [81].

Although FIM and related atom probe techniques are powerful methods for single
atom imaging, the high electric fields place a limitation on the samples which can
be examined, and surface diffusion studies are typically limited to self-diffusion of
refractory metals such as tungsten and platinum. The electric fields can also affect
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Figure 2.3: FIM image of platinum, with each bright spot corresponding to a Pt atom on the
surface of the sample. Reproduced from Ref. 82.

the diffusion itself, while the low temperatures, clean specimens and high vacuum
conditions required make FIM unsuitable for in-situ studies.

2.3.2 Scanning probe microscopy

Scanning probe microscopy (SPM) uses a physical probe to image the surface of a
specimen, and began with the development of the scanning tunneling microscopy
(STM) in 1982 by Binnig and coworkers, which famously resolved the Si(111)-7×7
surface reconstruction with atomic resolution [84]. In STM a conducting tip is placed
very near to the surface of interest, and a voltage bias applied. This enables electrons
to tunnel between the tip and surface, and the resulting current contains information
about the local density of states of the surface at the tip position. By scanning across
the surface in a raster fashion, an image of the surface is built up [85]. The related
technique of atomic force microscopy (AFM) instead uses the mechanical force between
the tip and the surface, so does not require a conducting specimen [86]. Recently it
was shown that terminating the AFM tip with a carbon monoxide molecule enables the
imaging of single carbon atoms inside benzene rings [87, 88].

The spatial resolution of 0.1 nm is comparable to STEM, while a depth resolution of up
to 0.01 nm makes SPM ideal for the study of surface and features such as steps and
channels [89], provided the specimen is very flat so as not to obstruct the passage of
the probe or damage the tip. In Figure 2.4, the ridges present in the reconstructed
surface of Au(100) are identified by the changes in intensity [90]. Also present are
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Figure 2.4: STM image of the reconstructed Au(100) surface. Scale bar: 1 nm. Reproduced
from Ref. 91.

characteristic streaking artifacts in the horizontal scan direction, which can arise from
sample movement during acquisition.

While typical SPM image acquisition time is a few minutes, with careful vibration
control and electronics design, video-rate STM has been achieved and used to directly
image surface diffusion [92–94]. The STM has also been used to manipulate individual
atoms on surfaces, opening up a number of applications for nanofabrication of devices
at the smallest possible scale [85]. Many of the early experiments with SPM required
ultra-high vacuum conditions and cooling to very low temperatures. It is now possible
to perform experiments in the presence of liquids and gases and at moderate tempera-
tures for in-situ experiments with catalysts [95, 96], although this typically comes at
the expense of atomic resolution [97]. The obvious drawback of SPM techniques is
that they are inherently surface-only tools, and no information is recorded about the
bulk of the sample, in contrast with the projected 3D information that can be obtained
with (S)TEM.

2.4 What are the challenges for single atom STEM?

The analytical capabilities of the STEM make it ideally suited for exploring and charac-
terizing the properties of small clusters and single atoms [98]. Such investigations are
not without their challenges, however, and this section briefly outlines two of the major
issues faced in single atom STEM imaging. The first concerns reducing the dose to
reduce the effects of the electron beam on the sample, and the corresponding increase
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in noise this brings. The second focuses on time-resolved imaging. Atom motion is to
be expected in any in-situ study taking place at an elevated temperature, and that is
before any electron beam effects are considered. It is therefore necessary to push the
temporal capabilities of the STEM to capture atomic motion where possible.

2.4.1 Low-dose imaging

Imaging single atoms with ADF-STEM brings with it significant challenges, the most
important being the effect of the electron probe itself on the sample under investigation.
Individual electrons accelerated through a few tens or hundreds of kV have sufficient
energy to knock even a strongly-adsorbed adatom completely off a substrate, and
the continual bombardment from the electron probe also leads to localized sample
heating [44]. At lower beam energies, the major mechanism of beam damage is
changes in the chemical bonding of the specimen as a result of ionization by the
incoming electrons. This is known as radiolysis [60].

Reducing the effects of the electron beam is therefore crucial for accurate and robust
imaging of beam-sensitive samples. This can be solved in two related ways. First,
the electron accelerating voltage can be reduced to minimize the chance of knock-on
damage by the probe electrons, which is the main mechanism of damage above a few
keV. The maximum energy transferred in a collision between an accelerated electron
and an atom is given by the expression [99]:

Emax (U) =
2eU

(
eU + 2mec

2
)

mnc2
(2.2)

where U is the accelerating voltage, me is the mass of an electron and mn is the
mass of the atomic nucleus. If the binding energy Ed of an atom is less than Emax

then the electrons have sufficient energy to displace the atom out of a crystalline
lattice. Crucially, adsorption energies of atoms on surfaces are typically lower than bulk
cohesive energies, while surface diffusion barriers can be as small as 0.05 eV [100].
The energy of the electron beam must therefore be reduced accordingly if the effects of
these collision processes are to be avoided or mitigated [101]. Figure 2.5 plots this
as a function of atomic number for two different beam energies, and highlights that
even 80 kV electrons have sufficient energy to encourage the surface diffusion of many
first-row transition metals. For imaging 2D materials such as graphene, beam energies
of 60 kV or less are necessary [51]. Although the reduction in energy reduces the
electron wavelength and therefore theoretical resolution of the microscope, the limiting
factor in resolution is typically the finite source size and aberrations, so this change is
negligible. The development of aberration correctors in particular has made the idea of
low-voltage “gentle STEM” a reality for routine single atom imaging [102, 103].
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Figure 2.5: The maximum energy transferred parallel to a surface between an accelerated
electron and an atomic nucleus for two typical STEM voltages. Typical values for adsorption
energies (Eads) and surface diffusion barriers (Esd) are marked with dashed lines, and are taken
from Ref. 101.

The expression in Equation 2.2 assumes a head-on collision between the electron and
the nucleus, but in reality most electrons are only weakly scattered by the nucleus. The
average energy transferred therefore depends on the scattering cross-section of the
atom, and so the second mechanism for mitigating electron beam effects is to limit
the dose received by the sample, since this reduces the chance of an electron–atom
collision of sufficient energy and leading to knock-on damage or radiolysis. Organic
and polymeric specimens in particular are susceptible to severe radiation damage
at doses corresponding to 1 e- scattered per atom or less, making atomic resolution
imaging in such samples very difficult indeed [44, 104]. Minimizing the electron dose
can be achieved by reducing the probe current (typically 10-11 A in STEM), the probe
dwell time per pixel (typically 10-6 s), or both. More complicated methods for total
dose reduction per image are discussed in Chapter 3, whereby the image is subsampled
such that only a fraction of the pixels are in fact exposed to the electron beam, reducing
the electrons interacting with a given area of the specimen. The missing observations
are then filled in during post-processing using CS methods.

Even though scattering cross-sections in ADF-STEM are considerably higher than in
EELS and EDS, only a tiny proportion of electrons are scattered through a sufficient
angle to be detected by the annular detector [105]. While the electron dose received
by the sample at a given STEM probe position may be 1000 e-, the number of electrons
recorded on the ADF detector could be 100 times smaller. At this level, careful treatment
of the counting statistics and noise is very important. The arrival of electrons at a
detector is governed by Poisson statistics, and although at higher doses this can be
well-approximated by a normal distribution (which is often much simpler to model
mathematically when processing or analyzing the images), at such low counts this
approximation is less valid. Further noise can be introduced during the readout process
from the detector, convolving the Poisson noise with Gaussian noise and giving rise to
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a mixed noise model. This distinction between noise models is particularly pertinent
for accurate noise removal and atomic-scale characterization with Z contrast imaging,
and is discussed in more detail in Chapters 3 and 4.

2.4.2 Time-resolved imaging

Acquiring a series of STEM images to provide temporal resolution alongside atomic
spatial resolution followed not long after Crewe’s first STEM experiments, with the
installation of a video camera to record the signal from the ADF detector [106].
Experiments in recent years using aberration-corrected STEM have led to new insights
in atom motion on surfaces [107], dynamics of dopant atoms in graphene [108, 109],
bulk diffusion of dopant atoms [110], and reversible reaction dynamics [111], with
the limiting factors including noise, beam-induced changes, and the rate at which the
scan coils can move the probe across the specimen.

Temporal resolutions of up to 10 frames per second (fps) have been achieved, but
clearly rapid STEM imaging relies on reduced pixel dwell times, resulting in the
same problems with low-dose imaging discussed above. There are also hardware
limitations with the rate at which the scan coils in the STEM are able to scan in a stable
manner [44], akin to the problems faced in video-rate SPM. This can be mitigated by
using coarse pixel sizes; while picometre precision of atomic positions can be obtained
by using small pixel sizes, if the interest lies in ångstrom-scale atomic motion, then
the precision needed for atom localization can be reduced; each atom need only be
a few pixels across. This idea is discussed further in Chapter 4. A second reason for
coarse pixel sizes takes into account the shape and size of the electron probe. Even
after aberration correction, typical probes have a full-width half-maximum (FWHM) of
ca. 60 pm [60]. Selecting a pixel size less than this value means that a large portion of
the probe intensity falls outside of the pixel being observed. The probe tails can thus
have a significant effect on the sample, possibly causing atomic motion or damage that
cannot be recorded. An example of this effect is investigated in Chapter 7.

Even with coarse pixel sizes, sensitive detectors and robust noise-removal algorithms,
the problems of sufficient signal and scan coil stability means that STEM is probably
limited to a temporal resolution of 10-6 s per pixel, equivalent to about 100 fps
assuming a 128×128 pixel field-of-view. While smarter scanning patterns and improved
hardware may in future improve this resolution, it is unlikely that STEM will achieve the
nanosecond timescales at which atomic diffusion takes place [112]. STEM therefore
captures the “before” and “after” states of an atom moving between stable sites,
reinforcing the need to minimize any unnecessary electron beam effects that might
obscure the underlying behaviour.
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To image events at improved temporal resolution, one must turn to the parallel
illumination of TEM for higher frame rates. For example, new direct electron detectors
are capable of acquisition rates of 1000 fps or more with excellent sensitivity and noise
characteristics [113]. Separately, the field of ultrafast electron microscopy pioneered
by Ahmed Zewail uses rapid pulses of electrons to image materials at the femtosecond
(10-15) timescale [10]. This stroboscopic technique makes it possible to image atomic
motion, resonance behaviour and chemical bonding with unprecedented resolution that,
crucially, is well within the reach of ab initio molecular dynamics calculations [114].
The method can also be extended further with the tomographic techniques discussed
above for “four-dimensional electron microscopy” [115, 116].

2.5 Summary

This chapter has outlined the characterization capabilities of the scanning transmission
electron microscope. A particular focus is the multiple signals that can be acquired with
sub-ångstrom resolution, each providing new insights into the properties of materials at
the atomic scale. Image simulation methods provide a direct link between quantitative
ADF imaging and atomistic modelling techniques, and electron tomography enables
the reconstruction and analysis of materials in three dimensions. The combination of
spatial and spectroscopic imaging modes makes STEM an attractive characterization
tool compared to other microscopy methods such as SPM or FIM, but there are still
challenges surrounding the beam–specimen interaction to overcome in order to fully
exploit the temporal capabilities of the microscope. The next chapters establish a
number of methods to address these challenges, combining computational imaging
methods with machine learning and statistical analysis to develop a framework for
time-resolved imaging of single atoms using STEM.





Chapter 3

Low-rank methods for electron
microscopy

3.1 Introduction

Electron microscopy now incorporates a wide range of techniques for both imaging
and characterizing materials. In addition to spatial information in two-dimensional
imaging and three-dimensional tomography, further data dimensions arise from video
microscopy (temporal), EELS and EDS (spectral), and diffraction (reciprocal space).
As the volume of data collected in microscopy experiments grows, there is an ever-
increasing need to process the datasets in a manner that extracts the key information
content. Since manual analysis is not practical for large datasets, machine learning
methods are a key step to analyzing and interpreting the information. These methods
must be able to handle not only the size and complexity of the data, but also robustly
deal with noise and missing data, which are common problems in electron microscopy.
Objective, reproducible analysis is only possible through rigorous consideration of the
image acquisition process, noise characteristics, and other experimental constraints and
complications. Of particular interest for in-situ and time-resolved microscopy studies
are algorithms capable of real-time analysis, offering the potential for denoising,
processing and analysis at the microscope.

This chapter demonstrates the applications to electron microscopy of low-rank machine
learning methods, which exploit correlations in large datasets to extract the most impor-
tant features. Building on a number of commonly-used methods for multi-dimensional
analysis, a robust low-rank denoising algorithm is introduced*, and example applica-
tions in time-resolved electron microscopy are used to demonstrate the performance

*The work on singular value thresholding for denoising time-resolved image sequences (Section 3.3)
was published in Ref. 117 in collaboration with R.K. Leary and P.A. Midgley.
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and broad applicability of the algorithm. The second half of the chapter focuses
on online algorithms for denoising and for subsequent analysis such as background
subtraction, which are key steps in the workflow for processing large datasets. The
potential for real-time processing in electron microscopy using these online algorithms
is assessed with several pertinent examples, including the problem of missing or
corrupted data.

3.2 Matrix factorizations in electron microscopy

In electron microscopy, significant attention has been focused in recent years on a
family of matrix factorizations and decompositions, which fall under the umbrella of
unsupervised machine learning methods [118]. Matrix factorizations typically seek to
approximate the original data with a lower-dimensional representation. Dimensionality
in this sense has a specific meaning, and refers to the dimension spanned by the
columns (or rows) of the matrix, otherwise known as the matrix rank. Seeking a low-
rank representation of a dataset enables otherwise hidden correlations to be exploited,
thus aiding the interpretation of the experimental observations.

Let X0 be an m×n data matrix of m features and n observations. Matrix factoriza-
tion methods seek to decompose the data into factor matrices A and B, according
to [119]:

X0 = ADBT

=
r∑

i=1

λiaib
T
i (3.1)

where A is a m×r matrix, B is a r×n matrix, and D is a r×r diagonal scaling matrix.
Here r represents the rank of the matrix, and when r ≪ m,n the matrix is said to
be low-rank. In cases where r is large it is often desirable to instead find a low-rank
matrix approximation where X̂ ≈ X0; this will be explored in detail in Section 3.3.
The rank 1 variables aibT

i are known as components of the matrix X0, with ai typically
referred to as factors and bi as loadings.

Solving Equation 3.1 relies on appropriate constraints, otherwise there are an infinite
number of combinations of A and B. The next section discusses some of the more
common methods for applying constraints, and their respective applications in electron
microscopy.
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Figure 3.1: PCA applied to 2500 random samples drawn from a bivariate Gaussian distribution
with mean (1.5, 1.5). The two arrows are the eigenvectors of the covariance matrix of the
points, scaled by the eigenvalues.

3.2.1 Principal component analysis

Principal component analysis (PCA) imposes an orthogonality constraint on Equa-
tion 3.1 to transform the data into a set of linearly independent components [120].
The first principal component is chosen to explain as much of the variance of the
observations as possible. Subsequent components are then chosen to explain as much
of the remaining variance whilst being orthogonal to the previous components. It
is typically conducted by applying an eigenvalue decomposition to the covariance
matrix of the data, since each orthogonal principal component is an eigenvector of the
covariance matrix. Figure 3.1 is a simple example using random samples drawn from a
bivariate Gaussian distribution. The principal components highlighted give the new
orthogonal axes for the transformed data. Alternatively, one can apply a singular value
decomposition (SVD), defined as X0 = UΣVT . U and V are both orthogonal matrices
(UTU = UUT = I). The values along the diagonal of Σ are denoted as σi, and are
known as the singular values of the matrix X0. They are sorted in descending order,
and are a measure of how much of the data variance is explained by each principal
component.

PCA is often used for denoising electron microscopy datasets by filtering out the
unwanted noise components, which are typically uncorrelated, and leaving behind
a low-rank representation of the dataset [121]. This is demonstrated in Figure 3.2a,
where Gaussian noise has been added to a simulated ADF-STEM image of SrTiO3.
The scree plot in Figure 3.2b is derived from the singular values of the noisy image,
and shows that ca. 99.7% of the variance in the image can explained by a linear
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Figure 3.2: (a) A simulated ADF-STEM image of SrTiO3 is corrupted by a small amount of
Gaussian noise. The atomic columns are marked: Sr (blue), Ti–O (green) and O (orange).
(b) The scree plot obtained by applying PCA to the image shows most of the variance in a is
explained by the first two principal components. (c) The image reconstructed from the first
two components (shown right), which correspond to the Sr and Ti–O columns. The third
component is mostly noise. (d–f) Rotating the image by 10° destroys the low-rank property.

combination of just two components, which in this case are the heavy Sr atomic
columns and the lighter Ti–O atomic columns. The remaining principal components
contribute very little to the image, and essentially explain the uncorrelated Gaussian
noise. By removing these components, the image can be reconstructed as a low-rank
approximation (Fig. 3.2c). The low-rank property is critical, as Figure 3.2d–f shows
that even a small rotation off-axis destroys the correlation between matrix rows (or
columns). Similar problems would be encountered for aperiodic features such as
vacancies or dopant atoms. To overcome this problem, one instead takes a stack
of similar images, for example video frames or slices along the energy axis of an
EELS spectrum, and flattens the images into vectors. The assumption is that while
variations along rows or columns within in image may be considerable, correlations
along the third axis are likely to be stronger and maintain the low-rank property. Such
an approach is suitable for most practical applications. Finally, although PCA is an
effective denoising method when the low-rank assumption holds, selecting the number
of components to retain is not always as clear as Figure 3.2b, and robust methods for
automating this selection are necessary; this is the focus of Section 3.3.
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3.2.2 Physical interpretability

For denoising applications PCA is a straightforward and effective tool, since the compo-
nents themselves are not necessarily of interest. However, in many cases in electron
microscopy, the components themselves are extremely useful, as they correspond to
individual features of the dataset. Figure 3.2 presented a very simple application, with
the first two principal components corresponding approximately to the Sr and Ti–O
atomic columns.

Realistically, most electron microscopy datasets are not as simple as this example, and
often exhibit principal components that are difficult to interpret in a straightforward
physical manner, even though they accurately explain the variance of the dataset.
One particular problem for electron microscopy is that PCA does not prevent negative
values from appearing in the factors or loadings, which is problematic considering
the positive values inherent to count data. Non-negative matrix factorization (NMF)
seeks to overcome this issue by factorizing the data into two matrices with no negative
elements, instead of the orthogonality constraint imposed by PCA. NMF has been
successfully applied to the analysis of surface plasmons with EELS [122, 123], as well
as for decomposing scanning electron diffraction data for local orientation mapping of
crystals [124, 125].

The non-negativity constraint typically leads to improved interpretability of the NMF
components over PCA, as shown in Figure 3.3. Here, three 64×64 pixel images
(Fig. 3.3c) have been flattened (or vectorized) to form a 4096×3 matrix. This is
multiplied by a mixing matrix made up of three different signals (Fig. 3.3b) to give
a stack of vectorized images with dimensions 4096×1024. The mean image of these
observations is shown in Figure 3.3a, after a small amount of Poisson noise has
been added. The observation matrix is first decomposed using PCA, which struggles to
accurately recover the three component images (Fig. 3.3d); although these components
do explain the variance of the dataset, they are not recognisable compared to the
original images. NMF performs much better on the other hand, as can be seen in
Figure 3.3e, by constraining the components to be strictly non-negative.

Instead of non-negativity, independent component analysis (ICA) enforces the sta-
tistical independence of each component, which has proven particularly useful for
spectroscopic analysis in electron microscopy [126–128]. An example of ICA is shown
in Figure 3.3f, where two of the recovered components are similar to the NMF results.
The failure to fully isolate the second and third components is a result of the small
vertical correlation between the letters O and H.
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Figure 3.3: (a) The mean image from a stack of 1024 images formed by the mixing matrix of
the three signals in b and the three component images in c. A small amount of Poisson noise
has also been added to the stack. (d) The first three components recovered by PCA. (e) The
three components recovered by NMF. (f) The three components recovered by ICA.

3.2.3 Challenges

Despite the improvements in interpretability gained by NMF and ICA, the problem of
selecting the appropriate number of components to describe the dataset remains. Too
few components and the reconstructed result is underfitted; too many components and
the model is overfitted to describe the noise. Usually a clear “elbow” in the PCA scree
plot is sufficient to identify the point at which the remaining components are mostly
describing the noise, but in many situations it is less obvious. Section 3.3 investigates
automated, objective methods for selecting this cut-off.

Furthermore, although PCA is a very common method for noise removal prior to
subsequent analysis, the method is itself susceptible to the specific noise conditions due
to a least-squares assumption in the solver. For Gaussian noise, where the noise variance
is independent of the underlying pixel intensity, this least-squares assumption is valid.
However, for conditions such as Poisson noise this no longer holds, since the variance
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of each data point now depends on the value of that data point. Weak but important
features are often hidden in the factorization results due to the noise bias. A simple yet
effective Poisson normalization method was presented by Keenan & Kotula [129, 130],
which can improve the extraction of physically-significant features using PCA. For
scenarios where the electron or photon counts are extremely low (typically <10),
Salmon et al. have developed an effective Poisson PCA algorithm [131]. As well as
Poisson noise, PCA can also be affected by large, sparse errors caused by missing pixels
or X-ray spikes, and this problem is addressed in depth in Section 3.4.

Finally, the size of datasets can restrict the tools available for processing and analysis.
Even on modern computer hardware, matrix factorizations and decompositions for
large datasets can be extremely costly both in terms of floating-point operations and
memory requirements. In particular, the SVD algorithm used for PCA and many other
methods exhibits poor scaling behaviour for large datasets. As microscopy hardware
develops and datasets grow in size and complexity, overcoming these computational
challenges is critical for interpreting experimental results. Incremental SVD algorithms
have been developed for solving the memory restriction by only considering a fraction
of the dataset at a time [132], and a related technique is discussed in Section 3.4.

3.2.4 Tensor methods

The use of matrix methods in electron microscopy assumes that the multi-dimensional
dataset can be flattened into a 2D matrix for analysis. In practice this is a straightfor-
ward process; for example, an EELS dataset will have a spectral axis and two spatial
axes, and the latter two can be combined to give a single navigation axis. However, as
new dimensions are added (such as time, or complementary signals such as EDS), or
as the size of the datasets increases, careful consideration of these operations is neces-
sary to ensure the analysis remains both physically meaningful and computationally
feasible.

Tensor decompositions are a natural extension to the matrix methods presented in this
work. Operating on the dataset in its original multi-dimensional form requires new
algorithms, since the definition of a tensor rank is less clear, but can bring additional
benefits for both data storage and the computational complexity of the analysis [119].
Constraints such as non-negativity are straightforward to incorporate [133], and
tensor methods also offer additional flexibility such as enforcing non-negativity in
one dimension and enforcing independence or sparsity in another. Datasets can also
be linked together for scenarios where only some components are common between
datasets [134], as might arise in combined EELS/EDS experiments where the cross-
sections of some elements can be very different.
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3.3 Singular value thresholding for denoising

Figure 3.2 demonstrated that a noisy dataset can be cleaned by exploiting the low-rank
structure within the data. Using only a subset of the principal components gives a
low-rank approximation to the noisy dataset, which then gives a closer representation
of the original low-rank data prior to corruption by noise. Restating this problem
more formally, given a corrupted observation Y of a low-rank matrix X0, the goal of
low-rank matrix approximation is to recover X0 as accurately as possible. A natural
approach is to find the optimal solution to:

arg min
X

∥Y −X∥2F + λ rank (X) (3.2)

where X is the decision variable and λ is a regularization parameter [135]. ∥Y −X∥2F
represents the square of the Frobenius norm, i.e. the sum of the squared differences
of the matrix elements,

∑
ij |Yij −Xij |2. Stating the problem in this way imposes a

low-rank constraint on the estimated matrix X, whilst ensuring X is also a good fit of
the observations, Y.

As with many other machine learning approaches, the selection of appropriate parame-
ters can be a significant challenge. The previous section showed how the number of
principal components used to approximate a dataset with PCA needs careful considera-
tion to avoid either under- or overfitting. Robust, objective methods for parameter se-
lection are therefore critical to developing and applying machine learning to ever-larger
and more complex datasets, where manual parameter tuning is both time-consuming
and subjective. This section also discusses the parameter selection issue, and it is
addressed for the problem of denoising under specific noise conditions, although many
of techniques involved have found applications in other areas of mathematics and
signal processing [136].

3.3.1 Nuclear norm minimization

In practice, optimization of the rank function in Equation 3.2 is an intractable problem.
However, Candès and Recht demonstrated a powerful approach involving minimization
of the nuclear norm of the matrix as a convex approximation to the rank function [135].
Nuclear norm minimization seeks to approximate X0 by an optimal low-rank solution
X̂λ according to:

X̂λ = arg min
X

∥Y −X∥2F + λ ∥X∥∗ (3.3)

where ∥X∥∗ is the nuclear norm of X, which is defined as the sum of the singular
values of a matrix,

∑
i σi [135]. Cai et al. showed that a solution to Equation 3.3

can be found in a computationally attractive manner using the soft singular value
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thresholding (SVT) operation [137], according to:

X̂λ = SVTλ (Y) = USλ (Σ)V
T (3.4)

where Sλ is the operator, and for each singular value σi:

Sλ (σi) = max [σi − λ, 0] (3.5)

The soft thresholding operator contrasts with the typical hard thresholding approach
of PCA, which retains only those principal components with singular values above a
threshold λ [130]. Equation 3.5 instead reduces all the singular values towards zero
by a fixed amount.

For practical application to images and image sequences, a modification to Equation 3.4
is made. Instead of applying a single threshold value to all singular values, a weighted
threshold can be applied on the basis that larger singular values correspond to more
important image features, and so should be reduced by a smaller amount [138].
Defining the weighted nuclear norm of X as ∥X∥w,∗ =

∑
iwiσi, where wi ≥ 0 is a

weight assigned to the singular value σi, a solution is now sought for:

X̂λ = argmin
X

∥Y −X∥2F + ∥X∥w,∗ (3.6)

where the parameter λ has been incorporated into the weighted nuclear norm. The
approach taken in Ref. 138 uses weights wi in the order 0 < w1 < . . . < wn (based
on the fact that the singular values of a matrix are always sorted in descending
order σ1 > σ2 > . . . > σn). This ensures the use of soft singular value thresholding
remains valid [139]. Applying an exponential weighting scheme instead reduces the
computational complexity compared to the original approach of Ref. 138. Letting
σmax = max [Σ], the exponentially-weighted SVT operator incorporating the parameter
λ is:

Wλ (σi) = max

[
σi − σmax exp

(
− σ2i
2λ2

)
, 0

]
(3.7)

and the weighted SVT function is:

WSVTλ (Y) = UWλ (Σ)V
T (3.8)

3.3.2 Application to time-resolved microscopy

In forming a so-called Casorati matrix, whose columns are the vectorized frames from
an image sequence, the correlation between frames in the sequence means that such
a matrix will be low-rank [140]. This Casorati matrix is then suitable for the nuclear
norm minimization treatment described above.
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Figure 3.4: The construction of a Casorati matrix C from patches of an image sequence x with
t = 1, . . . , T frames. Figure reproduced from Ref. 117.

In reality however, the size of the spatial dimension will often exceed the size of the
temporal dimension (nxny ≫ T , where nxny is the number of pixels in each frame
and T is the number of frames), and this may lead to problems with the SVT approach
due to limited degrees of freedom [141]. Analyzing the image sequence via a patch-
based approach can overcome this problem. The patch-based approach is illustrated in
Figure 3.4, whereby a 3 × 3 pixel patch is extracted from each frame and vectorized to
form a column of the Casorati matrix C. This patch-based adaptation means that local
rather than global spatio-temporal correlations are considered, giving a more flexible
algorithm to cope with variations across image frames, as well as being straightforward
to parallelize for modern computer architectures.

Figure 3.5 shows an example of weighted SVT applied to a Casorati matrix formed
by vectorized images of a 2D Gaussian peak (representing, for example, an atomic
column). The resulting Casorati matrix is in fact rank 1, as can be seen in the singular
value plot in Figure 3.5e. These singular value plots can be interpreted in a similar way
to the scree plots of PCA, in which most of the variance in the Casorati matrix (and
by extension the original image sequence) can be explained by the first component,
and the remaining components only describe the noise in the dataset (Fig. 3.5f). In
PCA, these remaining components would be discarded to reconstruct the low-rank
approximation, whereas in nuclear norm minimization all the components are retained,
but their influence on the result is reduced according to the soft thresholding operation
(Fig. 3.5d,g).

When applying the SVT algorithm to video denoising, it is important to ensure that the
Casorati matrix formed by patches from consecutive frames is indeed low-rank [141].
In cases where motion between frames is significant this assumption may no longer
hold. This is illustrated in Figure 3.6b, where the unaligned patches from a simulated
image sequence do not form a low-rank Casorati matrix. To overcome this problem,
the motion of a patch through the sequence can be estimated, and the trajectory
information used to align the individual patches and hence reduce the rank of the
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Figure 3.5: (a) A stack of frames constituting a sequence in which each image contains the
same Gaussian peak. (b) The corresponding rank 1 Casorati matrix formed by the full sequence.
(c) The Casorati matrix corrupted by noise. (d) The Casorati matrix after exponentially-
weighted SVT (λ = 1.9). (e–g) Plots of the singular values of the Casorati matrices in (b–d).
Figure reproduced from Ref. 117.

Casorati matrix (Figure 3.6c). Given the position of a patch in frame t, the motion from
frame t to t + 1 can be estimated by searching the local neigbourhood in frame t + 1
for the most similar patch. An adaptive rood pattern search (ARPS) method is used to
reduce the computational cost of the motion estimation [142]. A simple median filter
is also used to improve the result of the ARPS step, although all SVT operations are
performed on the unfiltered data.

3.3.3 Optimal parameter selection

Having developed a weighted SVT function for denoising matrices and image sequences
(Eq. 3.8), the next problem is determining the appropriate amount of thresholding
to apply, as highlighted in Section 3.2.3. If λ is too large then noise is insufficiently
removed from the matrix, and if it is too small then a bias will be introduced as the
estimated matrix has a lower rank than the original. Robust and automated methods
for obtaining the optimum value of λ are of critical importance to handle this tradeoff
between a biased model and a model explaining too much of the data variance.

If Y is a noisy observation of the matrix X0, and fθ represents a denoising function
dependent on the parameter(s) θ, then it is desirable to select θ such that the difference
between the denoised signal fθ (Y) and the ground-truth X0 is minimized. Dropping
the subscript, a common method is to minimize the mean-squared error (MSE) or
risk:

θ̂ = arg min
θ

1

N

∥∥f (Y)−X0
∥∥2
F

(3.9)
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Figure 3.6: (a) Trajectory of a simulated particle through an image sequence. (b) Singular
values of the Casorati matrix formed by unaligned patches extracted from the sequence (c)
Singular values of the Casorati matrix formed by patches aligned to the reference frame t.
Figure reproduced from Ref. 117.

where N is the number of elements of the matrix. In practice, the ground-truth X0 is
not available to optimize this expression, so instead unbiased estimators of the risk
can be used such that E {MSE} = E {estimator}. Selecting the appropriate estimator
first requires a consideration of the characteristics of the signal acquisition process,
since an understanding of the detector and noise statistics is key to maximizing the
performance of the denoising algorithm.

Constructing an unbiased estimator therefore requires an accurate treatment of the
noise-generating model of the system. In an additive zero-mean Gaussian noise model,
where σ2 is the variance of the noise, the noisy matrix Y is defined as:

Y = X0 +E with E ∼ N
(
0, σ2

)
(3.10)

The unbiased estimator of the MSE in this case is known as Stein’s Unbiased Risk
Estimator (SURE) [141]. A similar Poisson Unbiased Risk Estimator (PURE) can be
derived for a Poisson noise model [143], where the noisy observations are drawn from
a Poisson distribution, P:

Y ∼ P
(
X0
)

(3.11)

For STEM image acquisition, the mixed Poisson-Gaussian noise model was introduced
in Chapter 2 as being a more appropriate and more general model by accounting for
the counting statistics of electrons arriving at the detector as well as the readout noise
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in the detector electronics. Now the noisy matrix Y is defined as:

Y = αZ+E with

Z ∼ P
(
X0

α

)
E ∼ N

(
µ, σ2

) (3.12)

where α is the gain of the detector, and µ corresponds to a detector offset. As α→ 0
the model corresponds to Gaussian noise (Eq. 3.10), and conversely, by setting α = 1
and µ, σ = 0 the model corresponds to Poisson noise (Eq. 3.11). In Appendix B the
work of Ref. 144 is extended to to incorporate a non-zero detector offset µ, and a
Poisson-Gaussian Unbiased Risk Estimator (PGURE) is defined as:

PGURE =
1

N

 ∥fλ (Y)−Y∥2F + 2µfλ (Y) + 2
(
α (Y − µ) + σ2

)
◦ ∂fλ (Y)

−2ασ2∂2fλ (Y)− (α+ µ)Y + µ

− σ2 (3.13)

where ◦ denotes the element-wise product of two matrices. Combining this estimator
with the weighted SVT denoising function (Eq. 3.8) gives a denoising algorithm called
PGURE-SVT.

In Ref. 144 the authors outlined an empirical method for calculating Equation 3.13 that
does not directly evaluate the terms ∂fλ (Y) or ∂2fλ (Y). The empirical method allows
denoising algorithms to be used as “black-box” processes, requiring no knowledge of
their partial derivatives. This empirical approach is taken for PGURE-SVT, although a
closed-form solution for Gaussian noise with SURE-SVT was derived in [141]*.

Note that in deriving the expression for PGURE, there is a restriction on the denoising
function fλ, in that it must be smooth and weakly differentiable, and the further
restriction that E

{∑
n

∣∣∣ ∂fλ∂Yn
(Y)

∣∣∣} < +∞. Denoising functions which do not meet
this requirement include hard thresholding methods, for example applied to Fourier
or wavelet coefficients or to singular values. The latter example is important when
relating SVT to PCA. Both approaches seek a low-rank approximation to a dataset, but
in PCA only those components with singular values above a threshold are retained for
reconstruction. An objective method for selecting the optimum number of components
would of course be preferable to visual inspection of the scree plot, but the hard
thresholding of the singular values means that the unbiased risk estimators presented
here cannot be applied directly to PCA.

*The issue of automated parameter selection within the tensor framework was recently addressed for
Gaussian noise with unbiased estimators [145], and also more generally using Bayesian methods [146].
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3.3.4 Noise estimation

While not relying on the ground-truth X0, the PGURE expression assumes that all
three parameters of the Poisson-Gaussian noise model, α, µ, and σ2 are known. This
is often not the case in practical applications, and the parameters must be estimated
instead. Wavelet methods are often used to estimate the amount of zero-mean Gaussian
noise [136], but estimating the parameters for mixed Poisson-Gaussian noise is more
complicated [147–149]. The approach taken here follows work in Ref. 149, and is
based on the premise that homogeneous regions of each frame of an image sequence
can be used to fit equations relating the expectation and variance of a noisy signal.
Each frame in the sequence is partitioned into regions of homogeneous variance using
a quadtree segmentation procedure [150]. A robust estimate of the mean and variance
of each region is then obtained. From the mixed noise model in Equation 3.12:

E {Yi} = αX0
i + µ (3.14)

Var {Yi} = α2X0
i + σ2 (3.15)

where the subscript i refers to the ith region from the quadtree segmentation, and
E {Yi} and Var {Yi} represent the mean and variance of the region Yi. These two
identities are combined for Equation 3.16, which shows that a linear regression in
(E {Yi} ,Var {Yi}) will provide an estimate of α and

(
σ2 − αµ

)
:

Var {Yi} = αE {Yi}+
(
σ2 − αµ

)
(3.16)

To complete the noise estimation, the values of the detector offset µ and variance σ2

must be determined from the intercept,
(
σ2 − αµ

)
. Often, µ can be estimated directly

from the image sequence to be denoised as min (E {Yi}). This will usually be the case
in fluorescence microscopy where only a fraction of the space in each image contains
signal from the fluorescing sample. This also true in general for any sequence in
which regions of the image do not contain any sample (e.g. regions corresponding to
vacuum in STEM). If a sufficient background region free of signal from the sample is
not available, for example in ADF-STEM imaging of a continuous sample or a substrate
that fills the field of view, then the solution is to obtain a separate reference image R,
using the same acquisition settings, to give the sample-free background, and therefore
µ ≈ min (E {Ri}).

3.3.5 Simulation studies

To investigate the performance of the PGURE-SVT algorithm and applicability to time-
resolved microscopy, three test sequences were taken from a recent study of particle
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Figure 3.7: Example frames from the six test sequences. (a) Microtubule, (b) Vesicle, (c)
Receptor, (d) Microtubule+clouds, (e) Vesicle+clouds, (f) Receptor+clouds. (g–l) Noisy versions
of the same frames, corrupted by Poisson-Gaussian noise with α = 0.1, σ = 0.1 and µ = 0.1.
Figure reproduced from Ref. 117. See also Movies S1–S6.

tracking methods for fluorescence microscopy [151]. Three further sequences were
generated by adding a randomly-varying “cloudy” background to the original data.
The sequences are deliberately chosen because of the differing types of particle motion,
for testing of the ARPS motion estimation procedure. The Microtubule sequence
exhibits directed motion, Vesicle exhibits Brownian (diffusive) motion, and Receptor is
a combination of directed and Brownian motion. Example frames, normalized to an
intensity range between 0 and 1, are shown in Figure 3.7 before and after the addition
of mixed Poisson-Gaussian noise. The sequences are available on the accompanying
CD (see Movies S1–S6).

We first analyze the relationship between PGURE and the MSE and show how the
estimator is a useful tool for optimizing the thresholding parameter, and also show an
example of the noise estimation procedure. The Microtubule sequence was corrupted
with Poisson-Gaussian noise according to the mixed noise model with parameters
α = 0.1, σ = 0.1 and µ = 0.1. Figure 3.8a shows the robust estimates of the local
mean and variance according to the quadtree segmentation procedure, and the solid
line is the fit of Equation 3.16 to these estimates. The slope of the fit in Figure 3.8a
therefore corresponds to the estimated value of α, and the y intercept to the estimated
value of

(
σ2 − αµ

)
.

Figure 3.8b demonstrates that when the noise parameters are known exactly, both
MSE and PGURE predict the same optimal threshold λ (the offset in the y-axis is
irrelevant here). Scenarios where each noise parameter was over- and under-estimated
while the others were held constant were then considered, to investigate the effects
of shortcomings in the noise estimation procedure. The sensitivity of PGURE to the
estimated values of α and σ is small (Fig. 3.8c,d,g,h), as although there is again a
significant offset in the y-axis, the location of the minima of the MSE and PGURE are
relatively similar.
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Figure 3.8: (a) Robust estimation of the local mean and variance after quadtree segmentation
for the Microtubule sequence corrupted with Poisson-Gaussian noise with true values αt = 0.1,
σt = 0.1 and µt = 0.1. (b) Comparison of MSE and PGURE for exact noise parameters. (c, d)
For over- and under-estimated α. (e, f) For over- and under-estimated µ. (g, h) For over-and
under-estimated σ. The red dotted line indicates the position of the minima of the curves.
Figure reproduced from Ref. 117.
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Figures 3.8e,f show that PGURE is much more sensitive to the estimate of the detector
offset, µ. This is particularly important in the case of ADF-STEM images, where a
non-zero background due to the presence of a substrate can lead to the poor estimation
of µ. This will then lead to a discrepancy in the value of λ prediced by MSE and PGURE,
resulting in too much or too little shrinkage being applied to the cleaned sequence. This
highlights the importance of either an accurate estimate of µ, or suitable specimen-free
background region(s) within the images to ensure the best performance.

The performance of the PGURE-SVT algorithm is also compared with another patch-
based method, V-BM4D, which is widely regarded as the current state-of-the-art in
video denoising [152], and incorporates a motion estimation step similar to that used
in PGURE-SVT. In this comparison, the default algorithm parameters defined in the
source code available from the authors are used [153]. V-BM4D is designed for videos
corrupted with zero-mean Gaussian noise, so here it is combined with the Generalized
Anscombe Transform for variance stabilization to deal with the Poisson-Gaussian noise
model [154]. The algorithm consists of two filtering steps, the first of which involves a
hard threshold. As stated in Section 3.3.3, this means that unbiased risk estimators
cannot be applied to automate the parameter selection unlike PGURE-SVT. The size of
each patch is also limited to 2N pixels in V-BM4D, whereas PGURE-SVT can be freely
adjusted to suit the size of the features in the image sequence.

Figure 3.9 shows clean, noisy and denoised frames from each of the test sequences.
The insets highlight particular regions of interest in each sequence; for example, two
neighbouring particles in the Vesicle and Receptor sequences. Under the challenging
noise conditions, both V-BM4D and PGURE-SVT are able to recover much of the
detail from the image sequences. The collaborative filtering and weighted aggregation
method applied by V-BM4D creates “blocking” artifacts, with round particles such as
in the Vesicle sequence having a square shape. The exponentially-weighted shrinkage
of PGURE-SVT, on the other hand, results in perceptually smoother denoising that
matches the shapes of the particles more successfully.

The perceptual benefits of PGURE-SVT are further highlighted in the three sequences
with a cloudy background, where V-BM4D again produces “blocking” artifacts and also
washes out much of the intensity variations of the clouds. This is apparent in the inset
of the Vesicle+clouds sequence, where the washed-out clouds in the V-BM4D image
make identification of the particle against the background harder than the comparable
PGURE-SVT image. It is noted that many image features appear brighter in the V-BM4D
results compared to PGURE-SVT, which is a result of the global shrinkage applied in
the weighted SVT step.
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Figure 3.9: Clean, noisy and denoised frames from six simulated test sequences. The noisy
sequences were corrupted by Poisson-Gaussian noise with α = 0.1, σ = 0.1 and µ = 0.1. Figure
reproduced from Ref. 117. See also Movies S1–S6.
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a) b)

c) d)

Figure 3.10: (a,b) Frames 4 and 5 from an ADF-STEM sequence of a nanoparticle. (c,d) The
same frames denoised with PGURE-SVT. The inset images highlight the movement of a single
atom along the edge of the nanoparticle (marked by the arrows). Figure reproduced from
Ref. 117. See also Movie S7.

3.3.6 PGURE-SVT applied to nanoparticle dynamics

The patch-based adaptation of the PGURE-SVT algorithm means that variations in
motion, intensity and noise across a frame in an image sequence can be accounted for.
Figure 3.9 showed how PGURE-SVT can recover the motion of relatively isolated point
sources as found in fluorescence microscopy and single atom STEM imaging. Further
applications of the algorithm for recovering the motion of single atoms are presented
in Chapters 5–7, but here it is demonstrated how PGURE-SVT can also be applied to
more densely arranged image features, such as the periodic structures of crystalline
materials imaged with STEM. Of particular interest is the structural rearrangement of
single atoms at the surface of a nanoparticle [107], since this motion is typically lost or
blurred when noisy image stacks are aligned and averaged with the usual approaches
in STEM [155, 156].

Figure 3.10 shows two frames from an image sequence of a nanoparticle on a graphene
oxide support (see Movie S7). Aberration-corrected ADF-STEM imaging was performed
on an FEI Titan3 (S)TEM equipped with a CESCOR probe aberration corrector. The
image sequence was acquired at 80 kV, with a probe semi-convergence angle of 20
mrad and an ADF detector inner angle of 36 mrad. The beam current was 60 pA and
the per-pixel dwell time was 3 µs. The measured lattice spacings of the nanoparticle
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Figure 3.11: Schematic diagram of the robust PCA problem, which combines a low-rank matrix
with sparse errors. Figure adapted from Ref. 158.

are consistent with either Au or Ag, but the actual identity is not important here for
the purposes of demonstrating the performance of the denoising algorithm. Applying
PGURE-SVT to the sequence acquired at 4 fps shows that the denoised results readily
reveal atomic-scale surface dynamics; for example, revealing the motion of an atom at
the edge of a large nanoparticle as highlighted in the insets (Fig. 3.10c,d).

3.4 Robust principal component analysis

The use of a Frobenius norm for the data fidelity term in Equation 3.6 strictly assumes a
Gaussian model on the corrupting noise in order for the estimate X̂λ to be optimal. As
discussed in Section 3.2.3, Poisson noise can cause problems with the interpretation of
individual components, although the PGURE-SVT algorithm provides a partial solution
by using small overlapping image patches, within which the image intensity, and by
extension noise variance, is fairly homogeneous. A more pressing concern is scenarios
that lead to more severe corruptions, such as missing data or spikes in intensity caused
by X-rays or dead pixels. The Frobenius norm is highly sensitive to such outliers,
and in these cases a more robust data fidelity term based on the Kullback-Leibler
divergence may be able to deal with arbitrarily large corruptions as well as Poisson
noise [157].

An alternative is to relax the low-rank factorization to include a low-rank component
X0 and a sparse component S0, thus providing a method to account for the severe
corruptions, which are assumed to be random and sparsely distributed through the
dataset. The noisy observation matrix Y is then given by:

Y = X0 + S0 (3.17)

Figure 3.11 shows a schematic diagram showing how the low-rank and sparse compo-
nents are combined. The method for solving Equation 3.17 was christened robust prin-
cipal component analysis (RPCA) [159], due to the similarities between the low-rank
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matrix approximation here and “standard” PCA. The solution involves the following
optimization problem for X and S:

arg min
X,S

1

2
∥Y −X− S∥2F + λ ∥X∥∗ + ξ ∥S∥1 (3.18)

where ∥S∥1 =
∑

ij |Sij | is the l1-norm of S, λ is the nuclear norm regularization
parameter (cf. Eq. 3.3) and ξ controls the sparsity of the error term, S.

Optimization with the l1-norm is a well-studied problem in the field of compressed
sensing for the recovery of undersampled signals [160]. Provided the signal is sparse
in some domain, compressed sensing enables efficient recovery with fewer samples
than dictated by the Shannon-Nyquist sampling theorem. In a similar fashion to the
nuclear norm approximating the rank function, the l1-norm is a useful surrogate for
the l0-norm, i.e. the number of non-zero components in the data. The presence of two
regularization parameters, λ and ξ, makes automated estimation akin to PGURE-SVT
more complicated since the interaction between the parameters is less clear. Further
investigation of this interaction is required and it may be the case that a simple risk
optimization approach may not be possible for the two-parameter case.

3.4.1 Online robust principal component analysis

Numerous algorithms have been developed to solve Equation 3.18 [161, 162]. How-
ever, these implementations typically require all the samples and so are unsuited to
real-time analysis or to large datasets. Of particular interest in electron microscopy
is the online robust PCA (ORPCA) algorithm developed by Feng et al. [163], which
updates the low-rank and sparse components as each new observation arrives. This
opens up the opportunity for real-time denoising and processing on the microscope,
adapting to any experimental changes, rather than processing data post factum.

ORPCA is made possible by expressing X as the product LRT , which means an upper
bound can be placed on the rank of X0 [164]. Feng et al. incorporated this bound into
Equation 3.18* to give:

arg min
L,R,S

1

2

∥∥Y − LRT − S
∥∥2
F
+
λ

2

(
∥L∥2F + ∥R∥2F

)
+ ξ ∥S∥1 (3.19)

Relating this back to the matrix factorization definition in Equation 3.1, we can see that
L represents the underlying subspace, or factors, describing the data, and R represents
the loadings. If Y is a dataset with m features and n samples, with one sample yt

arriving per time instance t, then Equation 3.19 can be solved in an online manner by

*A similar approach for subspace tracking is used in Ref. 165. Alternative methods for performing
online robust PCA have been proposed, e.g. Ref. 166, but so far only the convergence of ORPCA has been
investigated theoretically.
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first solving for the columns rt and st:

arg min
r,s

1

2
∥yt − Lt−1r− s∥22 +

λ

2
∥r∥22 + ξ ∥s∥1 (3.20)

The underlying subspace L is then updated by solving:

arg min
L

1

t

t∑
i=1

(
1

2
∥yi − Lri − si∥22 + λ ∥ri∥22 + ξ ∥si∥1

)
+
λ

2t
∥L∥2F (3.21)

This brings significant computational benefits over batch methods that incorporate
a singular value decomposition, since the memory required for each iteration is in-
dependent of the number of samples, n*. The algorithm can be continually updated
with new information without the need to re-run over all previous samples, which
enables the tracking of any changes in L over time. The initial estimate of L at t = 0
can be random, as in the original algorithm, or trained on the first few samples of
X using a QR decomposition with minimal computational impact to the real-time
algorithm†.

The focus of this work is on the applications of the ORPCA algorithm to denoising time-
resolved electron microscopy, but it is worth noting that it is just one example of an
online, robust machine learning method. Making a minor adaptation to Equation 3.18
(replacing X by VH where V and H are non-negative) leads to an online NMF method
with similar robustness to outliers [167]. This could be particularly beneficial for online
EELS and EDS analysis where physical interpretability in the components is key.

3.4.2 Stochastic gradient descent

Key to the performance of the ORPCA algorithm is the rate at which the estimate
L approaches the true subspace, as this dictates the number of samples needed for
accurate processing. Equation 3.21 is solved in the original work using either a closed-
form or a block coordinate descent (BCD) method. Both of these methods make use of
a running total of all the previous samples, which can be computationally detrimental
if the dimension m or rank r are large. Problems with convergence will also arise if
the subspace L is changing over time, since the use of an average over all previous
samples will mask any changes. Finally, the closed-form solver involves the calculation
of a matrix inverse, which can suffer from numerical instabilities.

*Memory requirements for batch methods are O (mn). The memory requirements of ORPCA instead
depend on an initial estimate of the rank, r, of L, as O (mr). The algorithm complexity is also signficantly
reduced, from O

(
nm2

)
to O

(
mr2

)
.

†Defined as X = QR where Q is orthogonal and R is an upper triangular matrix. If X has rank r,
then the first r columns of Q form the basis of X.
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To overcome the problems of the pre-existing solvers, a stochastic gradient descent
(SGD) algorithm is derived in Appendix C. This uses information from just a single
sample to update L (Eq. 3.21), enabling the algorithm to adapt much faster to changes
in the subspace. If ORPCA is to be used in real-time as data is recorded on the
microscope, this adaptability is crucial for dealing with typical experimental instabilities
such as sample drift.

A simulated ADF-STEM image sequence of SrTiO3 was used to compare the new SGD
method with the BCD method. Poisson-Gaussian noise (α = 0.1, µ = 0 and σ = 0.1)
was added to the image sequence, as well as a gradual sample drift to investigate the
ability of both methods to adapt to changes in the low-rank component. There are no
sparse errors in this scenario, so setting the sparse parameter ξ to an arbitrarily large
value ensures any effect of the estimated sparse component is negligble. The nuclear
norm parameter λ was set to the default value of 1/

√
m throughout, as per the original

paper [163]. The SGD step size or learning rate determines how much information to
use from the current sample compared to the previous samples (see Appendix C.3), and
a value of 1.1 was found to work well in terms of speed and accuracy with the example
datasets here. More advanced methods such AdaDelta do away with learning rates
altogether by relying instead on previous gradients to solve Equation 3.21 [168].

The performance was measured using a normalized squared Euclidean distance (NSED),
defined for two images X and Y as:

NSED =
1

2

∥∥(X−X
)
−
(
Y −Y

)∥∥2
F∥∥X−X

∥∥2
F
+
∥∥Y −Y

∥∥2
F

(3.22)

This normalized definition is chosen over the conventional MSE or peak signal-to-noise
ratio (PSNR) metrics because the shrinkage applied by nuclear norm minimization
has the effect of reducing the overall intensity of the image, and the resulting offset
can dominate the metric calculation over the actual image features when comparing
denoising performance with other methods.

Figure 3.12a shows how the BCD method struggles with the sample drift when r is
small. The recovered image (Fig 3.12e) is blurred as a result of the running average of
all previous samples (see also Movie S8). Using a nuclear norm regularizer (Eq. 3.18)
means that r is in fact only an estimate of the true rank of the dataset, and while
increasing it improves the flexibility of the algorithm for fitting the model to the
data (one must of course be wary of overfitting), it also comes with an increased
computational overhead. The SGD method on the other hand displays a much lower
sensitivity to the initial rank estimate (Fig. 3.12b,f). Although the BCD method displays
a faster convergence at the start of the sequence, the adaptability and improved
computational performance of the SGD method is beneficial for large datasets. In
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Figure 3.12: Online denoising of a simulated SrTiO3 ADF-STEM image sequence with Poisson-
Gaussian noise and sample drift. The performance of the (a) BCD and (b) SGD methods are
shown as a function of the number of samples, for two different initial rank estimates. (c)
Frame 800 from the original sequence, (d) after the addition of Poisson-Gaussian noise, (e)
recovered by the BCD method (r = 5), and (f) recovered by the SGD method (r = 5). See also
Movie S8.

particular, the fact that SGD is less sensitive to the initial rank estimate (similar
behaviour is also seen for the sensitivity to λ and ξ) makes SGD an attractive method
when very little is known about the dataset prior to acquisition. Smart adaptations to
SGD have also been developed that may improve the rate of convergence to match that
of BCD; these are discussed in Appendix C.4, although further testing is necessary to
understand how to select the appropriate parameters for these approaches.

3.4.3 Denoising large datasets

New developments in direct electron detectors, offering high efficiency and low readout
noise, have garnered a significant amount of interest in the electron microscopy
community [113]. Significant decreases in electron dose and increases in the achievable
frame rate are particularly attractive to in-situ and time-resolved experiments [169],
as well as cryo-EM research [76, 170].

However, with the increased frame rate comes a significant increase in the size of the
acquired data. Taking the K2 Summit camera (Gatan, Inc.) as an example, the full
frame size is 16 million pixels, and the maximum frame rate at this size is 400 fps.
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Although the data recorded directly from the camera can be compressed and stored
efficiently (e.g. at low doses many pixels will be zero), most post-processing software
packages and algorithms expect data as as 32-bit or even 64-bit floats. This equates
to approximately 20 GB of data requiring processing for every second of acquisition.
Clearly, methods for denoising and dimensionality reduction that work in an online
manner have a huge potential here.

Assuming the acquired dataset is indeed low-rank, which has been shown in this
chapter to be a fair assumption for many electron microscopy datasets, we can make
use of ORPCA to factor the dataset and store L and R only, while also denoising
on-the-fly. For example, if r = 5, the memory requirement is reduced to 300 MB
per second of acquisition, and individual frames can then be reconstructed when
required. Although this memory reduction breaks down if there are major changes
in L over time (e.g. sample drift), the online denoising option remains an attractive
capability. Note also that as discussed above, tensors are another option for reducing
the storage requirements. Assuming the dataset has a low tensor rank, the flexibility of
different tensor decomposition algorithms may bring even greater memory benefits
than ORPCA [119].

3.4.4 Inpainting and dose reduction

X-ray spikes, dead pixels and missing data are recurring problems in electron mi-
croscopy, and usual approaches include either manual identification and interpolation,
or, in more extreme cases, the dataset is simply ignored and thrown away. The inclusion
of the sparse term in ORPCA thus offers a robust, automated solution to dealing with
data corruptions, and is therefore hugely promising for electron microscopy.

As well as unavoidable noise and corruptions, intentionally subsampling a dataset can
bring experimental benefits. It was shown recently by Saghi et al. that by blanking
the electron beam at random as the STEM probe scans, it is possible to recover a
significant portion of the image using CS theory even when only a small percentage
of pixels are sampled [171]. The motivation is that beam-sensitive specimens receive
a much lower overall dose as each frame is acquired. Both the accumulated dose
and the image acquisition time can be reduced by a factor of 5 or more using this
approach [172]. Saghi et al. used a compressed sensing approach for filling in the
missing pixels (also known as “inpainting”), operating only on individual images to
recover the underlying features. However, if the low-rank constraints of robust PCA
are satisfied then it offers an alternative solution, modelling the missing data as sparse
errors, in a way that utilizes data correlations over time. This method of inpainting
is similar to the matrix completion problem described by Candès et al.[135], but if
time-resolved STEM imaging of beam-sensitive specimens is desired, ORPCA has the
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Figure 3.13: Recovering a subsampled SrTiO3 image sequence with Poisson-Gaussian noise
and sample drift. (a) A frame from the ADF sequence, (b) with Poisson-Gaussian noise added
and 75% of the pixels removed, and (c) following recovery with ORPCA. (d) A frame from the
ABF sequence, (e) with Poisson-Gaussian noise added and 75% of the pixels removed, and
(f) following recovery with ORPCA. The inset is the result of an image sequence alignment
and summation. (g) Line profiles from the highlighted regions of the ADF frames in a and
c. (h) Line profiles from the highlighted regions of the ABF frames in d and f, with an arrow
highlighting a dip in intensity. See also Movie S9.

capability to track and adapt to any changes over time such as adatom or defect motion,
or sample drift.

Figure 3.13 depicts a frame from the same simulated SrTiO3 sequence as Figure 3.12,
incorporating Poisson-Gaussian noise and sample drift. Also shown is the complemen-
tary ABF image (Fig. 3.13d). ABF imaging here reveals the light oxygen columns, which
are not seen in the ADF image due to the dominance of Z-contrast by the heavier Sr and
Ti–O atomic columns. Subsampling the image is achieved by masking with a matrix
drawn from a Bernoulli distribution, with p pixels observed and 1− p pixels blank. For
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this investigation only 25% of pixels were sampled, and the Poisson-Gaussian noise
parameters were α = 0.1, µ = 0 and σ = 0.1. Despite the challenging noise and
sample drift conditions, the ORPCA algorithm is able to successfully recover the main
features from both the ADF and ABF sequences (see also Movie S9). Line profiles across
the recovered images (Fig. 3.13g,h) confirm that while the overall image intensity
is diminished, variations in contrast between elements are still present in the ADF
case. Meanwhile, the ABF line profiles show that oxygen columns are discernible in
individual recovered frames (see the dip at in the orange line marked by the arrow in
Fig. 3.13h), and the aligned and summed image (Fig. 3.13f inset) shows a very clear
dip in intensity over an oxygen column comparable to the original image. This last
point is key, since performing image alignment directly on the subsampled image is
much more difficult than the recovered low-rank image.

Note that the small fraction of observed pixels in Figure 3.13 actually means that the
sparsity assumption behind RPCA does not strictly hold (the error component S is not
truly sparse). However, the low-rank property of the underlying data is strong enough
such that the ORPCA algorithm is still able to recover the signal, again highlighting the
flexibility of low-rank methods.

3.4.5 Foreground–background separation

A major application of RPCA in the field of computer vision is the separation of a
video into the foreground, typically containing moving objects of interest, and the
background [173]. A static or slowly-varying background is well-modelled as a low-
rank matrix when each video frame is flattened into an image vector. Any moving
objects of interest, on the other hand, are likely to constitute only a small fraction
of the total pixels in each frame, and thus can be modelled as a sparse matrix. The
ORPCA algorithm is therefore an interesting method for motion detection and object
recognition systems, and especially for identifying and tracking the motion of objects
at the nanoscale with electron microscopy.

Inspired by the recent observation of a beam-driven random walk of a substitutional
silicon atom in graphene [108], the ORPCA algorithm is applied here to separate
the motion of an adatom from the background in the presence of noise and sample
drift. Figure 3.14a shows a frame from a simulated, aberration-corrected ADF-STEM
sequence exhibiting the same behaviour as Ref. 108. The full sequences is available
as Movie S10. As in the previous SrTiO3 examples, sample drift was added to the
sequence.

In Figure 3.14b, Poisson-Gaussian noise has been added to simulate the low-dose, short
dwell-time imaging conditions. The second row (Fig. 3.14c,d) shows the low-rank
component and sparse components estimated by the ORPCA algorithm combined
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with the SGD method, with parameters (λ = 0.1, ξ = 0.1, and learning rate = 1.1).
The algorithm has recovered both components well, with reduced noise and a clear
separation between the mobile Si atom and the underlying graphene substrate. The
constant background level of Figure 3.14d highlights the benefits of the sparsity
constraint used for the foreground. Use of the stochastic gradient descent solver has
also enabled the algorithm to track and account for the sample drift, resulting in a
clean image sequence suitable for subsequent alignment and tracking. By way of
contrast, Figure 3.14e,f show the result obtained first by alignment and then summing
the image sequence using an algorithm designed for STEM image alignment [174].
While the graphene lattice is easily recovered, the Si atom is harder to identify above
the background noise (Fig. 3.14f).

3.5 Summary

This chapter has summarized the potential applications of low-rank machine learning
methods to electron microscopy datasets. In particular, two novel algorithms have
been demonstrated for the robust, automated denoising of microscopy datasets with a
particular focus on time-resolved imaging and real-time processing in the presence of
noise. The PGURE-SVT algorithm for denoising image sequences is applied to the study
of adatom dynamics in Chapter 5 and again in Chapter 7, where the ORPCA algorithm
is also employed to separate out adatom dynamics from the changes in the crystalline
substrate underneath. Although the focus has been on time-resolved imaging, many of
the techniques are equally applicable to other low-rank datasets. The noise estimation
and parameter selection methods are even more general and can be used even if the
underlying dataset is not low-rank. The key message is that a full understanding of the
statistics of the acquisition process is central to the development of robust algorithms
for processing electron microscopy data. This theme is continued in the next chapter,
which develops methods for detecting, identifying and tracking atoms in time-resolved
STEM imaging.
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Figure 3.14: Separating the motion of a substitutional Si atom in graphene. (a) Sample
frame from a simulated ADF-STEM sequence with sample drift. (b) The same frame with
Poisson-Gaussian noise added (α = 0.1, µ = 0 and σ = 0.1). (c) The low-rank component
estimated by ORPCA. (d) The sparse component estimated by ORPCA. (e) The summed image
after sequence alignment. (f) The difference when the summed image is subtracted from b.
See also Movie S10.





Chapter 4

Tracking the motion of single
atoms with ADF-STEM

4.1 Introduction

Bridging the gap between single atom electron microscopy and computational mod-
elling requires not only the positions but also the identities of the atoms in the system
to be known with the highest possible precision, in order for a direct comparison to
be made between measured and calculated material properties. The addition of a
temporal dimension also requires accurate tracking of atoms in order to analyze the
dynamic behaviour of the system and link this with simulations. Accounting for the
effects of noise, background and motion make the characterization and tracking a
difficult task, and robust, automated methods are of particular importance for image
sequences, where manual identification over many frames is prohibitive. Building on
the theme of real-time analysis developed in the previous chapter, the ability to analyze
the data in an online manner is an important consideration for in-situ experiments and
those involving beam-sensitive specimens.

In this chapter, first methods for detecting atoms in image sequences are discussed,
and a new classification approach based on image features is outlined. In the second
part, a model-based approach for localizing atomic positions and calculating intensities
is then presented. Particular attention is paid to the analysis of errors in positions and
intensities, which are central to accurate system characterization. In the final part
of the chapter, the important role of particle tracking in time-resolved single atom
microscopy is highlighted, and a new online method for particle tracking is outlined
with a focus on adaptability for different scenarios in STEM*.

*The atom classifier for detection (Sec. 4.2) and the tracking algorithm (Sec. 4.4) presented in this
chapter were developed in collaboration with E. Schmidt, who wrote the Python code for the classifier
and reinforcement learning methods.
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4.2 Robust detection of single atoms

After collecting one or more STEM images and applying any preprocessing such as
denoising, the first step to atom characterization is to separate the pixels belonging
to the objects of interest from the background. While the ORPCA algorithm of the
previous chapter performs just this step, the low-rank and sparsity constraints mean
performance is not always optimal, and other methods need to be considered. The
incoherent imaging model of ADF-STEM makes the task somewhat simpler than in
coherent modes such as BF or ABF imaging, since the absence of contrast reversal
means the atoms appear, generally, as bright, round objects on a dark background.
Atom identification in ADF-STEM therefore shares similarities with star detection in
astronomical imaging and object detection in fluorescence imaging.

4.2.1 Detection approaches and challenges

In a noise, motion and aberration-free environment, with a constant background, iden-
tifying the atoms would involve a simple segmentation procedure according to a single
intensity threshold. However, such a scenario rarely exists, and each experimental
factor can introduce its own problems. Noise, as was seen in the previous chapter, can
significantly obscure the objects of interest, particularly in low-dose scenarios. The
noise reduction methods discussed in the previous chapter can be used to improve
the image contrast, although this complicates any particle detection by introducing a
dependency on additional parameters. A second problem, particularly relevant to time-
resolved STEM but also to single images, is atomic motion, which, during the serial
acquisition of a STEM image, can smear the intensity of an atom into broad, elliptical
shapes. Fast scanning routines, low temperatures, and lower electron beam energies
can all help to reduce this effect, although not necessarily eliminate it completely.
Microscope aberrations can also lead to extended shapes of single atoms, although the
development of aberration correctors has helped to reduce this problem.

The background level is particularly relevant to single atom imaging. Unlike the imag-
ing of nanoparticles, where the atomic columns mean the intensity of the nanoparticle
is typically many times higher than the background support, in single atom imaging
the difference in Z between the foreground atoms and the background is often much
smaller. The problems introduced by the background and noise typically rule out
common detection approaches in fluorescence microscopy (where the background is
zero) such as local maxima detection or Laplacian-of-Gaussian (LoG) filters, which
highlight rapid changes in the second derivative of the image intensity such as edges.
The background problem is highlighted in Figure 4.1, which applies a LoG filter to
the noisy Si atom in graphene image sequence from the previous chapter. Applied
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Figure 4.1: (a) A selection of cropped, noisy images from the simulated ADF-STEM image
sequence of a substitutional Si atom in graphene (see Fig. 3.14), centered on the Si atom
position. (b) Results of a Laplacian-of-Gaussian (LoG) filter applied to the images in a. (c) The
same images following background subtraction with the ORPCA algorithm. (d) Results of a
LoG filter applied to the images in c.

to the original image, noise is insufficiently suppressed and separating the intensity
minimum (in the LoG-filtered image) attributed to the Si from spurious minima caused
by noise is less than straighforward. Even when the ORPCA algorithm has been used
to remove the background (Fig. 4.1c), there are numerous local minima obscuring the
Si atom. Furthermore, the variations in shape, size and intensity make it difficult to
determine an appropriate threshold to dictate what is or is not an atom, and this will
be further complicated by the presence of two or more elements with differing ADF
intensity.

While the robust PCA approach can be used to perform background subtraction prior
to atom detection, it requires that the background is low-rank, and that the foreground
atoms can be modelled within the appropriate sparsity framework. In scenarios where
either constraint is violated, alternative detection methods are necessary. In the field of
astronomical imaging, where objects are point sources convolved with the point spread
function (PSF) of the telescope, a number of source extraction methods have been
developed to separate the point sources from extended background sources, including
the CLEAN and DAOPHOT algorithms [175, 176]. The Bayesian source extraction
method of Savage & Oliver [177] uses the telescope PSF to determine the likelihood of
each pixel belonging to either the background or to a point source, thus estimating the
model and background in a single step.

Astronomical imaging algorithms are computationally attractive for large datasets with
a large number of objects for detection. However, ADF-STEM atomic images differ from
images of stars in that they are not strictly point sources convolved with a PSF. Instead,
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they are formed by a convolution of the PSF with an object function that depends on the
atoms (or atomic columns) being imaged [42]. Despite this distinction, the Bayesian
source extraction method is often practical for aberration-corrected ADF-STEM images,
since the object function is typically a sharp peak ca. 0.3 Å in diameter, compared
to a corrected probe 1 Å in diameter [102]. Aberration correction means that the
major contribution to the spatial resolution and atom shape is the broadening of the
probe cause by the finite effective source size [65]. This is typically modelled as a
Gaussian or Lorentzian function, although there are arguments that for a close match
between experiment and simulation a linear combination of the two may be more
appropriate [178].

Searching the image for Gaussian or Lorentzian objects using astronomical methods is
not always successful however. The serial acquisition of STEM (in contrast to parallel
acquisition in astronomy) leads to an increased likelihood of the object of interest
moving during a single frame, and denoising image sequences using the PGURE-SVT
can, while improving the overall contrast of the image, further affects the shape of
atoms. Departures from the symmetry of the idealized PSF are difficult to predict and
will vary from atom-to-atom and from frame-to-frame, again leading to the problem of
selecting appropriate thresholding parameters.

4.2.2 A classification approach

It is clear that a “one size fits all” approach to atom detection would be inappropriate,
while manual adjustment of parameters for each atom in each frame quickly becomes
intractable as datasets increase in size. Taking inspiration from the wider fields of
computer vision and machine learning, an alternative approach is to train an algorithm
to recognize atoms on a small set of training data and subsequently apply it to larger
datasets. This training step can incorporate prior knowledge such as microscope
parameters and expected atom intensities, and could even use simulated STEM images
to improve the recognition accuracy. This approach places the problem in a supervised
learning framework (in contrast to unsupervised learning methods such as PCA),
whereby a user indicates what the expected outcome should be, and the algorithm
learns the relevant features and their relative importance in order to achieve this
outcome [179, 180]. In this case the task is to classify image pixels as belonging to an
atom of interest or the background, i.e. a binary classification problem.

Many methods have been developed over the years for tackling the supervised learn-
ing problem. For very large datasets containing millions of images or more, “deep
learning” techniques based on neural networks have been shown to be extremely
powerful tools, especially with the progress made in computer hardware with graphical
processing units (GPUs) [181]. Neural networks reduce the necessary human input to
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Figure 4.2: (a) A pixellated Gaussian representing an atom in an ADF-STEM image. (b) Apply-
ing a discrete wavelet transform using a Daubechies wavelet gives pyramid plot representing
features in the image at different scales.

an appropriately labelled training set (which can easily extend to millions of images
itself) and the network topology; the network learns what the relevant features are
independently.

However, in the case of time-resolved electron microscopy, the available information is
more limited, perhaps only a few hundred or thousand frames before beam damage
and other experimental issues set in. While this might not be sufficient to train a large
neural network accurately, it does make the input of an expert to guide the algorithm
in the selecting the appropriate features much more practical, as the training set can
simply be the first few frames of the sequence. The user labels a few samples of
the image as being an atom (positive) or background (negative), and the algorithm
utilizes this information to classify the remaining pixels in each frame. Standard object
detection methods can be employed to build up a training set of positive and negative
samples, but without the need for exhaustive parameter tuning on every image. The
user next identifies the false positives and false negatives from the initial detections,
and the labelled samples are used to build a larger training set by small shifts and
rotations of the windows. This improves the invariance to object orientation and
position within a window.

Further robustness to orientation, size and position can be achieved through a number
of mathematical operations applied to the raw image. A useful method is based on the
discrete wavelet transform, which combines spatial information from the pixel domain
with frequency information from the Fourier domain to give a local description of the
image features at different length scales. The simplest basis set for the transform is
the Haar wavelet, but other wavelet families may be more appropriate for atoms by
preserving roundness or some other property [182]; for example, Figure 4.2 applies
the Daubechies wavelet family to a pixellated Gaussian representing an atom in an
ADF-STEM image [183]. In Figure 4.2b, the features at different scales (from low-
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to high-resolution) are shown in a pyramid plot. Each image in the pyramid will
have a contribution to the original image weighted by a coefficient, rather like the
idea of components in PCA from the previous chapter, and the coefficients can be
used to distinguish between different features. Crucially, using feature vectors, rather
than matching raw pixels, improves the invariance of the algorithm to any changes in
magnification, noise, intensity or shapes in the window.

Building on an effective method for face recognition developed by Viola & Jones [184],
Figure 4.3 presents the framework for identifying atoms in an image. In the training
stage, initial small windows of the image are selected as positive and negative samples
(Fig. 4.3a). Each sample window is then transformed into a feature vector using
a wavelet transform, containing key information such as the total intensity and the
presence of any edges or features that might distinguish an object of interest (Fig. 4.3b).
The feature vectors along with their coefficients (or weights) are then passed to an
algorithm known as AdaBoost (Adaptive Boosting) [185], which uses subsets of the
full feature set to select and train the overall classifier using the best features, as a
weighted linear sum of weaker classifiers (Fig. 4.3c). Each of these weak classifiers
may only be slightly better than a coin toss, but the strength of the AdaBoost approach
comes from how the weights are combined in the training phase. Initially each of the
N samples in the data is given a weight of N -1, but after each iteration the dataset is
reweighted such that the classifiers focus on the incorrectly-classified samples from
previous iterations, thus developing a stronger algorithm overall.

Figure 4.3d shows how the classifier is then applied to each frame of the sequence
independently (enabling real-time operation), by sliding a small window of pixels
across the image sequentially. Each window is again transformed and fed to the
classifier, which outputs the positions of positive windows. After training and running
the classifier, the final step is to turn these position into an estimate of the position
of the atom. This is achieved by a hierarchical clustering of window positions, with
the centroids forming the atom position estimate (Fig. 4.3e). This clustering can be
controlled to incorporate knowledge about minimum distances between atoms, thus
deciding whether a group of positive windows is a single atom or in fact two or more
neigbouring atoms.

The classification method presented here provides a robust, fast and adaptable solution
to the problem of atom detection. The results of this procedure can be used as an input
for accurate localization and characterization via model-fitting, and later for particle
tracking through image sequences. Althought not discussed here, the classifier can
easily be extended beyond a binary system to detect and group atoms or particles of
different shapes, sizes and intensities, provided a training set can be constructed.
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Figure 4.3: Schematic diagram representing the key steps of the classification method for
atom detection. (a) A training set of labelled samples is generated by the user, perhaps using
other object detection methods or ADF-STEM simulations. (b) The samples are transformed
with a discrete wavelet transform to give a set of features describing the image, along with a
coefficients describing the weighted combination of features. (c) The AdaBoost classifier is
trained on the feature vectors. (d) The classifier is applied to the unseen image sequence using
a sliding window. The positions of positively-classified windows are stored. (e) Hierarchical
clustering is used to cluster the window positions, with the atom positions given by the cluster
centroids.
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4.3 Localizing and characterizing single atoms

Following identification of the atoms of interest, the next step is to improve the
precision of the position, known as localization, and estimate the intensity attributed
to the atom for Z contrast identification. The typical approach involves fitting some
form of model to the observed pixel counts, with the model parameters including the
atomic coordinates and intensity. This section looks at the model-fitting approach for
ADF-STEM imaging of single atoms, and in particular considers the effects of detector
noise and other experimental variables on the precision of the fitted model. Note here
that while atom identification is typically performed on denoised data to minimize
the number of false positives, the fitting described below is always performed on the
original, unprocessed data. This allows improved quantitative analysis, and further
enables the statistical treatment using a mixed noise model.

4.3.1 Atomic model fitting

The incoherent model for ADF-STEM imaging (Eq. 2.1) means that individual atoms
can be treated as independent scatterers, provided they remain well-separated. The
image is then a convolution of the atomic potential with the microscope PSF, and
by fitting this convolution to a small window around each detected atom, the atom
position can be determined with sub-pixel accuracy. A typical and straightforward
model for fitting atoms in aberration-corrected STEM is a 2D Gaussian [186, 187],
based on the finite source size leading to Gaussian (rather than Lorentzian) broadening.
The choice of a Gaussian in the present work is for consistency with previous studies
only, since both functions can be computed efficiently, and the error analysis presented
below is equally applicable to both scenarios.

Using the Gaussian model, the intensity attributed to an atom i at a given position
(x, y) in an image is:

mi (x, y) =
Vi

2πw2
i

exp

(
−(x− xi)

2 + (y − yi)
2

2w2
i

)
+B (4.1)

where (xi, yi) is the atom position and Vi is the total expected number of electrons
scattered by the atom i onto the ADF detector. The standard deviation (or width)
wi can be estimated as part of the model fitting procedure, or it can be estimated
separately, for example using data from known scatterers and the finite source size. B
is a constant background level, although it can be replaced by a more general function
B (x, y). A constant background is not always appropriate, particularly in ADF-STEM,
but for simplicity it is the approach taken here.
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Although the model fitting approach is widely-used for Z contrast characterization, it
can be very sensitive to the microscope and specimen parameters; whether an atom is
modelled by a Gaussian or Lorentzian is one such example. An alternative approach
is to use probe-integrated scattering cross-sections [188]. Here the dependence on
microscope parameters is much smaller, although it does require a good estimate of
atom positions (and indeed for all atoms to be correctly identified) for the segmentation
step that assigns pixels to each atom to work correctly. The need for all atoms to be
correctly identified means that the fitting approach is more appropriate here, and
a straightforward method for dealing with missing or spurious atom detections is
discussed below.

4.3.2 Maximum likelihood estimation

The next step is to develop a robust method for optimizing Equation 4.1 under the noise
conditions encountered in electron microscopy. Previous approaches for atom-fitting
have used a non-linear least-squares optimization algorithm to minimize the difference
between the observations and the model [155]. However, such an approach is only
guaranteed to give the optimal parameter estimates when the noise is Gaussian, and
although weighted least-squares methods can mitigate some of the problems when the
noise is non-Gaussian [189], the appropriate weights still need to be determined on a
pixel-by-pixel basis. As discussed previously, a mixed Poisson-Gaussian noise model
is a better way to characterize the noise in STEM, and the appropriate approach is
to use maximum likelihood estimation (MLE) and directly incorporate the Poisson-
Gaussian noise model, in a fashion similar to the unbiased estimators in Chapter 3.
In the following discussion, an alternative definition of the detector gain is used
for mathematical convenience compared to Equation 3.12, and the noise model is
re-expressed as:

Y = gZ+E with

Z ∼ P (X)

E ∼ N
(
µ, σ2

) (4.2)

where X represents the original, noise-free image, and P and N correspond to the
Poisson and normal distributions respectively. The gain g now represents the measured
number of counts for every electron that arrives at the detector. For a noisy image Y

with K pixels, the likelihood of the observations being a result of the model m with
parameters θ = {xi, yi, wi, Vi, B} is given by a convolution of a Poisson distribution
and a normal distribution:

L (Y|θ) =
K∏
k

 1√
2πσ2

∞∑
q

e−mmq

q!
exp

−

(
Yk−µ

g − q
)2

2σ2

g2


 (4.3)
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The infinite sum in Equation 4.3 means a simple closed-form solution is unobtainable,
but Huang et al. [190] showed that a simplification can be made by adding a constant
σ2/g2 to the model, such that the convolution is now:

Yk − µ

g
+
σ2

g2
∼ P (m) ∗ N

(
σ2

g2
,
σ2

g2

)
(4.4)

Since the normal distribution in Equation 4.4 will asymptotically approach a Poisson
distribution, using the relation P (A) ∗ P (B) = P (A+B) leads to:

L (C|θ) ≈
K∏
k

(
m+ σ2

g2

)Ck

Γ (Ck + 1)
exp

(
−
(
m+

σ2

g2

))
(4.5)

where C = (Y − µ) /g+σ2/g2 and Γ (x) is the standard gamma function. The optimal
parameter estimates θ̂ are then found by maximizing Equation 4.5. It is more common
to use the log-likelihood instead, which replaces the product with a sum and also
avoids numerical underflow when working with small likelihoods in floating-point
arithmetic [191]:

θ̂ = arg max
θ

(lnL (C|θ)) (4.6)

This maximization can be carried out using a selection of non-linear optimization
algorithms. However, it is important to be aware that the inclusion of the background
term, B, or even a background function, B (x, y), greatly complicates the analytical gra-
dients of Equation 4.6. The alternative, numerical differentiation, amplifies the effects
of noise and can thus degrade the performance of gradient-based optimizers [192].
Although knowledge of gradients typically gives better solutions than algorithms based
on function values alone, many modern derivative-free methods are capable of very
good solutions even in the presence of significant noise [193].

4.3.3 Estimating uncertainties in the model

Using the MLE approach facilitates the investigation of uncertainties in the model
fitting, thus providing a useful assessment of the effect that noise and other variables
have on the accuracy and precision of the atomic position estimates. This analysis is
made possible by the Cramér-Rao Lower Bound (CRLB), which states that an unbiased
estimator achieving the CRLB will give the lowest mean-squared error of all estimators
for all possible values of θ [194]. Furthermore, the variance of such an unbiased
estimator is bounded by the inverse of the Fisher information matrix, which measures
the amount of information about θ that is carried by the observations [195]. The
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covariance matrix K is given by:

K
(
θ̂
)
≥ F

(
θ̂
)−1

(4.7)

where θ̂ is the solution to Equation 4.6. F is the Fisher information matrix, with
elements given by:

Fij = −E
{

∂2

∂θi∂θj
lnL (Y|θ)

}
(4.8)

where E indicates the expected value. In the case of Poisson-Gaussian noise, each
element of F can be approximated by the following expression [196]:

Fij ≈
K∑
k

1

m+ σ2

g2

∂m

∂θi

∂m

∂θj
(4.9)

If σ ≪ g then this reduces to the Poisson noise case [197]. Analytical forms of the
elements of K are not derived here; instead, numerical solutions are used to explore
the behaviour in Figure 4.4.

From Equation 4.1, the variance in the position x̂i can be plotted as a function of
the atom width in pixels. Such a plot can then be used to determine the pixel size
necessary to achieve a desired variance. The same procedure can be applied to another
critical estimate for ADF-STEM imaging, the atom intensity, V̂i. In Figure 4.4a and b,
increasing the number of counts in the model is seen to improve the precision of x̂i,
but, as one would expect with Poisson noise, this has no effect on the relative variance
of V̂i. The rapid increase in both plots as wi → 0 is a result of the Gaussian intensity
being concentrated inside a single pixel; when wi = 0.25 pixels, 90% of the counts
are concentrated within a single pixel and localizing the centre of the Gaussian from
essentially a single observation with any further accuracy is impossible.

The impact of the background B on the precision of x̂i (Fig. 4.4c) is not as significant
as the effect it has on the intensity estimate (Fig. 4.4d). For a zero background level,
increasing the number of pixels sampling the atom has no effect on the precision of
the estimate V̂i, but this is no longer the case for the mixed noise model (Fig. 4.4f).
The uncertainty introduced by the background increases significantly as the counts are
spread over a larger number of pixels, suggesting that selecting an appropriate pixel
size is key to good atom characterization using ADF-STEM Z-contrast. Previous work
on single atom imaging argued that oversampling the imaged atom (i.e. wi > 1 pixel)
allows it to be located with greater precision [51], while others argue the pixel size
has no effect on the sensitivity to atomic number [198]. Figure 4.4 has shown this to
be false, and oversampling can affect the quantification and characterization of the
atom based on the ADF intensity. The second argument for oversampling is that atomic
motion can be detected by shifts in intensity between adjacent scan rows. Clearly,
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Figure 4.4: Measuring the behaviour of Var {x̂i} and Var {V̂i} as a function of the model
width, wi. (a, b) The effect of the total number of electron counts, Vi, with B = σ = 0. (c, d)
The effect of the constant background, B, as a fraction of the total electron counts. (e, f) The
effect of read-out noise, σ, as a fraction of the gain, g, with B = 0.
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provided the atom can be identified and localized with sufficient precision, it is better to
capture the movement from frame-to-frame rather than between scan rows if one is to
robustly analyze the temporal behaviour. While localizing an atom with sub-picometre
precision may be desirable for detecting cation shifts in ferroelectric materials (which
are typically 10s of picometres), site-to-site atomic jumps are usually 1 Å or more,
and reliably capturing the jump itself is arguably more important than the ultimate
precision of the distance jumped. Figure 4.4 shows that oversampling needlessly
exposes the sample to a much higher cumulative electron dose than is necessary to
achieve a given precision, and validates the use of fast, coarse scanning routines for
time-resolved ADF-STEM. Of course, increasing the pixel size (and correspondingly
reducing the dwell time over a given area) results in an increase in noise, but this can
be dealt with by the mixed noise model fitting methods described here.

4.3.4 Fitting multiple atoms

For scenarios where the atoms are well-separated, it is sufficient to take a small
window around each atom and fit the single model mi (x, y). However, when atoms are
sufficiently close that the Gaussian tails start to overlap, a more appropriate approach
is to model the electron counts at each pixel as a sum of N Gaussians (i.e. N is the
number of atoms in the fitting region):

m (x, y) = B +
N∑
i

mi (x, y) (4.10)

A crucial aspect of fitting multiple models to a region is ensuring that the model accu-
rately represents the true number of atoms in the region, if N is unknown. Introducing
more parameters to a model can lead to overfitting, where additional model parameters
in fact explain the random noise in the observations. One way to avoid overfitting is
apply a penalty to the number of model parameters. This can be achieved through
hypothesis testing with log-likelihood ratios [179], or by using a measures such as the
the Akaike Information Criterion (AIC) [199]:

AIC = −2 ln L̂+ 2n (4.11)

or the Bayesian Information Criterion (BIC) [200]:

BIC = −2 ln L̂+ n ln (K) (4.12)

where L̂ is the maximized likelihood from Equation 4.6, n is the number of model
parameters (n = 4N + 1 where N is the number of atoms if the background is
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Figure 4.5: (a) The Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) as a function of the number of fitted atoms in the model, where the true number is 3.
(b) The original image. (c) The observed data following the application of Poisson-Gaussian
noise. (d–g) Results from a two, three, four, and five atom model. The red dots indicate the
peak locations found by the fitting algorithm.

constant), and K is the number of observations (i.e. the number of pixels in the fitting
region).

Information criteria such as AIC and BIC thus utilize the maximum likelihood approach
derived in the previous section to select the best model among a set of candidate models.
Figure 4.5 shows how the criteria can be used to fit the correct number of atoms to an
image. As the number of atoms, N , in the model increases, both AIC and BIC initially
decrease (Fig. 4.5a). However, once N begins to exceed the true number of atoms in
the image, the criteria are seen to increase and the optimization algorithm has trouble
finding positions for these extra “atoms”. For example, in Figure 4.5f, a spurious peak
is found between two existing peaks as a result of the algorithm attempting to fit the
random noise. The BIC typically penalizes extra model parameters more strongly than
the AIC, which is reflected in Figure 4.5a. Using model selection along with multiple
model-fitting in this manner is a useful refinement for the particle detection approach,
which separated positive sample detections into “atoms” using a clustering algorithm,
with no information about the electron counts (i.e. the observables) incorporated.
Atoms that lie within a certain distance of each other are prone to being classified as a
single detection with the clustering method, so the model-fitting provides a secondary
check for edge cases in a statistically robust manner.
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4.3.5 Optimum pixel sampling

The 2D Gaussian model in Equation 4.1 describes a continuous function, whereas
STEM data is acquired pixel-by-pixel in a discrete manner. In cases where wi is
small, this discrepancy is known to introduce a bias into the model [201], a problem
that is reflected in the rapid increase in Var {V̂i} with decreasing pixel size as seen
in Figure 4.4. Accounting for this bias, or identifying the point at which the effect
becomes negligible, is achieved by first integrating Equation 4.1 across a pixel, so that
the total number of detected electrons is equal in both the continuous and discrete
models [202].

The adapted model for a square pixel of unit dimensions is given by:

m (x, y) =
Vi
4
Exi (x)Eyi (y) +B (4.13)

with the expression Exi defined as:

Exi (x) = erf

(
x− xi +

1
2√

2wi

)
− erf

(
x− xi − 1

2√
2wi

)
(4.14)

Eyi (y) can be defined in a similar fashion. Figure 4.6a compares a continuous Gaussian
function with the pixellated model in one dimension. In Figure 4.6b, the advantage of
the pixellated model for estimating the total electron counts Vi is evident when wi < 1
pixel. Practically, however, the problems caused by noise and the background are likely
to dominate over the bias introduced by the pixel sampling, particularly as the atom
first needs to be identified before it can be fitted. Equation 4.13 is thus perhaps more
applicable to fluorescence microscopy than it is to ADF-STEM imaging, although as
advanced sampling routines for low-dose STEM gain traction, analyses such as these
are important to ensure experimental observations are interpreted correctly.

4.4 Automated tracking of atomic motion

Identifying and localizing the positions of single atoms only provides half of the picture
needed for linking experiments with atomistic modelling. To fully unlock the temporal
information obtained with rapid STEM imaging it is necessary to track the motion of
atoms over time. The capability of time-resolved STEM was first explored by Isaacson
et al. [13, 14], but even now atom tracking is typically restricted to just a few atoms
over short timespans as a result of low SNR, beam damage and the lack of algorithms
suitable for following large numbers of atoms.
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Figure 4.6: (a) Comparison between a continuous Gaussian model and the pixellated model
(Eq. 4.14) in one dimension for xi = 0.75 and wi = 1. (b) Var {V̂i} as a function of wi for the
continuous and pixellated functions, with B = 0.1, Vi = g = 1 and σ = 0.

Recent developments in fluorescence microscopy, as well as other forms of bioimag-
ing, mean that time-lapse imaging of intracellular processes can be performed with
unprecendented spatial and temporal resolution. The size of these datasets, resulting
from a large field-of-view and milli- or even microsecond frame rates, means that image
sequences can contain thousands of particles, making manual tracking prohibitive and
highlighting the need for robust, scalable computational methods. Similar problems
also arise in astronomical imaging, where stars, galaxies and other objects are tracked
over significantly larger length scales. These two fields have recognized the need for
effective particle tracking algorithms, and the first part of this section briefly reviews
some of the solutions in the literature. The second part focuses on the opportunities for
online particle tracking, building on the work of Chapter 3 to investigate the possibility
of designing a flexible workflow for denoising, detection, identification and tracking
atomic-resolution STEM images in real-time at the microscope.

4.4.1 Current methods for particle tracking

Successful particle tracking algorithms need to be able to cope with obscured particles,
tracks crossing over each other and particles leaving or entering the field-of-view
(Fig. 4.7), as well as account for particle motion models, which could be stochastic or
directed in nature. The simplest method is the nearest-neighbour algorithm, which links
together the closest particles between frames [203], while a more effective approach
uses combinatorial optimization and “dummy” particles to incorporate missing or
obscured particles [204].



4.4 Automated tracking of atomic motion 67

t = 2

t = 3

t = 1

x t 

y 

t = 4

Figure 4.7: The challenge of tracking particles through an image sequence involves not only
identifying the correct linking between particles in consecutive frames (solid black lines) from
the set of all possible links (dotted lines), but also dealing with scenarios such as new particles
entering the field-of-view, as happens at t = 3.

In a recent review article comparing many different methods used in fluorescence
microscopy [151], one of the best-performing algorithms took an approach based on
multiple hypothesis testing (MHT). This applies a Bayesian framework to maximize the
likelihood of the tracks given the set of observations [205]. Incorporating parameters
such as motion models and the expected number of missing or new particles per
frame enables a robust and general probabilistic framework for particle tracking to
be constructed. The MHT approach is used for tracking the motion of copper atoms
on graphene oxide in Chapter 5, as implemented in the Icy image analysis software
package [206].

4.4.2 Towards online tracking

Although the MHT approach performs well in many scenarios, the optimum method
will depend on the noise conditions, particle motion dynamics, number of particles
and background effects. This suggests that a method incorporating prior knowledge
of the experimental system is likely to perform better than a more general algorithm.
As well as using prior information and constraints to improve a tracking algorithm,
there is also a strong case for an online approach, in a similar vein to the ORPCA
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algorithm. An online approach not only means the algorithm can efficiently learn the
system characteristics as the experiment develops, but also the instantaneous feedback
for the user means the experiment can be guided based on the new knowledge. Most
methods, including MHT, are designed to be used after the image sequence has been
collected (although certain parameters are allowed to change through the dataset in
an online manner). A particular problem with nearly all methods is that they assume
either Brownian or directed motion of the particles. As will be discussed in depth in
Chapter 5, these motion models are not always appropriate for the diffusion of adatoms
on surfaces. A better approach would be to learn the appropriate motion model as the
dataset is acquired, strengthening the case for an online algorithm.

4.4.3 Reinforcement learning

The application of machine learning to object detection (Section 4.2.2) was a fairly
typical binary classification problem: calculate the likely label (positive or negative) for
a given input, and the algorithm compares this with the known labels of the training
data to improve its performance. In many cases, however, the feedback may be non-
specific, and the algorithm only knows if the classification is right or wrong but not
how or why.

The approach for these non-specific scenarios is known as reinforcement learning [179],
where the feedback is used to guide the exploration of the system. More formally,
the computer learns the appropriate action to take in a given environment in order
to maximize the reward (the non-specific feedback) [207]. The generality of this
problem statement makes reinforcement learning widely applicable, provided the
actions and reward can be specified. A famous example is in Google DeepMind’s
AlphaGo algorithm, which learnt how to defeat some of the best human Go players by
playing many millions of games against itself, using a variety of strategies and moves,
and adopting those that worked best [208]. The online strengths of reinforcement
learning are best summarized by a trade-off between exploration of unknown regions
of the environment with exploitation of current knowledge.

So how can reinforcement learning be applied to the particle tracking problem? The
particle motion can be characterized with a joint distribution over space and time,
which corresponds to the expected displacement and direction, r, of a particle between
consecutive frames, and the likelihood of a particle identified in one frame being the
same particle in the second or third frame (thus incorporating missing or obscured
particles). The joint distribution can be further extended to include intensity informa-
tion for tracking atoms using ADF-STEM, since the Z contrast of an element should be
similar between frames. Indeed, this facilitates tracking multiple classes of particles
based on their ADF intensity.
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The problem is then to find the set of links that maximize the likelihood of the
experimental observations being drawn from this distribution. Taking two particles
in different frames of a sequence, we define the action of linking them as C+ and the
action of not linking as C−. The simple, logical decision rule is to link the particles
based on the ratio of the prior probabilities:

P (C+) > P (C−) (4.15)

Of course, a decision rule based on knowledge about the system is always to be
preferred over a rule based solely on prior probabilities. Let x be a vector containing
information about the displacement r, the distance in time between the particles ∆t,
and any other information such as intensity. Then the likelihood of the observations
x depends on the underlying linking state, P (x|C). How does the measurement x
influence our knowledge about the true state of the system, i.e. whether the two
particles are linked or not? Using new evidence to update the belief or knowledge of a
system can be neatly expressed using Bayes’ theorem [209]:

P (A|B) =
P (B|A)P (A)

P (B)
(4.16)

Applying Bayes’ theorem, we now have for C:

P (C|x) = P (x|C)P (C)
P (x)

(4.17)

The expression P (C+|x) is known as the posterior probability, or the probability of the
particles being linked given the observations x. In a similar fashion, P (C−|x) gives the
probability that the particles are not linked based on the available information. The
denominator P (x) is the evidence, and is given by:

P (x) =
∑

C∈{C+, C−}

P (x|C)P (C) (4.18)

The prior probabilities P (C+) and P (C−) can be chosen based on how likely it is for a
particle to actually appear again in another frame. The simplest case is a uniform prior,
P (C+) = P (C−). The argument for assigning an equal probability to linking and to
not linking is that although it is uninformative, it will almost certainly perform better
than setting P (C+) = 1, for example. By applying Bayes’ theorem, our decision rule
can now be updated to account for the observations:

P (C+|x) > P (C−|x) (4.19)
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Figure 4.8: The steepness of the sigmoid function (Eq. 4.20) is controlled by the parameter b,
with the crossing point σ(0) = 0.5.

Choosing the correct linking for a particle in a given frame therefore requires the
enumeration of Equation 4.19 for every possible link that can be formed and selecting
the one that maximizes the future reward as expected in reinforcement learning.

The first step in the selection process converts the decision rule into a sigmoid function,
which has the general form:

σ (x) =
1

1 + e−bx
(4.20)

The parameter b controls how steep the sigmoid function is while ensuring it always
passes through (0,0.5) (Fig. 4.8). The purpose of the sigmoid function is to assign
a “weight” to the possible link between the two particles based on the posterior
probability, with the weight being used to select the link that maxmizes the future
reward. The cut-off value of σ(0) = 0.5 means that the decision rule (Eq. 4.19) can be
incorporated by replacing bx with*:

ln

{
P (x|C+)P (C+)
P (x|C−)P (C−)

}
(4.21)

Links with σ (x) < 0.5 are therefore automatically assigned a weight of zero based
on the decision rule, since the probability of the particles being linked is less than
probability of them not being linked.

Now a strategy is needed for selecting the correct link from the remaining possible links
with a sigmoid value greater than 0.5. Remember that reinforcement learning seeks to
maximize the future reward, which is related to the cumulative sum of the sigmoids.
Naively selecting the new link as the one with the highest value of σ (x), known as
a greedy strategy, may maximize the current reward, but this action may ultimately

*Notice that the decision rule (Eq. 4.19) can be written as ln
{

P(x|C+)P(C+)
P(x|C−)P(C−)

}
> 0.
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reduce the reward at some later point. A simple alternative, known as ϵ-greedy, chooses
the maximum sigmoid link with probability 1− ϵ, and otherwise chooses randomly
from the set of non-zero weights with probability ϵ. Introducing stochasticity in this
fashion enables the algorithm to explore more of the environment than the greedy
strategy, with the value of ϵ controlling the amount of exploration. An alternative
stochastic strategy known as softmax chooses a link with a probability, weighted by its
sigmoid value, from a Boltzmann distribution [180].

After choosing a link between particles using the above strategy, the trajectories can
be used to update the sigmoid by updating the likelihoods. In the case of P (x|C+)
this is a straightforward update using r, ∆t from the current links, while for C− a
sample of incorrect trajectories based on links that were not chosen can be drawn to
update P (x|C−). This in turn updates the sigmoid σ (x). Performing this update step
every n frames rather than every frame allows the algorithm to learn the appropriate
parameters for linking while using current and past knowledge. Choosing n then
involves a consideration of the exploration–exploitation trade-off of reinforcement
learning.

If the distribution or its parameters are unknown, then updating the sigmoid every
few frames provides the flexibility required for learning the appropriate distribution
over time, and the final learned sigmoid can be re-applied to the whole sequence
at the end to refine the links formed early on. A small amount of manual tracking
could also be used for training, without the significant cost of analyzing the whole
dataset by hand. Alternatively, prior knowledge about the system is straightforward
to incorporate into the algorithm, and not just in the priors P (C). If the system is
known to exhibit Brownian motion then the distribution of jumps between frames,
P (r), will be a Gaussian, whilst if the jumps take place on a regular lattice P (r) will
be discrete. This information can be used to control the initial shapes of the sigmoid
function.

A final, technical point is that the method can be optimized for real-time applications
by using kd-trees for the linking, enabling an efficient search for nearby particles to
consider for the update step [210]. This is justified by the fact that atoms at opposite
sides of the frame or many frames apart in time are very unlikely to be linked, even
when the spatial distribution is unknown, and so the use of nearby particles only acts
as a loose constraint on the algorithm.

The reinforcement learning approach described here is intended as a general framework
for online particle tracking. As with the classification algorithm, adaptability is key, and
the use of a general sigmoid function to incorporate knowledge about the motion model
makes it straightforward to apply any prior knowledge about the experiment.
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4.5 Summary

This chapter has discussed some of the most important image processing and analysis
challenges currently faced in single atom electron microscopy. Identifying atoms in
noisy images is a complex task where no single algorithm may outperform others due to
the extensive parameter tuning involved. Section 4.2 outlined an adaptable algorithm
based on supervised machine learning, where much of the manual work is taken on
by the algorithm. This leaves the user to focus on selecting the most appropriate
image features for the task at hand, and facilitates the rapid processing of long image
sequences in an automated manner.

Building on the atom detection algorithm, a method for robust localization and charac-
terization of atoms using maximum likelihood estimation was presented. This showed
that statistical analysis of the image acquisition process and noise characteristics can
be used to guide the design of STEM experiments. Understanding what information
needs to be collected means the microscope parameters can be optimized and the
electron dose minimized, which is crucial for imaging beam-sensitive samples. Finally,
the role of particle tracking algorithms in time-resolved microscopy was discussed. As
with atom detection, no single algorithm is necessarily the “best”; it depends on the
experimental conditions. By incorporating prior information about the system with
reinforcement learning, an online algorithm for tracking was outlined, with built-in
flexibility for different systems to ensure general applicability.

Above all, this chapter has, along with Chapter 3, highlighted the adaptability of
machine learning techniques for different scenarios encountered in STEM, and how
they can be combined with smart experimental design to push the boundaries of what
electron microscopy can achieve. The next three chapters will apply these approaches
to a series of experimental systems, where atom detection, fitting and tracking are key
steps in the journey from experimental observations to a fundamental understanding
of material properties at the atomic scale.



Chapter 5

Anomalous diffusion of copper
atoms on graphene oxide

5.1 Introduction

Combining the capability for imaging and characterizing single atoms with the methods
developed in the previous chapters makes STEM a powerful tool for investigating the
dynamic behaviour of materials at the atomic scale. Dynamics are of interest over a
wide range of timescales, but of particular importance and relevance to STEM imaging
is the diffusion of atoms, both at surfaces and in bulk materials, where the typical fre-
quency of atomic jumps is within the millisecond temporal resolution of time-resolved
STEM. This chapter focuses on surface diffusion, which is fundamental to a wide
variety of phenomena such as epitaxial growth, Ostwald ripening and heterogeneous
catalysis. Recent interest in single-atom catalysts has made understanding surface
diffusion at this scale particularly important, since it is a key process in the reactivity,
stability and durability of such systems. While surface diffusion has been the subject
of extensive experimental studies using FIM and STM [83], as well as theoretical
modelling [211, 212], studies on industrially-relevant substrates are less common due
to a number of experimental challenges including sample stability, robust identification
of atoms, and limited temporal resolution.

In this chapter, low-voltage aberration-corrected STEM is used to excite and probe
the motion of copper atoms on few-layer graphene oxide (GO)*. In conjunction with
experimental and computational characterization of the system, in-depth analysis of
the dynamics reveals that the metal atoms undergo so-called anomalous diffusion, in
contrast to the model of Brownian motion usually applied to the study of diffusive

*The work presented in this chapter was carried out in collaboration with R.K. Leary, E.C. Tyo, S.
Vajda, J.M. Thomas, Q.M. Ramasse, P.D. Bristowe and P.A. Midgley [213]. R.K.L. and Q.M.R. performed
the ADF-STEM experiments. E.C.T. and S.V. prepared the copper samples.
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behaviour. This anomalous diffusion arises from the complex, heterogeneous nature
of the GO substrate leading to a violation of the key assumptions behind Brownian
motion. The observed behaviour is rationalized in the context of established stochastic
frameworks in order to develop a model for the adatom–GO system, which is crucial
to our understanding of diffusion of single atoms, and is a key first step towards
controlling and harnessing dynamics at this length scale.

5.2 Atomic structure of graphene oxide

Graphene oxide (GO) is a form of functionalized graphene, the properties of which
can be tuned by controlling the number and type of functional groups, opening up
numerous electronic and optical applications [214–216]. GO is known to be spatially
heterogeneous, with disordered and locally-varying oxygen coverage ranging from
10–50 at% [217], and there is great interest in metal–GO systems for heterogeneous
catalysis, with oxygen-containing functional groups acting as preferential pinning
sites [218]. For example, Fe atoms deposited on GO have been shown to be a low-cost
and effective catalyst for the oxidation of CO [219]. However, a clearer picture of the
substrate heterogeneity and the metal–substrate interaction is required to design the
optimal catalyst in terms of reactivity and stability.

In this study, copper clusters were deposited on to few-layer GO membranes supported
on standard holey carbon TEM grids (Agar Scientific), using a customized soft landing
protocol [220]. Copper was chosen for two main reasons. Firstly, due to the expected
strong interaction between the metal atoms and the oxygen atoms on GO, perhaps
providing a route to mapping out the oxygen groups on the substrate. The second
reason is that small Cu clusters are increasingly under investigation as a low-cost
catalysts, in contrast to the noble metals commonly used in current heterogeneous
catalysis systems [37, 221–223]. The copper atoms were nominally deposited as
size-selected Cu13 clusters, but on imaging were found to be largely isolated single
atoms. Chapter 6 will investigate the reasons behind this dispersion and any Cu–Cu
interactions in greater detail, while the present chapter focuses on the interaction
between single metal atoms and the GO substrate.

Figure 5.1a is an annular dark-field (ADF) aberration-corrected STEM image acquired
at room temperature using a Nion UltraSTEM 100 operating at 60 kV. The illumination
angle was 33 mrad and the probe current was 50 pA. The ADF inner detector angle was
85 mrad. The sample was baked for 8 hours at 120°C to drive off carbonaceous debris
prior to observation. It is clear from this image that the GO is a complex material with
a number of different environments available for copper adatoms. In agreement with
previous (S)TEM studies [224–227], there are relatively pristine graphene regions,
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Figure 5.1: (a) ADF-STEM image of copper adatoms on GO. Scale bar: 1 nm. (b) Summed
Fourier transforms of the orange regions in a, with second-order Bragg reflections highlighted
by arrows. (c) Summed Fourier transforms of the green regions in a.

with sp2 character (Fig. 5.1b), separated by brighter patches of poorly ordered material
(Fig. 5.1c), likely to be oxygen-rich and thus exhibiting some sp3 character. Deposited
adatoms are seen as bright dots in the image and are found almost universally at the
boundaries of the disordered regions, suggesting very strongly that oxygen functional
groups play a crucial role in the binding of adatoms to the substrate.

The high mobility of the adatom species under the electron beam made chemical
identification using spectroscopy (either EELS or EDS) impractical due to the relatively
long dwell times required for unambiguous fingerprinting. As discussed in Chapter 2,
one of the advantages of ADF-STEM imaging is that intensity scales with atomic
number Z, which, in favourable circumstances, enables chemical identification of atoms
directly from image contrast at relatively short dwell times. Adatoms were identified in
Figure 5.1, and a 2D Gaussian fitted to each atom as described in Chapter 4 assuming
a Gaussian noise model (as the counts and therefore SNR in this image are relatively
high). The distribution of Gaussian volumes has two distinct peaks, indicating the
presence of two different adatom species (Fig. 5.2), and the ratio between the two
peaks is 3.3:1. Taking the brighter atoms to be copper and the lighter atomic species to
be silicon (a common impurity adatom on graphene oxide), an exponent of 1.65 gives
a ratio of Z1.65

Cu /Z1.65
Si = 3.33.
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Figure 5.2: Identifying adatoms using a histogram of ADF-STEM intensities. The solid blue
and red lines are Gaussian curves fitted to the histogram.

To gain further insight into the nature of the binding between Cu adatoms and the
underlying GO, a series of DFT calculations were performed. Further details on the DFT
computations and the calculations of binding energies can be found in Appendix D.
Figure 5.3 shows a number of possible low-energy configurations for a copper atom
bound to both graphene and to GO. Copper is seen to interact weakly with pristine
graphene (Fig. 5.3a-c), which is in line with studies of other transition metals on
graphene [228, 229]. The energy barrier along the bridge–top–bridge pathway is only
0.012 eV, in constrast to kBT = 0.026 eV at room temperature. The adsorption is
almost exclusively a result of van der Waals interactions, and the weak binding is
reflected in the notable absence of Cu atoms on sp2 regions (Fig. 5.1); the atoms will
diffuse rapidly at room temperature. The role of graphene vacancies in trapping Cu
atoms was also explored (Fig. 5.3d,e), since vacancies are likely to form as a result of
excitation by the electron beam, and are known to act as stable sites for other transition
metal atoms [230].

While vacancies and the high-symmetry adsorption sites of graphene are straightfor-
ward to model with DFT, the boundary regions of disordered GO (are favoured by
adatoms in Figure 5.1) are harder to model due to the uncertainty over the positions
of oxygen atoms on the substrate. As a result, the boundary regions were modelled
using ab initio random structure searching (AIRSS) [231, 232]. A full description of
the AIRSS technique is given in in Section 6.4, but briefly, AIRSS generates a set of
candidate structures by placing atoms at random positions, with physically meaningful
constraints such as minimum interatomic distances. This is followed by local optimiza-
tion with using DFT to find the low-energy structure. Applying this procedure led to
a number of plausible pinning sites with binding energies of ca. 3 eV, some of which
are shown in Figure 5.3f-i. These are similar in magnitude to the vacancy pinning
sites, and importantly show that the binding of Cu to oxygen is much stronger than the
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Figure 5.3: Density functional theory calculations of a copper atom interacting with graphene
and GO. (a) Cu adsorbed in a top site. (b) Cu adsorbed in a bridge site. (c) Cu adsorbed in
a hollow site. (d) Cu in a graphene monovacancy. (e) Cu in a graphene divacancy. (f) Cu
bonded to two oxygen atoms on graphene. (g-i) Cu interacting with GO as calculated with
AIRSS. The numbers are the binding energy of the Cu atom.

binding to graphene alone. The simulations presented here only considered oxygen on
one side of the graphene sheet. While the presence of oxygen on both sides of the sheet
will lead to a reduction in the buckling of the graphene [233], it is unlikely to result in
significant changes to the binding between Cu and neighbouring oxygen atoms.

A further comparison between the experimental observations and the AIRSS simula-
tions is given in Figure 5.4. By applying the double-Gaussian filter described in Ref. 50
to remove the contribution of probe tail effects, Figure 5.4a shows a clearer distinction
between the ordered sp2 and disordered sp3 regions of GO. The local environment
around a Cu adatom is enlarged in Figure 5.4c. One of the AIRSS structures, with bind-
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Figure 5.4: Heterogeneous structure of graphene oxide. (a) Filtered ADF-STEM image of
adatoms on graphene oxide. Scale bar: 1 nm. (b) Fourier transform of the top-left quarter of
the image, showing 6-fold symmetry. (c) Enlargement of the highlighted region, showing the
local environment around a copper atom. Scale bar: 0.2 nm. (d) Simulated ADF-STEM image
of a structure found with AIRSS, shown in (e).

ing energy 2.85 eV (Fig. 5.4e), was used to simulate an ADF-STEM image (Fig. 5.4d),
and shows remarkably good agreement with the experimental image (Fig. 5.4c).

This static ADF imaging has, in conjunction with DFT calculations, confirmed the
complexity and heterogeneity of graphene oxide, and shown that describing the inter-
action of transition metal atoms with GO is not necessarily straightforward. Binding
with oxygen functional groups and with graphene vacancies can pin adatoms to the
surface, with differing impacts on the stability and possibly reactivity of the adatom
species. Furthermore, even with modern “gentle” STEM techniques, it is very difficult
to determine the exact local structure around a metal adatom with no ambiguity in
terms of numbers and types of atomic species. The next section takes an alternative
approach to understanding the system by recording the dynamics of adatoms as they
explore their local environment.
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Figure 5.5: Evidence of graphene oxide in the image sequence. (a) A summation over all
frames from sequence 1 before image alignment to the stationary atom. Brightness increased
to highlight substrate structure. Scale bar: 1 nm. (b) Summed frames after alignment. (c)
Summed frames from sequence 2 before alignment. (d) Summed frames after alignment. The
insets are the Fourier transform of the respective images, with first-order Bragg reflections
highlighted by arrows.

5.3 Capturing single atom dynamics with ADF-STEM

In conjunction with the state-of-the-art low-voltage STEM imaging in the previous
section, further investigations were carried out at a primary electron energy of 80 keV
to probe the dynamics of copper adatoms on the surface of GO. The maximum energy
transferred in a collision between an accelerated electron and a nucleus is given by
Equation 2.2, and for an 80 keV electron colliding with a copper atom, Emax = 2.98 eV.
This is comparable to the binding energies calculated for various Cu pinning sites in Fig-
ure 5.3 and, acknowledging that the electron beam can also induce changes in the GO
substrate, means that the beam can be used to excite the copper atoms out of pinning
sites and subsequently record the movement. Accordingly, the subsequent atom motion
may be considered as comparable to that likely to be seen at elevated temperatures.
One must of course recognize that the conditions do not exactly reproduce those typical
of catalysis; even in advanced environmental STEM the achievable gas pressures are a
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Figure 5.6: (a) Cropped region from the first frame of sequence 1 after denoising. Scale
bar: 1 nm. (b) The same region 10 s later, with a copper atom trajectory highlighted in green.
The blue circle highlights the starting position. (c,d) MSD of the trajectories extracted from
sequence 1 and sequence 2 respectively. Best-fit lines are indicated in black with corresponding
exponents, and the dashed lines show the behaviour expected from normal diffusion.

tiny fraction of atmospheric conditions. However, the idea of exciting and recording
atom dynamics has been applied successfully to the study of numerous materials using
aberration-corrected STEM, both in the case of adatoms on surfaces [107, 234], and
for dopants in bulk materials [110].

Two ADF-STEM image sequences were recorded on an FEI Titan3 from the same area
of the sample with a 40 s wait between the two acquisitions. The probe convergence
semiangle was 21 mrad, and the ADF inner angle was 36 mrad. Each sequence
was recorded with a STEM probe size of ca. 0.2 nm, at 8 fps. The estimated dose
was 2200 e- pixel-1, corresponding to a dose rate of 6×106 e- nm-2 s-1. Although
each individual image in the sequence has a poor SNR, correlations between frames
were used to reduce the noise via low-rank matrix recovery with the PGURE-SVT
algorithm. The full sequences are available on the accompanying CD (see Movies S11
and S12).

Despite the PGURE-SVT processing, the SNR is still too low to discern the atomic
arrangement of the GO substrate in the same manner as Figure 5.4, but its graphitic
character, and underlying hexagonal symmetry, can be seen following alignment of the
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Figure 5.7: (a) The distribution of jump lengths, r, at different intervals ∆ for sequence 1.
The dashed line is a Gaussian fit to the data for ∆ = 0.5 s. (b) The same analysis for sequence
2. (c) The cumulative distribution of jump lengths for both sequences, and a fit of a log-normal
distribution to sequence 1 (dashed line).

sequences. Analysis of the sequences reveals that one of the adatoms remains pinned
in the same site for the full duration of each sequence. By aligning the frames to the
mean position of this atom, it is possible to account for the drift of the sample over
time. Summation of the frames following this alignment reveals evidence of a graphitic
lattice (Fig. 5.5). The summed images also reveal a change in the substrate as a result
of electron beam irradiation between sequence 1 and sequence 2. The increase in
brightness in the central region of sequence 2 (Fig. 5.5d) could be a result of increased
oxide coverage or hydrocarbon contamination as a result of irradiation by the electron
beam.

The positions of the copper atoms in each frame were extracted and linked to form
atomic trajectories using the MHT method described in Chapter 4; the green track in
Figure 5.6b shows how a single copper adatom has diffused over 10 s. In total, 63
trajectories were extracted from the two sequences with lengths of 25–130 frames,
corresponding to ca. 3–16 s. Sample drift was removed from the atomic trajectories in
a manner similar to the image alignment in Figure 5.5. A useful method for analyzing
particle trajectories involves calculating the mean-square displacement (MSD) as a
function of time. This can be used to assess whether the atomic motion is random, i.e.
diffusive, or directed, perhaps as a result of being pushed by the electron beam. The
MSD for the two sequences is plotted in Figures 5.6c and d. The standard model for
diffusive motion predicts that the MSD is linear in time. It is clear from Figure 5.6
that the present system exhibits a significant departure from standard model, with
exponents of 0.50±0.11 and 0.59±0.04 for sequences 1 and 2 respectively. Along with
a recent TEM study of Fe atoms moving along graphene edges [235], this represents
one of the first observations of so-called anomalous diffusion behaviour at the atomic
scale.

Further evidence for anomalous diffusion is obtained by considering the distribution
of atomic displacements, which in standard diffusion models are assumed to take
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place either on a regular lattice or are drawn from a normal distribution. Analysis
of the particle displacement distributions for various intervals for each sequence
(Fig. 5.7a,b) indicates that this is not the case, with both heavy tails and hints of
preferred distances due to the underlying GO substrate. Analyzing the cumulative
distribution of jump lengths (Fig. 5.7c), i.e. the likelihood of displacements being larger
than a certain value, shows that for both sequences the data closely follows a log-normal
distribution, indicating that the jumps are uncorrelated processes with multiplicative
probabilities [21]. This evidence is important for determining the underlying cause of
the diffusive behaviour. The next section consider the theories behind both normal and
anomalous diffusion, which are necessary for the development of a model to explain
the experimental observations.

5.4 Analyzing and modelling atomic diffusion

The first descriptions of the random motion of microscopic particles were made by
Robert Brown in 1828 [236], and the behaviour is now commonly known as Brownian
motion. Brown recorded the motion of pollen grains suspended on the surface of water
under an optical microscope. Despite no obvious mechanism for motion, the pollen
grains were seen to dance about erratically. Further observations of dust particles
indicated that the behaviour was not confined to living systems, but Brown was not
able to ascertain the reasons for the motion. It wasn’t until much later that Einstein
used the random motion of large particles to infer the existence of atoms [237]. We
now know that the motion Brown observed was caused by collisions between energetic
water molecules and the much larger pollen grain, and the net effect of many millions
of collisions is to push the grain in different, random directions. Einstein’s analysis
thus constitutes the start of a significant body of work on the stochastic behaviour
of particles at microscopic scales. Observing and understanding the motion of single
atoms continues these investigations to the smallest length scales, and modelling the
diffusion of single atoms is key to understanding and predicting the material properties
based on this motion.

It is also important to note that the phenomenon of Brownian motion, and indeed
all of the diffusion models discussed in this chapter, can instead be framed in a more
mathematical context as a random walk [238]. Typically Brownian motion refers to
the natural phenomenon, while the mathematical model is known as a Wiener process.
One of the first examples of modelling Brownian motion as a stochastic process was
the study of stock option prices performed by Bachelier in 1900 [239]. This chapter
focuses on the physical models of atomic diffusion on surfaces, although many of
the terms and mathematical expressions are applicable to both frameworks. In-depth
discussions of stochastic processes can be found in Refs. 240 and 241.
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5.4.1 Normal diffusion

Einstein’s analysis of the behaviour of a diffusing particle was based on the diffusion
equation, which is equivalent to Fick’s second law [237]. In two dimensions, let P (r, t)

be the probability of finding a particle at position r at time t. The diffusion equation is
then:

∂

∂t
P (r, t) = D

∂2

∂r2
P (r, t) (5.1)

where D is the diffusion coefficient. If we assume r = 0 at t = 0, the solution to
Equation 5.1 is the probability density function (PDF) of the normal distribution. The
first moment, or mean, of this distribution is:

⟨r (t)⟩ =
∫ ∞

−∞
rP (r, t) dr = 0 (5.2)

A diffusing particle is therefore equally likely to move in all directions. The second
moment, or variance, of this distribution gives the MSD of the particle at time t:

〈
r2 (t)

〉
=

∫ ∞

−∞
r2P (r, t) dr = 4Dt (5.3)

This is the linear relationship highlighted in Figures 5.6c and d. Einstein then derived
the relationship between D and Avogadro’s number, NA, as D = µkBT , where µ

is the atomic mobility, kB is Boltzmann’s constant and T is temperature*. The first
experimental measurements of NA were made by Perrin in a series of microscopic
tracking experiments that applied Einstein’s analysis [243].

5.4.2 Anomalous diffusion

In deriving Equation 5.1 and the resulting properties above, several key assumptions
were made about the system under investigation:

– particles are independent

– particle displacements are symmetric (cf. Eq. 5.2)

– particle displacements are statistically independent

These assumptions result in the normal distribution PDF being the solution to Equa-
tion 5.1, and Einstein’s model for Brownian motion is otherwise known as normal
diffusion. For the motion of pollen particles suspended in water as reported by Brown
in 1828, it is straightforward to see the validity of these assumptions. The particles are
typically well-dispersed, and are free to move in all directions. Finally, the observation

*The same result was derived independently by Smoluchowski [242].
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timescales are sufficiently large compared to the collision timescales such that each
observed displacement can indeed be considered independent.

Violations or departures from any of the three assumptions above can give rise to a wide
range of behaviours known as anomalous diffusion. As experimental techniques are
developed to explore particle dynamics at ever-smaller length and time scales, it is no
great surprise that the assumptions in the Einstein-Smoluchowksi model begin to break
down. For example, extensive work with single-particle tracking using fluorescence
microscopy has revealed that the crowded, active environment inside cells means that
diffusing molecules can no longer be treated as independent, displacements take place
in preferred directions, and individual jumps are correlated [21, 244–246]. These
violations result in anomalous, rather than normal, diffusion.

In contrast to the Einstein-Smoluchowksi model, anomalous diffusion is characterized
by a non-linear relationship between the MSD and time. Usually, anomalous diffusion
takes the form of a power-law, so in two dimensions:

〈
r2 (t)

〉
= 4Dαt

α (5.4)

where α is the anomalous diffusion exponent, and Dα is the anomalous diffusion
coefficient to distinguish it from D. When 0 < α < 1 the phenomenon is known as
subdiffusion, and when α > 1 it is known as superdiffusion. The rest of this chapter will
focus on the subdiffusive regime, where the particle is diffusing slower than predicted
by Brownian motion, since this corresponds to the measured exponents in Figures 5.6c
and d. Superdiffusion on the other hand typically arises from a diverging second
moment of P (r, t), leading to an increased probability of longer jumps. These are
known as Lévy walks and flights, since this increased probability can be modelled using
Lévy alpha-stable distributions [247]*. An in-depth review of superdiffusion can be
found in Ref. 248.

Returning to subdiffusion, numerous theories have been developed to explain the con-
ditions in which anomalous behaviour arises. Common models include the continuous-
time random walk (CTRW), where a particle jumps between traps with random dwell
times [249]; random walks on fractals, with no characteristic length scales for particle
displacements [247, 250]; and fractional Brownian motion (FBM), where the diffusing
particle exhibits long-term correlations in displacements [251]. In complex, heteroge-
neous systems, several models, along with thermal noise, can combine to give rise to
anomalous diffusion [252]. For an in-depth discussion of subdiffusion models, readers
are referred to the recent review by Metzler and coworkers [19].

*The normal distribution is in fact a special case of a Lévy alpha-stable distribution with α = 2, and is
the only one with a defined variance.
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Figure 5.8: (a,b) TA-MSD of the trajectories extracted from sequence 1 and sequence 2
respectively. (c,d) Mean TA-MSD of the trajectories from each sequence as the observation
time t increases. Best-fit lines are indicated in black with corresponding exponents, and the
dashed lines show the behaviour expected from normal diffusion.

Alongside the non-linearity in Equation 5.4, another key consideration for anomalous
diffusion is the ergodic behaviour of the system. The ergodic hypothesis states that, in
the case of diffusion, the statistical properties of the whole ensemble of particles such as
the mean and variance (i.e. MSD) can be deduced from a sufficiently long observation
of a single particle. Ergodicity in such a system of diffusing particles can be assessed by
considering the relationship between the ensemble MSD and the time-averaged MSD
(TA-MSD), defined as:

δ2 (∆) =
1

t−∆

∫ t−∆

0
{r (τ +∆)− r (τ)}2 dτ (5.5)

in which ∆ defines the width of a sliding window along the trajectory of a particle.
In an ergodic system,

〈
r2 (t)

〉
= δ2 (∆) as the measurement time t → ∞. Non-

ergodic behaviour cannot be measured solely from the ensemble averages provided by
experimental techniques such as concentration profiles, and so single particle tracking
as demonstrated here is therefore critical to understanding the physical models for
atomic diffusion. Figures 5.8a and b plot the TA-MSD for each trajectory extracted
from the two sequences, and two important points arise. First, the significant scatter
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in amplitudes, which increases with ∆, is a clear indication of ergodicity breaking.
Secondly, the averaged exponents for each sequence differ from the corresponding
MSD exponents (Figs. 5.6c and d), so the ergodic hypothesis evidently does not hold
in this system.

A related quantity that be analyzed as a result of single particle tracking is the ensemble
TA-MSD, which measures the general behaviour in the TA-MSD as the observation time
t increases: 〈

δ2 (∆)
〉
=

1

N

N∑
i=1

δ2i (∆) (5.6)

The diffusive behaviour of many diffusion models does not depend on how long the
system is observed for, so the ensemble TA-MSD is a useful method for determining
which models might be applicable. Figures 5.8c and d show a power-law decrease
in the ensemble TA-MSD for both sequences, which is indicative of a phenomenon
known as ageing, whereby the observed diffusion behaviour depends on both the
observation time and on the time that has passed since the system was created. In the
present Cu/GO system, over time the Cu adatoms will tend to diffuse to stable pinning
sites such as disordered, oxidized regions, and so the initial rapid diffusion over sp2

graphene will give way to slower diffusion in the disordered regions.

Using the ensemble TA-MSD, a further measure of ergodicity breaking can be de-
fined as the parameter ξ, which represents the scatter seen in the TA-MSDs of each
trajectory:

ξ =
δ2 (∆)〈
δ2 (∆)

〉 (5.7)

The distribution φ (ξ) shows a finite value at ξ = 0 for both sequences (Figs. 5.9a
and c), whereas an ergodic process would be expected to have a sharp peak at ξ = 1.
The increasing scatter in the TA-MSDs is reflected in the increasing width of φ (ξ) with
∆. Another test of the anomalous diffusion behaviour uses the p-variation [253], which
separates a particle trajectory into 2n segments, then the position differences between
segments are summed and raised to the pth power. The p-variation for p = 2, V (2)

n (t),
would be linear in t and increase in gradient with increasing n for an ergodic process,
but the discrete jumps in Figures 5.9b and d again indicate that the experimental
observations exhibit ergodicity-breaking.

5.5 A hybrid model for adatom diffusion on GO

Identifying the physical origins of the observed subdiffusion, and in particular the
non-ergodicity, as well as why the behaviour in the two sequences should be subtly
different, relies on understanding the models behind anomalous diffusion and how
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Figure 5.9: Testing the origins of subdiffusivity on graphene oxide. (a) Distribution of scatter
in TA-MSD for different intervals ∆ in sequence 1. (b) The p-variation (p = 2) of one of the
experimental trajectories from sequence 1. (c) Distribution of TA-MSD scatter for sequence 2.
(d) The p-variation (p = 2) of one of the experimental trajectories from sequence 2.

these relate to the experimental system. While a powerful tool for understanding
structures at the atomic scale, DFT alone is unsuitable for modelling the dynamic
behaviour of atoms in complex systems over long timescales. Accounting for the
effects of the electron beam further complicates the calculations, and rapidly increases
the computational resources required for a full first-principles simulation. Moving
to classical MD methods extends the timescales that can be investigated, although
realistically only as far as the nanosecond regime rather than the millisecond-scale
observations in the experiments here. Furthermore, parameterizing empirical potentials
with sufficient accuracy and complexity to model all the possible atomic interactions
is not a straightforward task. Kinetic Monte Carlo (KMC) simulations can be linked
with DFT calculations of transition pathways and energy barriers to simulate complex
surface diffusion behaviours [254], but again including all of the possible interactions
and sites in a heterogeneous substrate such as GO is limited by the need for extensive
DFT simulations.

Stochastic simulations of diffusion offer a simpler approach to understanding the
observed atom motion at a much-reduced computational cost. Any model must account
for the variety of adatom binding sites, in terms of both relative stability and spatial
distribution, as well as the changes in the substrate induced by the electron beam.
The ergodicity breaking observed in the previous section rules out ergodic models
such as FBM, but it is possible for multiple models to combine in the case of complex,
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heterogeneous systems [21]. Knowing that GO exhibits both energetic disorder (in the
Cu adatom binding sites) as well as spatial disorder (Fig. 5.4a), this section constructs
a hybrid model for Cu adatom diffusion that is able to account for the two types of
disorder present in GO.

5.5.1 Energetic disorder and the continuous-time random walk

Developed by Montroll and Weiss in 1965, the continuous-time random walk (CTRW)
is one of the earliest models for describing anomalous diffusion [249]. It extends the
stochasticity seen in the distribution of jump displacements to also incorporate random
waiting times between jumps. This can be imagined as a particle moving on an energy
surface containing a number of trapping sites of different depths (Figure 5.10a). The
probability of the particle escaping a particular well is directly related to the depth of
the well, and so deeper wells lead to longer waiting times before a particle is seen to
move between sites. The mean time between particle jumps is now dependent on the
waiting time PDF:

⟨τ⟩ =
∫ ∞

0
τP (τ) dτ (5.8)

The typical model used for the PDF is a power-law:

P (τ) =

0 τ < τ0
γτγ0
τ1+γ τ ≥ τ0

(5.9)

where γ is the power-law exponent. Here τ0 is a parameter controlling the minimum
possible waiting time relative to the laboratory time t. For example, if observations are
made every t timesteps, and τ0 < t, this means that more than one jump can take place
between observations. This is a critically important consideration in the context of
time-resolved STEM imaging, which takes place over a much longer timescale (10-1 s)
than the timescale of atomic motion between two neighbouring sites (ca. 10-9 s) and
so only captures the “before” and “after” states of the system.

Figure 5.10b shows a one-dimensional CTRW, with normally-distributed displacements.
The effect of the power-law waiting times is clear, with periods of mobility separated
by long periods of particle trapping. The periods of immobility lead to the system
exhibiting ergodicity breaking, since it is now possible for particles to remain pinned
in one site for the entire experiment. Analysis of the TA-MSDs of these immobile
particles clearly will not reflect the ensemble MSD behaviour, and so the CTRW is
a non-ergodic process. Immobile Cu atoms are observed experimentally on the GO
substrate; Figure 5.5 uses them to align the image sequences and remove the effects
of sample drift. The reason for the trapping is likely a result of a particularly strong
binding site (e.g. due to oxygen or a graphene vacancy).
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Figure 5.10: (a) Schematic diagram of a continuous-time random walk. (b) One-dimensional
continuous-time random walk. Waiting times are drawn from a power-law distribution with
γ = 0.8 and τ0 = 1. Displacements are drawn from a normal distribution.

Previous theoretical analysis of the kinetics of adatom motion under an electron beam
used elastic scattering cross-sections to determine rates of motion in comparison to
thermal displacements [101]. As well as the electron beam geometry and specimen tilt,
the cross-section also depends on the energy barrier for diffusion, which in the case of
a heterogeneous substrate such as GO can be highly variable due to the arrangement
of functional groups. This variability motivates the use of a CTRW model to account
for the energetic disorder.

Another particular property of a CTRW is that these periods of immobility will in-
crease as the the system develops over time. Particles exploring the landscape will
discover ever-deeper traps, leading to the phenomenon known as ageing. This can
be characterized by the behavior of the ensemble TA-MSD of a CTRW in the limit
∆ ≪ t: 〈

δ2 (∆)
〉
∝ ∆

t1−γ
(5.10)

Figures 5.8c and d show the expected decay of
〈
δ2 (∆)

〉
with t, indicating that the

system does exhibit ageing. However, the relationship between these exponents and
the MSD exponents (Fig. 5.6c,d) does not show the expected behaviour from a pure
CTRW. Furthermore, the TA-MSD of a CTRW should be linear in ∆, but this is not seen
experimentally. These discrepancies point to an important physical characteristic of
the system that is not incorporated into the CTRW model. Although it incorporates the
energetic disorder of GO uncovered by DFT calculations, the pure CTRW model was
originally developed for walks on a regular lattice, or with the displacements drawn
from a normal distribution. It is clear from the experimental observations that this is
not an appropriate model for GO, and thus incorporating spatial disorder may explain
the discrepancies in the exponents.
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Figure 5.11: Starting from an equilateral triangle, the first four iterations of the Koch snowflake
are shown. While the area converges to 1.6× the area of the starting triangle, the perimeter
diverges to infinity. The Hausdorff dimension df is log 4/log 3 ≈ 1.26.

5.5.2 Spatial disorder and percolation theory

Modelling spatially-disordered systems is often performed using the framework of
percolation theory [250], an elegant approach that brings together the mathematics
of fractals with experimental observations in an enormous range of physical systems.
Fractals, first introduced by Mandelbrot [247], are defined mathematically as objects
with a non-integer Hausdorff dimension, df . Fractals also exhibit a property known as
self-similarity: at any magnification, the object looks exactly the same. Deterministic
fractals are generated by recursively applying a set of operations, and include classic
fractals such as the Sierpinski gasket and the Koch snowflake, with the latter being
an example of how a finite area can be bounded by an infinitely long line (Fig. 5.11).
While df can be defined exactly for deterministic fractals, many other systems can
exhibit the same self-similarity property. These are known as statistical fractals, and
their mass M scales with their linear size L as M ∝ Ldf . Mandelbrot identified that
many systems in nature can be described as statistical fractals, including, famously, the
coastline of Britain (df ≈ 1.25) [255, 256].

Percolation theory is a common framework for systems exhibiting statistical fractal
character. The present discussion focuses only to the site percolation model, as opposed
to bond percolation, since the bond model can be reformulated as a site model on a
different lattice. Figure 5.12 depicts a square site lattice, where a fraction of sites p are
occupied (white) and 1−p are unoccupied (black). Connected percolation clusters are
formed by occupied nearest neighbours, and as p increases so too does the average size
of the clusters. Above the critical fraction, pc, there exists a connected cluster extending
from one side of the lattice to the other (Fig. 5.12b), allowing continuous transport (or
“percolation”) across the lattice. This connected cluster is also known as an “infinite”
cluster, and it has been shown that for a 2D site lattice df = 91/48 ≈ 1.896 [250].

Examples of experimentally-observed percolation clusters include discontinuous thin
films of Pb and Au [257, 258]. More recently, measurements of the electrical conduc-
tivity of GO at various levels of oxidation suggest that the spatial heterogeneity in
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Figure 5.12: An example of a square site percolation lattice (pc = 0.5927. . . ). (a) When
p < pc, there is no continuous path from the left-hand side of the lattice to the right. White
squares are occupied sites, black squares are unoccupied. (b) When p ≥ pc, it is now possible
to travel from left to right in a continuous path. The shortest such path is highlighted in
orange. (c) When p < pc, the lattice is characterized by many small unconnected clusters of
accessible sites. Each colour denotes a connected cluster of occupied sites, and black represents
unoccupied sites. (d) When p ≃ pc, a few larger connected clusters begin to dominate the
lattice, although some small clusters remain. (e) When p > pc, a single cluster now covers
most of the lattice.

GO can be described using percolation theory [259]. The sp3 character introduced
by functional groups disrupts the conductivity of GO relative to pristine graphene. As
the oxygen ratio is reduced, the fraction of GO with sp2 character increases, until it
forms connected clusters enabling excellent conductivity across the GO sheet. This is
demonstrated in Figure 5.12c-e, where the increase in the occupancy (i.e. the ratio of
sp2 to sp3 regions) leads to the formation of connected clusters.

Turning now to the case of a random walk on a percolation cluster, the spatial disorder
and lack of a characteristic length scale results in anomalous diffusion behaviour [250].
An important distinction is between behaviour below and above the percolation thresh-
old at which the infinite connected path of accessible sites is formed, as diffusive
behaviour transitions from non-ergodic on separate, isolated clusters to ergodic on
the infinite cluster. However, random walks on a percolation cluster do not exhibit
the ageing of a CTRW that is seen experimentally, suggesting that a hybrid model
combining both spatial and temporal disorder is more appropriate for the metal–GO
system.
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Figure 5.13: Comparison of the ageing behaviour (∆ = 1) of a random walk on a honeycomb
site lattice with occupation p = 0.6, with and without a CTRW contribution (γ = 1 and τ0 = 1).
The dashed lines are the measured slopes for sequences 1 and 2.

5.5.3 The hybrid model

The hybrid model for adatom diffusion on GO was developed from previous works
combining diffusion models [21, 260], based on the percolation cluster representation
of GO described above. First, percolation on a 256×256 honeycomb site lattice with
periodic boundary conditions was simulated. Random walks over the accessible sites
of the lattice were then generated. The durations of each step were drawn from a
power-law distribution (Eq. 5.9). Only those steps occurring within a given observation
time t were kept to form the hybrid model. The possibility of missed jumps in the
experimental system, where an atom moves through several sites in between frames,
can be incorporated by choosing τ0 < 1.

It was suggested previously that random walks on isolated clusters in a percolation
lattice (p < pc) give rise to non-ergodic behaviour without the need for a CTRW contri-
bution. Indeed, the low probability of the existence of an infinite path of accessible
sites on GO (cf. Fig. 5.4) suggests a value of p below pc, which for a honeycomb
lattice is 0.697. However, as shown in Figure 5.13, a random walk on these clusters
also requires the incorporation of a CTRW to model the ageing behaviour seen in the
experimental system.

Figure 5.14 considers further the effect of the occupation fraction p on the diffusion
behaviour, since this this relates to the number of available sites for pinning a Cu
atom to GO. For low availability (p ≪ pc), the atoms are confined to small clusters
and are unable to fully explore the lattice, so the MSD exhibits a plateau at long
times (Fig. 5.14a), similar to the behaviour seen in the MSD for sequence 1. For high
availabilities the fractal contribution to the random walk is negligible, and so a pure
CTRW model dominates with the TA-MSD being linear with respect to ∆.
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Figure 5.14: The effect of the occupation fraction p on the hybrid model. (a) MSD of 104

CTRWs with γ = 0.8 and τ0 = 1 on a honeycomb site lattice (pc = 0.697) with varying
occupancies. (b-d) Subset of TA-MSDs for the same walks. The solid lines are fits to the
simulated TA-MSDs.

Combining the exponents from the experiment with the results from the simulations,
the hybrid model parameters (p, γ, τ0) were fitted using a least-squares minimization
in the absence of measurement noise. For the model of sequence 1, the fraction of
accessible sites was p = 0.45, with power-law exponent γ = 0.88, and τ0 = 0.70.
For sequence 2, the fraction of accessible sites increased to p = 0.60, the power-law
exponent increased to γ = 0.98, and τ0 = 0.70.

Figures 5.15 and 5.16 show the behaviours of the two fitted hybrid models. The
schematic diagrams show a simulated random walk on a honeycomb site lattice
without measurement noise, while plots of the MSD, TA-MSD, ensemble TA-MSD
and jump displacement distributions show how the models accurately reflect the
experimental observations. For these plots, a small amount of Gaussian noise was
added to the trajectories to reflect the uncertainties in measuring the positions of atoms
experimentally; more information about noise is given in Section 5.5.4.

When a particle arrives at a lattice site, the waiting time before the next jump is drawn
from a power-law distribution as in the CTRW model. Particles revisiting a site will have
a new waiting time, thus reflecting any beam-induced changes in the substrate that
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Figure 5.15: A model for anomalous diffusion of adatoms on graphene oxide in sequence
1. (a) Honeycomb site lattice with probability of occupancy, p = 0.45; grey circles represent
accessible sites, while black circles represent inaccessible sites. The red line shows a CTRW on
a cluster of accessible sites. (b) Ensemble MSD, (c) TA-MSD, (d) mean TA-MSD for ∆ = 1, and
(e) jump length distribution of simulated CTRWs on the lattice with γ = 0.88, τ0 = 0.70, and a
small amount of Gaussian noise added.
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Figure 5.16: A model for anomalous diffusion of adatoms on graphene oxide in sequence
2. (a) Honeycomb site lattice with probability of occupancy, p = 0.60; grey circles represent
accessible sites, while black circles represent inaccessible sites. The red line shows a CTRW on
a cluster of accessible sites. (b) Ensemble MSD, (c) TA-MSD, (d) mean TA-MSD for ∆ = 1, and
(e) jump length distribution of simulated CTRWs on the lattice with γ = 0.98, τ0 = 0.70, and a
small amount of Gaussian noise added.

may affect the copper binding energy. This also accounts for the stochastic nature of the
electron–nucleus collision events. The honeycomb lattice incorporates the underlying



5.5 A hybrid model for adatom diffusion on GO 95

a)

0.0

0.5

1.0

1.5

2.0

2.5

ϕ
(β
)

0.0 0.5 1.0 1.5 2.0

β

b)

0.0

0.5

1.0

1.5

2.0

2.5

ϕ
(β
)

0.0 0.5 1.0 1.5 2.0

β

Figure 5.17: Distribution of TA-MSD exponents, β. (a) Sequence 1 (grey bars) and the hybrid
model (solid line). (b) Sequence 2 (grey bars) and the hybrid model (solid line).

hexagonal symmetry of the GO, and the possibility of five- and seven-membered rings in
defective GO regions is accounted for by the structural disorder introduced by the site
percolation aspect of the model. Using this hybrid model we match remarkably well the
observed subdiffusive behaviour seen in the MSD (Fig. 5.15b), including a long-time
plateau due to confinement (cf. Fig. 5.6c). Ergodicity breaking is identified by the
sub-linear behaviour and scatter in the TA-MSD (Fig. 5.15c), the ageing behaviour
(Fig. 5.15d) and the characteristic jump probabilities (Fig. 5.15e).

Further confirmation of the fit between the hybrid model developed here and the
experimental observations is shown in the scatter of the TA-MSDs (Fig. 5.17). The
distribution of TA-MSD exponents, φ (β), shows good agreement between the exper-
imental results and the simulations for both sequences, with a finite value at β = 0
indicating completely immobile atoms.

The hybrid model provides a clearer understanding of the physical processes involved in
the anomalous diffusion, and allows us to return, to the Cu–GO system and explain the
non-ergodic subdiffusive adatom motion in more detail. The electron beam provides
sufficient energy for Cu atoms to explore a distribution of binding sites with a range of
energies. Adatom movement on sp2 graphene will be rapid as the binding energies are
small. The important binding sites, however, corresponding to the locations of oxygen
atoms bound to the underlying graphene, are spatially disordered and can be modelled
as a percolation network, and the ageing corresponds to adatoms encountering ever-
deeper trapping sites. Although the characteristic behaviour of the adatom motion
in sequences 1 and 2 is similar, the subtle differences in ageing and the degree of
ergodicity-breaking can be explained by a beam-induced change in the GO support.
This could be due to an increase in oxide coverage or hydrocarbon contamination. The
change leads to a reduction in the area of sp2 graphene, and thus a reduction in the
number of weak binding sites available, and a corresponding increase in the fraction of
stronger binding sites to which the adatom may be pinned. Other changes such as the
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Figure 5.18: Assessing the effect of measurement noise on the hybrid model. (a) The x compo-
nent of a CTRW on a honeycomb site lattice without (σ = 0) and after (σ = 0.5) the addition
of Gaussian noise. The distance between adjacent lattice sites is 1. (b) Behaviour of the mean
TA-MSD as the measurement noise level increases. (c) Distribution of the scatter in TA-MSD
(∆ = 5) for increasing measurement noise.

formation of graphene vacancies and the presence of impurity atoms will only increase
the variety of available binding sites, further motivating the use of a stochastic CTRW
model to account for the adatom binding.

5.5.4 Accounting for measurement noise

Errors in the position and tracking of atoms in the sequences can lead to the observation
of anomalous diffusion behaviour even in the case of normal Brownian motion, so as a
final check it is important to rule out the effects of measurement noise. The Gaussian
fits in Figure 5.7a and b provide an estimate of the measurement noise in the system,
since the small particle displacements most likely correspond to fluctuations in the
recorded position of an atom in the same site. These are either a result of thermal
displacements or errors in the atom-fitting procedure. For the interval ∆ = 0.125 s,
the full-width half-maximum of the Gaussian fit was 0.09 nm for sequence 1 and
0.07 nm for sequence 2, compared to the graphene C–C bond length of 0.142 nm.
Using this information, random walks drawn from the hybrid model were combined
with additive Gaussian noise. Only when the additive noise becomes significant relative
to the size of the percolation lattice are the ageing and ergodicity breaking identified
in the experimental system masked by the noise (Fig. 5.18). This confirms that the
observations do not arise from measurement noise but are in fact an inherent property
of the system.
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5.6 Summary

Using fast atomic resolution STEM imaging in combination with the denoising and
particle tracking approaches discussed previously, this chapter has investigated the
diffusive motion of Cu adatoms on graphene oxide. The system was found to exhibit
anomalous subdiffusive behaviour, and this was explained using a hybrid CTRW model
combined with a site percolation network. The development of a simple, stochastic
model provides a flexible method for simulating the interactions of atoms with imperfect
surfaces, where the complexity makes DFT simulations computationally demanding.
Such a model paves the way towards a more comprehensive understanding, and
prediction, of atomic-scale surface diffusion in materials systems possessing spatial
and energetic heterogeneity. Furthermore, it provides a route for improving our
understanding of the activity, stability and durability of single atom catalysts.

One of the questions that arises from the observations and analyses of this chapter
is why do the Cu adatoms remain fairly well-separated, and why is no significant
agglomeration into small atomic clusters seen? Indeed, one of the assumptions in the
hybrid model developed here is that the Cu atoms are largely independent of each
other, but is that truly the case? The atoms were initially deposited as Cu13 clusters,
but these appear to have broken up prior to observation in the STEM. Accounting
for this behaviour is an important next step to characterizing single atom and atomic
cluster catalysts, since the effect of adding or removing just one atom on the catalytic
activity can be significant. The next chapter will present a more in-depth DFT study of
the behaviour of Cu atoms on graphene and GO substrates, with extensive use of the
AIRSS technique to explore and understand the complexity of the system.





Chapter 6

Structures of small copper clusters
on graphene oxide

6.1 Introduction

The original decision to study the copper samples in the previous chapter was driven
by the fact that small copper clusters are becoming increasingly important for cataly-
sis [37]. Although the fabrication method involved the soft landing of size-selected
Cu13 clusters onto the GO substrate, very little evidence of Cu13 was found upon in-
vestigation using STEM. Instead the Cu was largely dispersed as single atoms over the
surface, as seen in Chapter 5. Preferential binding to oxygen-rich disordered regions
was observed, and this raises the question of whether the oxygen functional groups,
originally intended to pin the Cu clusters, have instead contributed to their fragmen-
tation. Previous work on other substrates suggests that the soft landing fabrication
method alone does not typically lead to cluster fragmentation [261], so investigating
other possible causes is key to a full understanding of the cluster–substrate interaction
and the system as a whole. Crucially, although small clusters are often more active
catalysts than larger nanoparticles, the decreased stability often results in an early
decrease in catalytic activity as the particles fragment or agglomerate [36].

This chapter reanalyzes the samples from Chapter 5, although the focus is now on the
relationships between copper atoms as well as the substrate*. Evidence of small clusters,
most notably a Cu3 motif, reveals anomalously large Cu–Cu interatomic distances on
the substrate, indicating that the GO plays a critical role in stabilizing the adatoms.

*The work presented in this chapter was carried out in collaboration with R.K. Leary, G. Schusteritsch,
C.J. Pickard, E.C. Tyo, S. Vajda, J.M. Thomas, Q.M. Ramasse, P.D. Bristowe and P.A. Midgley. R.K.L. and
Q.M.R. performed the ADF-STEM experiments. E.C.T. and S.V. prepared the copper samples. G.S. and
C.J.P. assisted with the DFT and AIRSS calculations. The use of spatial point processes to analyze adatom
distributions (Section 6.3) has also been published in Ref. 262.
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Quantitative analysis of the adatom distributions is used to further understand these
interatomic distances. In the second half of the chapter, a detailed computational
investigation of the structure and stability of Cu clusters in vacuum, in the presence
of oxygen, and on the surface of GO is conducted. This study develops the AIRSS
simulations first used in Chapter 5 to identify the role played by oxygen in binding Cu
atoms and clusters to the substrate.

6.2 ADF-STEM results

As in Chapter 5, ADF-STEM imaging was carried out using two aberration-corrected
microscopes. Static and time-resolved imaging of Cu clusters was performed on a FEI
Titan3 operating at 80 kV, and a Nion UltraSTEM 100 operating at 60 kV was used to
acquire atomic-resolution images of the GO substrate.

6.2.1 Time-resolved observations

Figure 6.1 presents four consecutive frames of an image sequence acquired at 8 fps.
The imaging conditions are largely identical to the sequences studied in Chapter 5, and
the motion of Cu adatoms is again driven by the electron beam. The smaller pixel size
in this sequence means that the dose rate is approximately twice that of the sequences
in Chapter 5, i.e. 107 e- nm-2 s-1. Figure 6.1 shows an arrangement of adatoms before
and after denoising with PGURE-SVT, starting 2 s after the area was first irradiated by
the electron beam.

The first frame shows two pinned adatoms and a third, more mobile atom highlighted
by the arrow. In the next frame, this third atom has jumped, eventually forming an
asymmetric triangle motif with the pinned atoms by the third frame. This “trimer” motif
remains stable under the beam for a further 1.5 s before the third atom disappears
from the field-of-view (presumably sputtered off the surface), leaving behind the
original pair of stable atoms. The third atom is evidently less strongly-bound to the
substrate than the others, supporting the idea of a distribution of trapping sites for
adatoms as outlined in Chapter 5. The projected interatomic spacings of the trimer
motif are measured in the fourth frame of Figure 6.1, and it is immediately clear that
the spacings are too large to be direct Cu–Cu bonds; the nearest-neighbour distance
in fcc Cu is 2.55 Å by comparison. Clearly the substrate has a significant impact on
the clustering behaviour of Cu, but it is difficult to fully characterize and understand
this effect without better images of the underlying substrate. The role of oxygen
pinning the atoms to the GO, first observed in the previous chapter, is of particular
importance.
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Figure 6.1: Consecutive noisy (top row) and denoised (bottom row) ADF-STEM frames of Cu
adatoms on graphene oxide. At t = 2.125 s, two adatoms are pinned in the centre of the frame,
and a third atom is marked by the arrow. At t = 2.250 s, the third atom moves as highlighted
by the arrow. Finally at t = 2.375 s, a stable trimer configuration forms, with interatomic
distances measured at t = 2.500 s. Figure adapted from Ref. 117. See also Movie S13.

6.2.2 Resolving the GO substrate

Turning now to the 60 kV ADF imaging carried out on a Nion UltraSTEM, Figure 6.2
presents two examples of Cu atoms on GO following baking at 120°C to drive off
carbonaceous debris. These images are similar to Figure 5.1, but are important because
they each contain an asymmetric trimer motif similar to Figure 6.1 (see insets). Here
the projected interatomic spacings are measured to be slightly smaller than in the
time-resolved example, at 2.75±0.14 Å, 3.00±0.20 Å and 3.80±0.26 Å. Despite the
discrepancy with Figure 6.1, the spacings are still incompatabile with a direct Cu–Cu
bond. Furthermore, the improved resolution means that the relationship between the
Cu cluster and the GO can be analyzed in greater detail. Both examples are seen to
sit at the edges of disordered, sp3 regions on GO, as per the previous observations in
Chapter 5. Filtering out the effects of probe tails reveals increased intensity between
the Cu atoms that could conceivably be attributed to oxygen atoms, although these are
too mobile under the beam to be precisely located and identified.

6.2.3 Estimating the fractal dimension of GO

While the results presented above focus on either the dynamics of adatoms or resolving
the GO with atomic resolution, complementary information about the structure of
GO can be ascertained by imaging the sample at larger length scales. Two ADF-STEM
images (Fig. 6.3) were acquired on an FEI Titan3 at an accelerating voltage of 80 kV
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a) b)

Figure 6.2: Two ADF-STEM images of Cu adatoms on GO, acquired at an operating voltage
of 60 kV. The images have been filtered with a double-Gaussian filter to remove the probe
tails [50]. The insets highlight two asymmetric trimer motifs of Cu adatoms. Scale bars: 1 nm.

and with a probe current of ca. 60 pA. The pixel dwell-time and dose was similar to
the time-resolved experiments, with the total dose estimated as 106 e- nm-2. The ADF
detector inner angle was 60 mrad, rather than 36 mrad used in the time-resolved
imaging, which significantly enhances the visibility of the Cu atoms relative to the GO
substrate.

After applying an edge-preserving bilateral filter to smooth the images [263], a straight-
forward binary thresholding operation successfully separates the disordered and or-
dered regions of the GO substrate. The resulting binary image (Fig. 6.4b) looks
remarkably similar to the percolation clusters of the previous chapter (cf. Fig. 5.12),
giving further weight to the choice of a percolation model for explaining the anomalous
diffusion exhibited by Cu atoms under the electron beam. The boundary between or-
dered and disordered regions, where adatoms are typically found, is obtained through
the application of an edge detection filter (Fig. 6.4c). By using the box-counting
method [264], which tallies the number of boxes of size r containing black pixels
(representing edges), the fractal dimension df of the GO can be estimated (Fig. 6.4d).
For both images in Figure 6.3, df is found to be ca. 1.59, compared to a theoretical
value of 1.896 for the infinite percolation cluster at criticality. These values are in
agreement with the estimate that p < pc made in Chapter 5 using an analysis of the
anomalous diffusion behaviour [265].
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a)

b)

Figure 6.3: Two ADF-STEM images of Cu adatoms on GO, acquired at an operating voltage
of 80 kV. The images have been filtered with a double-Gaussian filter to remove the probe
tails [50]. Scale bars: 5 nm.
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Figure 6.4: Determining the fractal dimension of GO. (a) An ADF-STEM image of Cu adatoms
on GO. Scale bar: 5 nm. (b) Bilateral smoothing and binarization separates the image into
ordered (grey) and disordered regions (white). The positions of Cu atoms extracted from a
are overlaid onto the segmented image in orange, showing the preferential segregation of
adatoms to disordered regions. (c) Applying an edge-detection filter highlights the boundaries
between ordered and disordered regions. (d) A log-log plot of the number, N , of boxes of size
r containing black pixels in c is used to determine the fractal dimension.

6.3 Distribution of copper adatoms on GO

The large field-of-view images in Figure 6.3 also provide a useful dataset for character-
izing the distribution of Cu adatoms over the surface of GO. A Laplacian-of-Gaussian
(LoG) filter, as implemented in the scikit-image toolbox [266], was used to extract the
positions of Cu atoms in each image. A LoG filter was chosen here over the alternative
methods presented in Chapter 4 for a number of reasons. Alongside computational
efficiency, the atoms in these images have a higher SNR due to longer dwell times, and
the atom intensities are fairly similar, meaning many of the identification challenges
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described in Chapter 4 do not apply here. Although the possibility of false positives
and false negatives cannot be ignored due to noise and a non-uniform background,
the LoG filter provides a simple, objective method for particle detection. Subsequent
fitting of a 2D Gaussian to a small window around each peak refines the position with
typically sub-pixel accuracy, and the use of information criteria for selecting the most
likely model (Chapter 4) helps keep false detections to a minimum.

A total of 1690 atoms were extracted from Figure 6.3, giving densities λ of 0.78
and 0.73 nm-2 respectively. Overlaying these points onto the segmented image in
Figure 6.4b shows that the Cu atoms tend to bind preferentially to disordered, oxygen-
rich regions, as was observed in Chapter 5 and confirmed by the DFT simulations of
Figure 5.3. Characterizing this preferential binding further should give a clearer picture
of how the Cu atoms interact with both the substrate and each other and, crucially,
provide an insight into the effects of oxygen, which is not atomically resolved in these
STEM images but evidently plays an important role.

The first step in understanding the distribution of Cu adatoms is to determine quantita-
tively if the atoms are distributed randomly over the substrate, or if there is a degree
of clustering or dispersion not identified by qualitative inspection. Points randomly
distributed on a 2D plane (or in this case a 2D projection of the effectively flat GO
substrate) can be described by a spatial Poisson process, under what is known as
the Complete Spatial Randomness (CSR) hypothesis [267]. If the nearest-neighbour
distance between two points is r, and the point density is λ, then the PDF φ (r) is a
Rayleigh distribution:

φ (r) = 2πλr exp
(
−πλr2

)
(6.1)

⟨r⟩ = 1

2
√
λ

(6.2)

Figure 6.5 shows the distribution of experimental nearest-neighbour distances for the
two ADF-STEM images, and compares them to the theoretical behaviour of φ (r) for the
given atom densities. The experimental distributions match the theoretical Rayleigh
distributions fairly well, suggesting that there is some degree of randomness to the Cu
atom positions, with mean nearest-neighbour distances of 4.4 and 4.2 Å respectively.
No significant atom clustering is apparent, at odds with the original deposition of
Cu13 clusters. Similar behaviour was observed in the distribution of metal atoms on
graphitic carbon nitride [262], which is another promising substrate for single atom
heterogeneous catalysts due to straightforward fabrication and well-isolated pinning
sites at nitrogren lone pairs [23, 31]. A critical distinction is that the GO in this work
is effectively a 2D plane, whereas the carbon nitride is in reality a 3D substrate that
may need to be accounted for in subsequent analysis.
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Figure 6.5: Distribution of nearest-neighbour (NN) distances for Cu adatoms on GO, extracted
from Figure 6.3a and b respectively. The orange lines are the theoretical Rayleigh distributions,
φ (r), under the CSR hypothesis for the experimental particle densities, with means (a) 4.4 Å
and (b) 4.2 Å.

Despite the fact that the GO is a 2D substrate, this nearest-neighbour analysis does
not take into account (a) that the minimum distance between adatoms is non-zero,
and (b) that the atoms are not uniformly distributed over the plane. For example,
there is qualitative evidence of clustering at relatively large length scales, around
the disordered regions of GO, but this is not captured by the Rayleigh distribution
analysis.

To investigate the distribution of adatoms at different length scales, a useful tool is
Ripley’s K-function [268, 269], which improves on the nearest-neighbour analysis by
describing the characteristics of the point process at different length scales, h. It is
defined as:

K (h) =
1

λ
E {number of additional events within distance h of an arbitrary event}

(6.3)
The shape of K (h) can be used to compare experimental point sets with any type of
spatial point process, rather than just the Poisson point process. If dij is the Euclidean
distance between two events i and j, and:

Ih (dij) =

1, dij ≤ h

0, dij > h
(6.4)

then the estimator for the K-function for n points is:

K̂ (h) =
1

λn

n∑
i=1

n∑
j ̸=i

Ih (dij) (6.5)
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Figure 6.6: Testing the CSR hypothesis. (a) 103 points drawn uniformly over the unit square.
(b) 103 points drawn from a three-component Gaussian mixture distribution. The density,
Npoints/area, is the same in both figures. (c) Estimators of Ripley’s L-function, L̂ (h), for the
two point sets.

Typically, the question of interest involves comparing the behaviour of K̂ (h) with
the structure expected under a given point process. For a spatial Poisson process,
K (h) = πh2, and any deviations from this value are therefore indicative of either
clustering or dispersion at a scale h [269]. It is useful to define the associated L-function
as the standardized K-function:

L (h) =

√
K (h)

π
− h (6.6)

since for a set of points exhibiting CSR, L (h) = 0 for all h. Applying this test to the
experimental atom positions, L̂ (h) > 0 will indicate some degree of clustering at scale
h, and L̂ (h) < 0 suggests some dispersion at scale h relative to that expected under the
CSR hypothesis. To demonstrate this effect, Figure 6.6 compares L̂ (h) for two point
processes. The first process draws points from a uniform distribution over the unit
square (Fig. 6.6a), while the second draws points from a mixture of three Gaussian
distributions (Fig. 6.6b). Inspecting the behaviour of L̂ (h) in Figure 6.6c reveals the
existence of a downward bias in the case of CSR. This arises due to edge effects, since
the expected number of events within distance h will be reduced for points near the
boundary of the unit square. While a correction can be made for this bias [268], it is
often more straightforward to make a direct comparison between the observed point
sets. This shows that the points drawn from the mixture distribution are typically
clustered at small scales (i.e. around the means of the Gaussian components) compared
to CSR, while the dispersion at longer length scales (into the three clusters) is also
highlighted.

The edge bias can also be mitigated using stochastic simulations of point processes
that include the boundary regions. This approach can be used with any given point
process, and thus incorporate further parameters such as non-uniformities in the PDF
from which the points are drawn, without the need for a simple closed-form solution
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for K (h). By repeatedly sampling a given number of points in a region and calculating
L̂ (h), it is possible to obtain a measure of significance for any clustering or dispersion.
Defining m

(
L̂ (h)

)
as the number of simulations where L̂ (h) exceeds the experimental

value, the confidence level for clustering is determined by [269]:

p̂clustered (h) =
m
(
L̂ (h)

)
+ 1

N + 1
(6.7)

where N is the number of simulations. A similar expression can be defined for
measuring the significance of any dispersion if m

(
L̂ (h)

)
is instead taken to be the

number of simulations where L̂ (h) is less than the experimental value.

A particular advantage of using stochastic simulations over closed-form solutions is that
the minimum separation distance of the adatoms can now be incorporated. Assuming
that the Cu atoms largely lie in the plane of the GO substrate, a sensible physical
constraint is a minimum interatomic spacing of ca. 2 Å. This accounts for the bulk Cu–
Cu distance of 2.55 Å, deviations due to STEM being a projected imaging method and
the substrate not being completely flat, and finally any errors in the atomic positions
(estimated to be ±0.5 pixel = 0.2 Å).

We are now in a position to assess the degree of clustering or dispersion of the Cu atoms
in a manner that closely reflects the actual distribution of adatoms on GO. To achieve
this, the minimum distance constraint is combined with the sampling of random points
from the disordered regions extracted in Figure 6.4b.

The top row of Figure 6.7 shows the experimental L-functions for the two GO images
in Figure 6.3, taking into account the area of the disordered regions when calculating
the atom density. The dashed red curves indicate the maximum and minimum values
of L̂ (h) from 103 simulations, each sampling points in the disordered GO regions
subject to the minimum separation of 2 Å. It is apparent that at large length scales the
experimental atom distribution closely follows the random process, but below 5 Å there
appears to be a small degree of dispersion present in the experiment not accounted
for by the model. This is confirmed in the bottom row, which plots the behaviour of
p̂dispersed (h) with the dashed line indicating a significance level of 0.05. Importantly,
the shape of the experimental L-functions at small h cannot be replicated by changing
the minimum separation constraint or by altering the area from which points are drawn
(i.e. by changing the threshold used to segment the images in Figure 6.4b).

Combined with the nearest-neighbour study, this analysis indicates that there is a
tendency for Cu atoms on GO to sit further apart than the bulk Cu–Cu nearest-neighbour
distance, confirming the hypothesis that direct bonding between Cu atoms is unlikely.
These observations are an important result, since the sample was initially prepared
through the deposition of size-selected Cu13 clusters from the gas phase, yet very
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Figure 6.7: Measuring the spatial distribution of Cu adatoms on GO. (a,b) Comparison of the
experimental L-functions for the two ADF-STEM images with simulations incorporating the
disordered structure of the GO substrate and a minimum separation constraint. The red dashed
lines represent the upper and lower bounds of 103 simulations. (c,d) Plots of p̂dispersed (h) for
the same simulations. The red dashed lines highlight p = 0.05.

few (if any) examples of Cu clusters are observed experimentally. This raises two
important questions. The first concerns the stability of small Cu clusters on GO, and
why the as-deposited clusters have broken apart into single atoms. The second question
concerns the role of oxygen atoms, and whether the large Cu–Cu interatomic distances
can be explained by the presence of oxygen in between the metal atoms, acting as an
intermediary and thus stabilizing the Cu atoms on the substrate. This builds on the
work of Chapter 5, which highlighted the weak van der Waals interactions between Cu
and graphene alone. Since the positions of oxygen atoms are not clearly resolved in the
experimental images, answering these questions calls for a systematic computational
study of the behaviour of Cu on GO, building on the work of the previous chapter to
incorporate multiple metal atoms.

A notable precedent for this work was published by Sohlberg et al. in 2004 [270],
where ADF-STEM observations of Pt atoms on γ–Al2O3 revealed anomalously large Pt
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spacings of ca. 3.5 Å. Subsequent DFT modelling of the crystalline substrate led to the
discovery that not only do Pt atoms bind to oxygen sites on the support, but that the
existence of an OH “cap” atop the trimer leads to a lengthening of the Pt–Pt bonds
by reducing the electron density between the metal atoms. Although the OH group
itself was not imaged directly, the combination of ADF imaging with DFT modelling
meant that its presence could be inferred. The present work has a similar goal: can
computational modelling be used to fill in the missing O atoms and thus explain the
observed interatomic spacings? Although the lattice is resolved in Figure 6.2, the
mobility and subsequent blurring of any oxygen atoms means STEM experiments alone
are unlikely to reveal the reasons behind the large interatomic spacings. A combination
of image analysis and computational modelling is thus necessary to further investigate
the system.

6.4 Computational structure searching

In essence, computational searches for the stable structures of crystals, surfaces and
clusters involve the global optimization of the free energy, bulk modulus or some other
desired property. In the present scenario, it is the Cu binding energy which is of most
interest, as this will dictate the overall stability of the structures seen experimentally. As
was seen in Chapter 5, DFT calculations provide an effective method for calculating the
binding energy of Cu atoms on GO. While classical methods using empirical potentials
are considerably cheaper computationally, constructing an accurate potential for a
complicated system such Cu on GO is very difficult. First-principles methods such as
DFT are thus necessary to reproduce the complex structures and properties of small
metallic clusters, as well as the complex cluster–substrate interactions.

However, standard DFT approaches are only local optimizers of a structure, since
the positions of the atomic nuclei are considered to be fixed during the calculation
of the electronic structure (see Appendix D). To optimize the overall geometry one
must calculate the forces on each atom, move them, then recalculate the electronic
structure, and this is typically performed using a local gradient descent optimization
algorithm. Ultimately the search for the minimum involves a non-convex function
over a parameter space that scales exponentially with the number of atoms. If the
initial starting points are far from the global optimum these methods can relax to
a metastable local minima or fail to converge entirely, while saddle points can pose
particular problems for many standard gradient-based methods [181].

Global optimization methods seek to avoid many of these problems, but are often
computationally expensive and require standard local optimizers to refine the search.
As a result, finding the true global minimum is often an intractable problem for
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even medium-sized systems. One must also consider the “no free lunch” theorem:
averaged over all possible functions, all global optimization algorithms will perform
the same [271], and so no single strategy is guaranteed to give better results. Although
finding an algorithm that works well in all scenarios is unlikely or even impossible,
by smart application of prior knowledge and constraints the parameter space can be
reduced to develop strategies for structure searching.

6.4.1 Ab initio random structure searching

The ab initio random structure searching (AIRSS) technique was introduced by Pickard
and Needs [231, 232], and in its simplest form places atoms randomly inside a box
of random shape and/or size and relaxes the system with DFT. Rather than a random
search of the full parameter space, AIRSS instead incorporates chemical knowledge
such as approximate bond lengths, coordination numbers and symmetry for a given
system, as well as any experimental data. Crucially, the fact that at ambient pressures
atoms will not exist on top of each other means that there are very few local minima
in the energy surface at high energies, which can rule out a significant fraction of
the search space. Practically, the algorithm requires very few parameters while being
straightforward to combine with prior experimental information.

6.4.2 Alternative methods for structure prediction

Although AIRSS is the method of choice for most of this thesis, it is important to
consider other successful algorithms for computational structure searching, especially
in recognition of the no free lunch theorem. A brief summary is given here; for an
in-depth review the reader is referred to Ref. 272.

A commonly-used Monte Carlo (MC) method is simulated annealing, which is analo-
gous to removing defects in metals by heat treatment. The current structure is replaced
by a randomly-selected nearby structure with a probability of one if it is lower in
energy, and exp (−∆E/T ) otherwise, with T here being the annealing temperature.
Simulated annealing is often a very inefficient method, and can be easily trapped in
deep potential wells. Methods such as stochastic tunnelling have been developed to
transform the energy surface and avoid trapping in local minima. An alternative MC
approach is basin-hopping and the related minima-hopping method [273–275], which
again transform the energy surface and propose random moves to overcome energy
barriers between minima.

Inspired by the concept of evolution in biology, evolutionary algorithms use repro-
duction, mutation and recombination rules to evolve a population of structures over
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several generations, using a “survival of the fittest” approach to search the energy sur-
face [276, 277]. The USPEX evolutionary algorithm code developed by Oganov et al. is
used in this chapter in the search for copper cluster structures in vacuum [278].

With careful consideration of the system under investigation, the optimization is not
necessarily limited to methods that directly model the interactions between atoms
(either classically or from first principles). Ophus et al. recently showed an elegant
method for studying graphene grain boundaries using a Centroidal Voronoi Tessellation
(CVT) method [279]. The CVT algorithm provides a computationally-attractive route
for annealing graphene grain boundaries by treating the carbon atoms as vertices
of Voronoi cells, and relaxing the lattice using Lloyd’s algorithm [280]. The relaxed
tessellation will tend towards regular hexagons in two dimensions, and, when a perfect
tessellation is impossible, form pentagons and heptagons in a manner very similar to
defects in graphene. The relaxed structure can then be used as an input for classical
or DFT calculations to investigate any out-of-plane distortions. The CVT algorithm
can rapidly relax low-angle grain boundary structures containing many thousands of
atoms [281], in contrast to approaches such as AIRSS which are currently limited to
small, high-angle boundaries [282].

6.5 Structures of small copper clusters

To interpret the ADF-STEM observations, we must first understand the structures of
small Cu clusters in vacuum, since this is closer to how the samples were initially
fabricated. Only then can the interesting discoveries of anomalous Cu–Cu distances
and the notable absence of any deposited Cu13 clusters be fully understood.

6.5.1 Copper clusters in vacuum

The USPEX evolutionary algorithm code was used in conjunction with DFT calculations
to find the low-energy structures of small Cun clusters in vacuum, ranging in size from
n = 2–15 atoms. Details of the DFT calculations are given in Appendix D. The structure
search was subsequently repeated using the AIRSS technique, which gave identical
results for the low-energy structures. Figure 6.8 shows the lowest-energy Cun clusters
found by the structure searches. The results are largely consistent with other works on
Cu clusters [283–285], although some discrepancies in relative energies between the
lowest-energy and other metastable structures were noted. Given the size of the search
space, differences in computational details as well as the structure search method are
the most likely reasons for the observed discrepancies.
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Figure 6.8: The ground-state structures of small Cun clusters in vacuum (n = 2–15) found in a
computational structure search.
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It is clear from Figure 6.8 that the addition of a single atom to a cluster can have a
significant effect on its shape, and by extension properties (cf. Ref. 27). The transition
from a 6-atom planar structure to the 7-atom 3D structure is of particular interest. A
similar transition at 6/7 atoms has been observed in simulations of Ag clusters [286],
while further computational evidence suggests that anionic gold clusters adopt stable
planar structures up to Au12 [287]. The 7-atom pentagonal bipyramid is a common
observation in transition metal clusters, and can also be seen as a building block in the
larger clusters (e.g. n = 10).

In contrast to the high-symmetry structure adopted for n = 7, a striking observation is
the low-symmetry structure adopted by Cu13. For many transition metals, n = 13 is
a so-called “magic number”, exhibiting enhanced stability against fragmentation and
adopting high-symmetry icosahedral or cuboctahedral structures [288, 289]. The argu-
ment for high-symmetry structures is typically based on a simple geometric closed-shell
model or on calculations using a Lennard-Jones potential [290], but Figure 6.8 con-
firms that more accurate first-principles calculations are necessary to truly understand
the bonding in small metal clusters, which is clearly different from the bulk behaviour.
The total energy of the icosahedral Cu13 cluster found in the structure search is 1.05 eV
higher than the low-symmetry structure in Figure 6.8.

Since Cu13 does not adopt the expected magic cluster shape, further investigation
of the relative stabilities of the structures is necessary. Using the geometries shown
in Figure 6.8, high-quality single-point calculations were performed using DFT to
determine the free energy of the copper clusters in vacuum. As well as the generalized
gradient approximation (GGA) exchange-correlation functional used in the USPEX and
AIRSS searches, the lowest-energy structures were re-relaxed using norm-conserving
pseudopotentials and then single-point calculations performed using the HSE06 hybrid
functional. Geometry optimizations and single-point calculations were also carried
out using the local density approximation (LDA) for comparison (see Appendix D for
further details on the functionals).

Figure 6.9a plots the binding energy per atom as a function of the number of atoms
in the cluster. All three functionals exhibit the same trend in binding energy, but this
analysis does not give any significant insight into the effect of adding or removing
a single copper atom. One way of quantifying the relative stability of a cluster is to
consider the second-order energy differences:

∆2En = En−1 + En+1 − 2En (6.8)

where En is the free energy of the Cun cluster. When ∆2En ≥ 0, this represents
a local minimum in the energy of the cluster and is therefore indicative of relative
stability. Figure 6.9b plots the second-order differences of the geometries shown in
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Figure 6.9: The stability of small Cun clusters. (a) The binding energy of the ground-state
structures for three different exchange-correlation functionals. (b) The second-order differences
of small Cun clusters (Eq. 6.8).

Figure 6.8. It is immediately apparent that even-numbered clusters are locally stable in
vacuum, whereas odd-numbered clusters (including Cu13) are unstable and thus might
be expected to break apart into smaller fragments. Returning to the fabrication of the
samples analyzed in this chapter, this indicates that even if the soft landing procedure
did not lead to any break-up, the inherent instability of Cu13 suggests fragmentation at
ambient temperatures over time is to be expected.

The relative stabilities calculated here are in general agreement with the comprehensive
analysis performed by Itoh et al. [283] using the PW91 GGA functional. However, the
planar–3D transition is again of interest, because calculations using the PBE functional
predict a planar 6-atom cluster to be locally stable, while both LDA and HSE06 suggest
that the 7-atom pentagonal bipyramid is stable. This is at odds with the even-numbered
trend seen for all other values of n. The discrepancy arises because a structure search
using the local density approximation finds the lowest-energy Cu6 structure to be
3D rather than planar. LDA is known to overbind many structures [291], and this
is likely to lead to a preference for tightly-bound 3D geometries. The hybrid HSE06
functional falls in between the LDA and PBE energy values, but was not used for
geometry searches due to the expensive calculations involved. Hybrid functionals such
as HSE06 are often employed to give “better” results, particularly in terms of energy
or geometry. However, it was recently reported that the flexibility of parameterized
hybrid functionals can actually come at the expense of an accurate representation of
the true electron density [292]. While this may not matter greatly for calculations
involving bulk systems, for scenarios such as the small clusters considered here it may
be very important, and again highlights the need for studies comparing experimental
observations with DFT predictions.
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Figure 6.10: The effects of charge on the ground-state structure of Cu3 clusters in vacuum.
From left to right, the structures of a cationic (+1), neutral (0) and anionic (-1) cluster. Relative
energies above the minimum are given, and Cu–Cu bond lengths are also shown.

6.5.2 Charged copper trimers

The Cu3 cluster in Figure 6.8 adopts an equilateral triangle configuration, with Cu–
Cu spacings of 2.33 Å. This contrasts with both the spacings and the asymmetry
of the Cu3 motifs seen in the STEM images (Fig. 6.2), and indicates that ground-
state DFT calculations of isolated clusters are insufficient to explain the experimental
observations.

Before investigating the effects of the GO substrate, which is known to be a complex and
highly disordered material, it is worth conducting further inexpensive calculations on
the isolated clusters to learn more about the structure and the effects of properties such
as charge. Electrical charge can have a significant effect on the structure of some metal
clusters (for example the stabilization of the planar structure of Au12

– [287]), so it is the
first parameter investigated here. Figure 6.10 shows the two stable structures of a Cu3

cluster in vacuum calculated using the PBE functional, with relative energies also shown.
While the cationic and neutral clusters prefer the equilateral triangle motif, the anionic
cluster favours a linear configuration [293]. However, all the structures exhibit a
typical Cu–Cu bond length of ca. 2.3 Å and none of the asymmetry seen experimentally,
so charge alone cannot account for the anomalous Cu–Cu distances.

6.5.3 Oxidized copper trimers

The next step is to incorporate the presence of oxygen into the structure searches,
since the experimental clusters are in fact deposited on graphene oxide, and we know
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Figure 6.11: The effect of oxygen on the ground-state structure of Cu3Ox clusters in vacuum
for x = 1–3 O atoms (in red). Cu–Cu interatomic distances are highlighted.

that Cu binds preferentially to oxidized regions of GO. Furthermore, the clusters
and the substrate were exposed to air prior to being inserted into the microscope.
Before considering the full system incorporating the graphene oxide substrate, the
structure of an isolated, oxidized Cu3 trimer is briefly considered due to the significantly
lower computational cost (see Ref. 294 for extensive oxidation studies of other copper
clusters). Using the AIRSS approach, systems consisting of 3 Cu atoms and 1–3 O
atoms were relaxed. The lowest-energy structures are given in Figure 6.11. While the
Cu–Cu interatomic distances are now larger than the pure copper clusters, the increase
in size is still not sufficient to fully explain the ADF-STEM observations. That said, the
linear configuration of Cu3O2 is particularly interesting (Fig. 6.11b), since the oxygen
atom acts as an intermediary between neighbouring copper atoms, pushing them apart
to the extent that they are no longer directly bonded.

6.5.4 Copper trimers on graphene oxide

The results above indicate we must consider the complicated environment of the
substrate to fully understand the observed Cu3 motif. Using a similar approach to the
single copper atom simulations of Chapter 5, extensive AIRSS searches were carried
out, incorporating a loose Cu3 trimer “unit”. This acts as an additional constraint and
helps to bias the search towards triangles rather than lines of atoms.

As observed in Chapter 5, the interaction between a Cu atom and pristine graphene
is very weak, arising as a result of van der Waals interactions only. Accordingly,
searches involving Cu3 atop a pristine graphene sheet resulted in small equilateral
triangles akin to the isolated cluster. Further searches involving vacancies or pores in
graphene were also inconsistent with the experimental observations. The regularity
of the graphene pores typically led to Cu arrangements that were too large to match
the STEM observations. Furthermore, a Cu cluster sitting in a graphene pore is ruled
out by the high-resolution STEM data, which indicates that the trimers sit favourably
at boundaries between sp2 and sp3 regions on graphene oxide. Building on this,
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a) b)

d)c)

Figure 6.12: (a,b) Two Cu3 trimer motifs with anomalous Cu–Cu interatomic spacings taken
from the insets of Figure 6.2. Scale bar: 0.5 nm. (c) One of the possible low-energy structures
found using AIRSS. Oxygen atoms are red, carbon atoms are black. (d) A simulated ADF-STEM
image of the structure in c. Multislice parameters were selected to match the experimental
setup.

further AIRSS studies were performed including small numbers of oxygen atoms (with
randomized positions) alongside the Cu3 unit.

While many different structures were found in the searches, no definitive picture
emerged that fully explains the asymmetric trimers seen experimentally. This is
highlighted by Figure 6.12c, which shows one of the low-energy structures found with
AIRSS. The multislice simulation in Figure 6.12d shows a remarkable similarity to
the two ADF-STEM images (Figs. 6.12a and b) in terms of size, asymmetry and the
intensity in between Cu atoms attributed to oxygen. The argument that preferential
binding to oxygen causes an increase in the Cu–Cu spacing is seemingly convincing,
but the structure in Figure 6.12c is not in fact the lowest-energy structure found
using AIRSS. It actually lies ca. 2 eV above another structure (Fig. 6.13b) that consists
of a small equilateral triangle of Cu atoms with an oxygen “cap”, akin to the Pt
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a) b) c)

d) e) f)

Figure 6.13: (a) The Cu3O3 cluster bound to graphene oxide, as found using an AIRSS search.
(b) The lowest-energy structure found from an AIRSS search involving 3 Cu atoms on graphene
oxide. (c) Replacing the oxygen cap in b with an OH group causes the Cu–Cu bonds to lengthen
slightly. (d-f) Side-on views of the three structures highlight the buckling of the graphene sheet
caused by oxygen functional groups.

trimer analyzed by Sohlberg et al. [270]. Figure 6.13a meanwhile shows how the
Cu3O3 cluster found in an isolated structure search (Fig. 6.11c) can also bind to the
substrate, and this structure is ca. 1.5 eV lower than the asymmetric trimer identified
in Figure 6.12c.

An interesting finding from Ref. 270 was the notion that an OH group, rather than
an oxygen atom, can cause the metal–metal bond to lengthen as a result of transfer
of electrons from the bond to the electronegative OH cap. This effect is tested in
Figure 6.13c, where the oxygen cap has been replaced by an OH group and re-relaxed
with DFT. While the symmetry is not altered by the cap, there is a marginal increase in
the Cu–Cu distances, from an average of 2.65 Å to 2.80 Å. Hydrogen atoms and OH
groups are certainly present in the experimental system, with GO known to contain
both epoxy and hydroxyl groups [217]. Although the increase in Cu–Cu distances are
again not sufficient to explain the STEM observations, Figure 6.13c does highlight how
important it is to consider the effects of functional groups on a complex substrate such
as GO.

These results highlight an issue with the AIRSS calculations performed here, in that
the size and complexity of the system (ca. 100 atoms including the graphene sheet)
makes an exploration of the full energy landscape extremely difficult. Figure 6.12c
may represent a possible Cu3 structure, but it is not possible to say how likely it is to
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form compared to other, lower-energy structures such as Figure 6.13. What can be
drawn from Figure 6.12c is that oxygen between Cu atoms do indeed a cause of the
lengthening of interatomic distances, building on the isolated cluster results, as well as
stabilize the pinning of Cu to the substrate. Ultimately, it would seem that the AIRSS
searches as currently designed are perhaps unlikely to locate the exact structures of
the Cu3 trimers seen experimentally, because the locations and number of oxygen and
hydrogen atoms around the copper are essentially unknown quantities. This is without
considering the fact that DFT is a ground-state method and that Figure 6.1 shows the
Cu atoms to be mobile under the electron beam and therefore likely to exist in an
excited state. The possible role of contaminants such as Si (identified in Chapter 5)
have also been ignored here. Rather than run further random searches that may never
find the desired structure, AIRSS can instead be used to provide valuable insights such
as the effect of intermediary oxygen atoms in both the lowest-energy structures and
in other metastable structures. Such insights may then prove useful for the design of
future experiments to finally pin down the behaviour of small transition metal clusters
on both GO and other disordered or poorly-understood substrates.

To that end, further searches were conducted to provide a more systematic study of
the effects of both O and H atoms on the Cu–Cu interatomic distances of a Cu3 motif
on GO. All structures within 3 eV of the lowest-energy structure were considered for
this analysis. Figure 6.14a shows how increasing the number of oxygen atoms in the
system leads to a corresponding increase in the length of the longest Cu–Cu spacing.
Note that all distances are in projection, to mimic the experimental conditions of an
ADF-STEM image. However, the shortest Cu–Cu spacing remains fairly constant, and is
consistently shorter than the experimental observations. Figure 6.14b shows a similar
trend when OH groups are introduced to the model and, in keeping with the idea from
Ref. 270, the spacings are generally larger than the oxygen-only case.

The DFT analysis in Chapter 5 indicated that a strong binding between a Cu adatom
and the substrate required at least two oxygen atoms per Cu atom; AIRSS searches
with a single Cu and a single O atom repeatedly led to Cu–O motifs detached from the
graphene substrate. If a binding energy of ca. 3 eV per atom is required for reliable
ADF imaging, it is reasonable to assume that the same Cu:O ratio applies to the larger
motifs including the trimer. Figure 6.14 therefore represents a study with only the bare
minimum of oxygen and hydrogen atoms, and increasing the number even further
is a reasonable next step. One might expect that surrounding each Cu atom in the
trimer motif with two or more O atoms may force the Cu atoms to sit at least 3 Å apart,
in keeping with the spatial distribution analysis performed in Section 6.3. Such an
arrangment would then be stable enough to image, in contrast to the smaller equilateral
trimers, where the Cu binding energy is only 1.1 eV (Fig. 6.9a). Increasing the oxygen
(and hydrogen) content around the trimer motif is an avenue for future study.
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Figure 6.14: Comparing the Cu–Cu interatomic distances in the xy-plane (parallel to the
graphene sheet) of the Cu3 motif investigated with AIRSS. The experimental distances from the
static images (Fig. 6.2) and the video (Fig. 6.1) are also shown. (a) Distances from simulations
involving oxygen atoms only. (b) Distances from simulations involving both oxygen and
hydrogen atoms. The colours represent the shortest, middle and longest sides of the triangle
motif (see legend).

6.5.5 Larger copper clusters on graphene oxide

Along with the single Cu atoms and the Cu3 motif discussed previously, a small number
of larger clusters were observed on the GO substrate. Figure 6.15 shows one such
example of a Cu6 cluster taken from a region of Figure 6.3a. Unlike the smaller 3-atom
structures seen before, this image matches the planar structure found in the structure
search of isolated clusters, with each side of the triangle measured ca. 5.2 Å. This
suggests that GO substrate has less of an influence on the cluster than in the Cu3 case,
perhaps stemming from the results in Figure 6.9b showing that the even-numbered
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a) b) c)

Figure 6.15: (a) Unfiltered ADF-STEM image of a Cu6 cluster on GO, extracted from Figure 6.3.
Scale bar: 1 nm. (b) The image after Gaussian filtering. (c) The lowest-energy Cu6 cluster in
vacuum found using a computational structure search (see Fig. 6.8).

clusters are locally stable. Another point to consider is that the binding energy per
atom in the Cu6 cluster is nearly twice as strong as the Cu3 trimer (Fig. 6.9a).

Further evidence of larger Cu clusters is presented in Figure 6.16. The first highlighted
region shows a Cu4 tetramer similar to the isolated cluster found with AIRSS, albeit
with one significantly larger interatomic spacing (Fig. 6.16c). The shape suggests that
the role of oxygen and other functional groups on the substrate may be less signficant
for the even-numbered cluster than for the Cu3 motif, linking back to the stability
trends in Figure 6.9. However, the substrate effects are certainly not negligible in the
Cu4 case, but without higher-resolution STEM data it is difficult to identify whether
there are O atoms sited between the Cu adatoms.

The cluster shown in Figure 6.16d is particularly interesting, since it features the
triangular motif of the planar Cu6 cluster with comparable interatomic spacings. In
the top-left corner there appears to be an additional Cu atom, with two possible
explanations to consider. The most likely reason given the short distance (1.33 Å)
between this atom and its neighbour is that they may in fact be the same atom. Beam-
induced motion has thus led to it being imaged twice as the probe scans across the
sample. The alternative explanation is that the structure is indeed a Cu7 cluster, which
then raises the question of how the GO substrate stabilizes the planar geometry over the
pentagonal bipyramid of the isolated cluster (Fig. 6.8), and whether this stabilization
mechanism also applies to larger cluster sizes. DFT calculations could provide the
answer, but without better characterization of the oxygen atoms and the substrate,
any study will likely be larger and more complex than the Cu3 scenario presented
previously. However, the orientation of the planar Cu6 unit relative to the substrate
may in fact form a fairly tight constraint and reduce the scale of the search.
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Figure 6.16: (a) Filtered ADF-STEM image of copper adatoms dispersed on graphene oxide.
Scale bar: 1 nm. (b) An enlargement of the orange box highlighted in a, showing evidence
of a Cu4 cluster. Scale bar: 0.5 nm. (c) Cu–Cu interatomic spacings of the cluster. (d) An
enlargement of the green box highlighted in a, showing evidence of a Cu6 cluster, with a
possible seventh atom at the top-left corner. (e) Cu–Cu interatomic spacings of the cluster.

6.6 Summary

The drive towards sub-nanometer clusters and spatially-dispersed single atoms for
catalysis has highlighted the need for novel characterization and simulation techniques
to address the complex structures seen in these heterogeneous systems. In particular,
there remains a gap between theory and experiment regarding the interactions between
the catalyst and the support. This chapter has demonstrated some of the ways in which
aberration-corrected STEM and DFT can be combined to bridge this gap and guide
the design and fabrication of active, stable catalysts on industrially relevant substrates.
Quantitative studies of the spatial distribution of adatoms as presented here can be
used to determine the stability of single atom catalysts in the early stages of a reaction.
The time-resolved observations of the Cu3 trimer motif show how this can be extended
to measure the effects of agglomeration or fragmentation over time or in response to
external stimuli.

Building on the quantitative STEM analysis, the second half of the chapter explored
the potential applications of structure search methods for studying the structure of
heterogeneous catalyst systems. In conjunction with the experimental observations, the
AIRSS method showed how the structure of small transition metal clusters on a support
can be very different to the structures found in vacuum. A full explanation of the
effects of GO on Cu clusters remains uncertain, but the evidence here points towards a
need for future computational studies to consider the substrate in greater detail. While
previous work has explored the structure of clusters on idealized, crystalline substrates
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such as graphene, TiO2 or Al2O3, as substrates such as functionalized graphene or
graphitic carbon nitride become more widespread modelling must take into account the
complexities inherent in these supports. The work here has shown that the functional
groups intended to pin the copper to the substrate can have a significant effect on
the metal clusters. AC-STEM, and in particular the combination of ADF imaging and
EELS for characterization with advanced analytical tools, is well-placed to provide the
necessary information for developing new computational studies. One such example is
the recent use of vibrational EELS to directly detect the presence of water and related
species including OH groups [295].



Chapter 7

Adatom dynamics and the Si(110)
surface

7.1 Introduction

Surface dynamics lies at the heart of many areas of materials and chemical science,
and that characterizing surface adsorption, reactions and diffusion at the atomic scale
is crucial to understanding and controlling materials at the single atom level. This
chapter applies the time-resolved STEM methods developed in this thesis to the study
of crystalline substrates, namely the (110) surface of silicon*. Whereas heterogeneous
substrates such as GO are particularly relevant for catalysis, crystalline surfaces have
numerous important applications such as epitaxial growth and device fabrication. The
silicon surface in particular is one of the most widely-studied due to its importance in
the semiconductor industry, and understanding the growth of oxide and metal films for
metal–oxide–semiconductor field-effect transistors (MOSFETs) is key as these devices
become ever smaller.

On the experimental front, SPM techniques are well-suited to studying clean sur-
faces [83], and are increasingly capable of in-situ surface studies with both gases and
liquids [97], and at rates of 10 fps or higher [297]. However, the hardware challenges
with in-situ SPM can be significant, and time-resolved STEM thus provides an an
alternative method with comparable temporal and spatial resolution, and facilitates in-
tegrated characterization through quantitative imaging and atom-by-atom spectroscopy.
Recently, cross-sectional STEM has been used to explore the reconstruction of clean
SrTiO3 at elevated temperatures [298]. In a similar vein, the nanoparticle dynamics
examined with the PGURE-SVT algorithm in Figure 3.10 revealed the reconstruction

*The work presented in this chapter was performed in collaboration with D. Knez, E. Schmidt, R.K.
Leary, F. Hofer, P.D. Bristowe and P.A. Midgley [296]. D.K. prepared the samples and acquired the STEM
data. E.S. developed the atom detection and tracking code (see Chapter 4).
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of the nanoparticle edges in projection. However, neither approach is able to resolve
structural changes in the surface plane.

Developing new methods for recovering surface information using STEM is the first
challenge addressed in this chapter, utilizing the computational imaging techniques
developed in this thesis to explore the Si(110) surface dynamics with atomic resolution.
Pt adatoms, deliberately sputtered onto the Si surface, make the system under investi-
gation in this chapter particularly interesting. The presence of a crystalline substrate
brings a significant benefit to the image analysis, since the periodic lattice will be, by
definition, low-rank. This means the motion of any surface adatoms can be separated
using the ORPCA algorithm described in Chapter 3, and studied independently of the
Si surface. The first half of this chapter focuses on the surface, employing molecular
dynamics (MD) simulations to explore the distinctive surface features observed in the
Si substrate. The second half of the chapter is dedicated to the analysis of beam-driven
diffusion of Pt adatoms. In Chapter 5, the diffusion of metal adatoms on graphene
oxide was shown to be anomalous as a result of the heterogeneity present in the sub-
strate. In contrast, the relative homogeneity of crystalline surfaces, with well-defined
pinning sites, means that models of atomic diffusion are more thoroughly understood,
thus providing an interesting comparison to the anomalous diffusion work described
previously.

7.2 Silicon surface studies

Atoms at the surface of any material will experience vastly different forces and in-
teractions compared to the bulk, resulting in a change in the equilibrium positions
of atoms close to the surface. In a crystalline material this change can be a simple
relaxation of the first few layers of atoms, or it can lead to a significant restructuring
with changes in both atomic spacing and symmetry in order to minimize the surface
energy. Interactions with adsorbates such as liquids or gases can also play a significant
role in the reconstruction of a surface, particularly when the clean surface features a
significant number of unfavourable dangling bonds.

Direct imaging of surface reconstructions is typically performed in ultra-high vacuum
conditions using STM, which famously revealed the long-range 7×7 reconstruction of
the Si(111) surface [299]. Structures can also be inferred from reflection high-energy
or low-energy electron diffraction (RHEED and LEED), which were used to determine
the simpler 2×1 reconstruction of Si(100) [300]. However, these methods do not
recover aperiodic features in the same manner as STM. Spectroscopic techniques can
provide complementary information about the surface chemistry, and the combina-
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Figure 7.1: The 16×2 surface reconstruction of Si(110). (a) Viewed from above, surface
atoms are highlighted in red, identifying the channels along the [110] directions. (b) A view
along the [112] direction clearly shows the surface step detected in STM studies. Structure
taken from Ref. 303.

tion of STEM imaging and EELS is particularly attractive for performing chemical
characterization.

In contrast to the other low-index surfaces of Si, the clean (110) surface is known to
exhibit a much larger 16×2 reconstruction, shown in Figure 7.1, with steps and terraces
running in ⟨112⟩ directions [301]. Theoretical calculations using DFT have indicated
that pairs of Si pentagons arranged into zigzag chains (confirmed experimentally) are
crucial to the stability of this surface [302, 303].

Subsequent investigations focused on the oxidation behaviour of the 16×2 reconstruc-
tion have identified preferential growth in the ⟨112⟩ direction at these pentagonal pairs,
with oxygen atoms clustering together during the early stages of oxidation [304–306].
Similar oxygen agglomeration has been observed using infrared (IR) spectroscopy and
theoretical calculations on the Si(100)-2×1 reconstruction at high temperatures [307].
This clustering at the onset of oxidation can be considered an early precursor to the
Si/SiO2 interface [308], which was studied by Pantelides et al. using a combination
of Z-contrast imaging and EELS [309]. While there is extensive literature on silicon
oxides [310], there has been considerably less work on the initial stages of oxide
formation, and only with high-resolution imaging techniques such as STEM or SPM
and extensive computational modelling can these mechanisms be understood.
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Finally, metal adatoms are known to play a key role in oxidation, and their dynamic
behaviour is also critical in the initial stages of metal silicide film growth [311]. An
atomic-scale understanding of the metal–Si interaction is therefore fundamental to
controlling device fabrication at the atomic scale.

7.3 ADF-STEM results

A thin Si lamella was prepared from a monocrystalline wafer using focused ion beam
(FIB) milling, using Ga ions and an accelerating voltage of 30 keV. Final thinning was
performed using an Ar ion beam (900 eV energy) at an angle such that Pt atoms from
the Pt–C deposit used to affix the lamella to the TEM grid were deliberately sputtered
over the Si surface. Annular dark-field (ADF) STEM imaging was performed on an FEI
Titan3 (S)TEM operating at a primary beam energy of 300 keV. The beam convergence
semi-angle was 20 mrad, and the ADF detector angle range was 60–200 mrad. The
probe current was 80 pA and the pixel dwell time was 3 µs. Time-resolved STEM
imaging was performed at 4 fps, giving an estimated dose rate of 2×106 e- nm-2 s-1.
The accelerating voltage in this experiment is significantly higher than that used in
Chapter 5, and so is almost certain to induce changes in both the substrate and the
adatoms due to collisions between the energetic electrons and the atomic nuclei. As
with the GO experiments, the STEM probe will excite the Pt adatoms out of stable
binding sites, and any resulting motion is likely to be similar to that seen in the high
temperature conditions typical of annealing, oxidation and film deposition.

The acquired image sequences were first denoised with the PGURE-SVT algorithm,
exploiting local spatio-temporal correlations. This initial step is necessary due to the
presence of significant noise and sample drift in the sequences, and the denoising was
found to drastically improve the performance of the subsequent analysis. Crucially,
removing the sample drift through image alignment was found to be much faster
and more robust using the denoised data. The alignment was performed with a non-
rigid registration algorithm designed for STEM imaging [174]. Figure 7.2a shows an
as-acquired frame from one of the sequences, and the denoised frame is shown in
Figure 7.2b for comparison. The characteristic “dumbbells” of Si(110) are considerably
clearer following noise filtering, and the contrast of the heavier Pt adatoms is enhanced
relative to the Si background. Preprocessing the dataset in this fashion makes the
separation of adatoms and Si lattice using ORPCA a far easier task, and the results in
Figures 7.2c and d show that the foreground and background are cleanly separated into
the two components. Any changes in the substrate can now be analyzed independently
of the diffusive adatom behaviour. The full sequence is available on the accompanying
CD (see Movie S14).
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Figure 7.2: (a) A frame from an ADF-STEM sequence of Pt adatoms on Si(110). Scale bar:
1 nm. (b) The same frame following processing to remove noise. (c) The low-rank component
recovered by ORPCA processing. (d) The sparse component containing the Pt adatoms after
applying ORPCA. See also Movie S14.

7.4 Imaging the silicon (110) surface

Figure 7.2c exhibits several bright “chevron-like” features on the Si surface running in
⟨112⟩ directions. These features are even clearer in a second sequence (Figs. 7.3a and b
and Movie S15), where the Si atomic columns are resolved into distinct dumbbells
(spacing 1.36 Å, Fig. 7.3d). The ⟨112⟩ direction is particularly significant, since it is
both the direction of the steps on the clean 16×2 reconstruction, and also the preferred
growth direction for oxide formation on Si(110). Determining the exact origin of these
features is thus important for understanding how the beam is affecting the substrate,
especially as the features are seen to move and become sharper over the course of the
sequence (Movies S14 and 15).
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Figure 7.3: (a) The low-rank background of an ADF-STEM sequence of Pt adatoms on Si(110).
Scale bar: 1 nm. (b) The same region 45 s later (see also Movie S15). (c) A simulated
ADF-STEM image of the reconstructed surface (Fig. 7.1), with the step running diagonally
across the image. (d) Line profiles from the experimental and simulated STEM images in b
and c. The dashed grey line indicates the position of the step on the clean surface.

7.4.1 The Si(110) surface

One of the advantages of ADF imaging discussed throughout this thesis is that the
scattered intensity scales with the sample thickness and the atomic number, facilitating
elemental characterization and atom counting with atomic resolution, as well as
direct comparison with theoretical structures and simulated ADF images [58]. Using
Z-contrast imaging, analysis of the intensity of a Pt atom atop a Si atomic column
compared to a Si column only gave an estimated thickness of the lamella of 7 nm.
Quantitative analysis can also be used to asses whether the bright ⟨112⟩ features are
caused by the Si surface itself or by oxidation, noting that O atoms are expected to be
more mobile under the electron beam and thus be blurred during the image acquisition
and processing. It is also highly likely that the electron beam will preferentially sputter
off oxygen and other low atomic number contaminants [312].
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ADF-STEM simulations were performed using the multislice method, accounting for
the thermal diffuse scattering contribution to ADF-STEM image intensity. The images
were convolved with a Lorentzian function with full-width half-maximum (FWHM) of
1.2 Å to account for the finite source size effects. Figure 7.3c shows a simulated STEM
image of the reconstructed Si surface, and line profiles across the step (Fig. 7.3d) show
that the simulation reproduces the observed intensity varations well, and that there is
certainly a change in relative intensity after 55 s of irradiation under the beam.

7.4.2 Sample preparation and the “clean” Si(110) surface

It is important to recognise that the sample fabrication in this work differs from the
usual approach taken to prepare a clean, atomically-flat surface for STM studies [313,
314]. Silicon in particular is a difficult specimen to fabricate due to problems with
contamination by elements such as oxygen and carbon–both of which can be found
in the STEM column even under high vacuum. Typical STM experimental conditions
require vacuum pressure several orders of magnitude less than even the best STEM
instruments [315], and great care needs to be taken at all stages of fabrication to avoid
contamination. A common method for preparing a clean Si surface at low temperatures
for STM experiments is to use a wet chemical process [315], etching with either HF or
NH4F to produce a H-passivated surface. Alternative approaches involve heating the
sample to high temperatures (1000 K or more) at very low pressures [313].

Sputtering using 300 eV Ar ions and a subsequent anneal at 1000 K was performed
in Ref. 316 to prepare a clean and flat Si(001) surface, and it is worth noting that the
method described in Section 7.3 involved 900 eV Ar ion sputtering. However, there
was no subsequent annealing, and the problem of achieving truly ultrahigh vacuum
conditions remains. Without further, controlled experiments (possibly combining STEM
and STM studies), there is no way to confidently identify the cause of the features seen
in the STEM sequences. Perhaps the most likely explanation is that we are observing
surface oxide structures, linked to the underlying crystalline Si in ⟨112⟩ directions as
per Ref. 306, that are heavily influenced by the electron beam and so develop over
time. The following section investigates the initial stages of oxidation on the Si(110)
surfaces.

7.4.3 Oxidation of the Si(110) surface

Atomistic modelling can be used to explore whether the distinct ⟨112⟩ features observed
are caused by the Si surface itself, or by the formation or dynamics of an oxide layer.
MD simulations should also help explain the evolution of the features over time.
However, a fundamental problem in MD simulations is accurately determining the
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forces on each atom in order to evolve the system in time. Using a first-principles
method such as DFT to calculate the forces is the preferred option for surfaces such
as Si(110), since dangling bonds and van der Waals interactions with adsorbates can
have a significant effect on the stability of the structure. However, while DFT has been
used to successfully investigate the energy of the 16×2 reconstruction [302, 303], the
size of the unit cell severely limits the feasibility of ab initio MD simulations due to the
computational cost of repeated force calculations.

Classical MD simulations offer a much faster method for investigating the dynamics
of large surfaces, since empirical potentials and forces can be evaluated much faster
than the first principles treatment of DFT. Classical potentials can range from a simple
Lennard-Jones model to more complex methods incorporating directionality and long-
range interactions [317]. Selecting the appropriate potential is extremely important for
obtaining an accurate end result, and this usually means using a potential that has been
fitted to experimental properties of the system in question. For instance, a potential
that reproduces the bulk properties of Si but not the surface properties is of little use
for the present study. Fortunately, the importance of Si in the semiconductor industry
means that a number of potentials exist for accurately modelling both bulk and surface
properties. These range from the well-established Stillinger-Weber (SW) [318] and
Tersoff [319] potentials to more recent approaches such as the Modified Embedded-
Atom Method (MEAM) [320, 321]. Each has its own benefits and drawbacks; the SW
and Tersoff models are extremely quick to evaluate, while MEAM better reproduces
properties such as thermal expansion, as well as the structure of amorphous Si.

A key requirement in this study is that the potential can model the initial oxidation
of the Si surface. This is more complicated than the pure Si case, since various inter-
atomic interactions, including non-bonding interactions such as van der Waals forces,
need to be accounted for. The reactive force field (ReaxFF) approach of van Duin
et al. is designed with these components in mind, and is aimed at bridging the gap
between expensive, small-scale DFT calculations and faster, large-scale empirical MD
simulations [322]. The present work uses the ReaxFF potential developed specifically
for the Si–O system [323], which successfully describes the DFT-calculated surface
reconstruction shown in Figure 7.1. The ReaxFF potential also replicates the sponta-
neous dissociation of O2 into atomic oxygen on the surface of silicon, which was found
using ab initio MD to be the first step in the oxidation process on other low-index Si
surfaces [324].

The simulations were performed using the Large-scale Atomic/Molecular Massively
Parallelized Simulator (LAMMPS) code [325, 326]. Starting from the DFT-optimized
structure [303], a 16×2 slab with 14 atomic layers and 20 Å of vacuum was constructed.
The bottom layer of Si atoms were fixed to the bulk lattice parameters as calculated
with ReaxFF, and the next 7 layers were rescaled to a constant temperature to provide
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Figure 7.4: Effect of oxidation on the Si(110) surface. (a) The clean 16×2 surface reconstruc-
tion (cf. Fig. 7.1). (b) Si(110) surface after the adsorption of 64 O atoms (1 ML coverage)
simulated over a period of 250 ps at 1000 K. (c) Si(110) surface after the adsorption of 128 O
atoms (2 ML coverage). Si atoms are grey, O atoms are red.
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a thermal bath for the system. The remaining layers were left unconstrained. An
initial energy minimization was carried out using the conjugate-gradient method.
Following the procedure of Pamungkas et al. [327], the clean surface was equilibriated
at 1000 K for 10 ps using a Langevin thermostat and a timestep of 0.25 fs. The high
temperature mimics the effect of local sample heating by the electron beam. An O2

molecule was then introducted every 5 ps at a random point above the surface with a
small downward velocity to model the oxidation process, up to a total of 64 O atoms,
corresponding to approximately 1 monolayer (ML) coverage of the surface. The same
oxidation procedure was repeated with 128 O atoms (i.e. 2 ML coverage). A final
energy minimization was performed to fully relax the system in all cases. For the
ADF-STEM simulations, the unit cells from the MD simulations were extended in the
direction of the bulk crystal to form a slab 7 nm thick, thus matching the estimated
lamella thickness.

The fully-relaxed surfaces shown in Figure 7.4 demonstrate that as the oxygen coverage
increases, the step seen in the ⟨112⟩ direction is gradually lost. In Figure 7.4c oxygen
atoms are starting to diffuse into the bulk Si, and ultimately a layer of SiO2 will form as
more oxygen is deposited, thus removing the ⟨112⟩ feature entirely and leaving behind
an Si/SiO2 interface [308].

Figure 7.5 shows line profiles taken across the ⟨112⟩ step in each of the simulated ADF-
STEM images (see highlighted region in Fig. 7.3c). The Si dumbbells are resolved in all
three cases, and the profiles for 1 and 2 ML coverage exhibit very similar behaviour. The
presence of oxygen is seen to reduce the change in intensity across the step, and also
leads to an increase in intensity between the dumbbells as a result of the disordered
surface structure (cf. Fig. 7.4b,c). This suggests that the bright chevron-like features
in the ⟨112⟩ direction (Fig. 7.3b) become more visible as oxygen is sputtered from
the surface under the electron beam, and adds weight to the hypothesis that we are
observing the dynamics of surface oxide structures linked to the underlying crystalline
Si in the ⟨112⟩ directions.

7.4.4 Separating the top and bottom surfaces

Since STEM is a projected imaging method, one must remember that the observed
features may exist on both the top and bottom surfaces, and that separating their
contributions to the image intensity can be difficult. However, Figure 7.5 showed that
the oxidized Si surface does not exhibit the same bright chevron-like features as cleaner
surfaces, indicating that the interaction between the surface and the electron beam
leads to the surface changing, and thus the contrast becoming clearer over time in
the experimental sequences. Previous work has shown that oxygen is preferentially
sputtered from SiO2 by the electron beam [312], and any sputtering is also likely to
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Figure 7.5: Line profiles across the surface step in the simulated 16×2 reconstruction of
Si(110) are compared with the experimental line profile (after 55 s of imaging, see Fig. 7.3d)
for a clean Si surface, 1 ML coverage of oxygen and 2 ML coverage. The dashed grey line
indicates the position of the step on the clean surface.

occur first on the bottom surface of the lamella, with the oxygen coverage on the top
surface expected to be more stable.

Further quantification of the oxygen sputtering was conducted using electron energy-
loss spectroscopy (EELS). EELS spectra were acquired using an FEI Titan3 operating
at 300 kV and equipped with a GIF Quantum ERS system. Spectra were recorded
every 2 s over an area of 1500 nm2, and the probe current was 50 pA. The O K edge
intensity was calculated using Gatan Digital Micrograph. The background was removed
by pre-edge power-law fitting, and quantification was done by using a Hartree-Slater
cross-section model for each spectrum of the time series. Figure 7.6 demonstrates that
the oxygen content of the sample as measured with EELS decreases over time due to
exposure to the electron beam. After 60 seconds the oxygen content is approximately
half the initial value. Although not conclusive, this analysis points towards oxygen
being sputtered off one surface of the lamella by the beam, leaving behind an altered
Si(110) surface, as seen in the ADF-STEM image sequences. The oxygen content on the
top surface is suggested to remain relatively stable relative to the bottom, but further
work would be needed to confirm this hypothesis.

As a final note, acquiring a tilt series or a through-focal series are alternative STEM
methods to provide depth resolution and confirm the contributions of the top and
bottom surfaces, but both come at the expense of temporal resolution and possibly
a higher cumulative electron dose. Furthermore, the depth resolution of a through-
focal series may not be sufficient to distinguish the ca. 1 Å step height on the Si(110)
surface.
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Figure 7.6: Oxygen K edge intensity from an EELS time series.

7.5 Pt adatom diffusion on Si(110)

We now turn our attention to the sparse component of the RPCA decomposition
(Fig. 7.2d) and investigate the dynamic behaviour of the Pt adatoms on the Si surface.
At the experimental accelerating voltage of 300 kV, a collision with an electron can
impart up to 4.5 eV to a Pt atom (Eq. 2.2), which will be more than sufficient to excite
the adsorbed atom out of a surface site and thus diffuse over the surface.

The wavelet-based feature detector developed in Chapter 4 was used to extract the
approximate positions of the adatoms from one of the sequences, and the positions
were further refined by fitting 2D Gaussians to a small window around each atom. The
use of the classification-based feature detector is necessary here to account for the
imperfect background subtraction, motion blur and noise. The positions were then
combined into trajectories using the reinforcement learning approach again developed
in Chapter 4; in total, 309 particle tracks were analyzed with lengths of 2–56 s.

The MSD of the trajectories is seen to be linear in time (Fig. 7.7a), with an exponent of
1.01± 0.02 Å, indicating that the Pt adatoms are undergoing a normal diffusion process
as a result of the beam-induced motion. This is in stark contrast to the observation
of anomalous subdiffusion in Chapter 5, and reflects the relative homogeneity of the
Si substrate compared to the disordered structure of graphene oxide. Clearly the
possible presence of oxygen and other adsorbates is insufficient to noticeably alter
the diffusion behaviour of Pt. Note that at long times the noise in the MSD increases
due to a smaller number of trajectories available for averaging. Applying the tests for
anomalous diffusion from Chapter 5, no ageing is observed in the system, and the
results point towards a simple “random walk on a lattice” model.

Analysis of the magnitude and direction of the atom displacements in Figure 7.7b
reveals a preference for left-to-right adatom jumps in approximately the [001] direction.
Figure 7.7b plots the probability of a displacement, P (∆x,∆y), weighted by the
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Figure 7.7: (a) MSD of the atom trajectories extracted from the ADF-STEM sequence. The
best-fit line is shown in black along with the fitted exponent. (b) The probability of adatom
displacements, P (∆x,∆y), weighted by the displacement magnitude. (c,d) Two of the particle
tracks overlaid onto the background image of the Si lattice (Fig. 7.2c). Scale bar: 0.5 nm.

magnitude to give additional importance to long jumps (which are likely beam-driven)
and reduce the influence of very small displacements (which are most likely caused by
measurement error).

Two important points can be drawn from this plot. The first is that there is a strong
preference for jumps in line with the Si dumbbells, which are tilted a few degrees
off the horizontal axis. Figures 7.7c and d overlay two of the atomic trajectories on
the substrate image extracted with RPCA (Fig. 7.1c), and show that there is indeed a
tendency for the adatom to sit atop a dumbbell rather than off it, although the image
resolution is insufficient to elucidate the complete local structure. On the reconstructed
surface one Si atom of the pair will sit higher than the other, potentially providing
a stable site for the Pt atom. The role of oxygen atoms in binding the Pt atoms to
the substrate cannot be ruled out either, and although DFT calculations could resolve
this ambiguity over stable sites, the size and complexity of the (oxidized) surface
reconstruction and the beam-induced changes make this a potentially challenging
computation.

The second observation from Figure 7.7b is the preference for jumps in the [001]
direction. This is in the scan direction of the STEM probe, suggesting that the adatoms
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are, in effect, being “pushed” by the electron beam. The aberration-corrected probe
has a Lorentzian profile and an estimated full-width half-maximum of 1.2 Å. In
comparison, the experimental pixel size is 0.24 Å, meaning that a significant fraction
of the electron dose will fall outside the pixel being imaged. The probe tails thus
increase the likelihood of an adatom being displaced when the probe is nearby. Since
the probe will always approach the Pt adatom from the left in this experiment, it is
suggested that this contributes to the directional bias, and therefore the scan direction
is another important consideration for in-situ studies of adatom dynamics, alongside
aspects such as accelerating voltage, beam current and dwell time. Understanding the
relationships between beam effects and the underlying physical process is crucial for a
full characterization of surface dynamics, and future experiments that vary the scan
direction, for example between individual frames as in the RevSTEM technique [328],
may shed further light on the origins of the directional bias.

7.6 Summary

This chapter has demonstrated a novel approach to observing and understanding the
dynamics of surfaces using atomically-resolved STEM image sequences, combining
the image processing methods outlined in Chapters 3 and 4. By exploiting temporal
correlations between frames using the ORPCA algorithm, it is possible to recover the
dynamic surface behaviour of Si(110), and relate the observations to computational
modelling of surface oxide layers. The separation of the low-rank and sparse compo-
nents of the time series facilitated further analysis of the dynamics of Pt surface atoms,
with motion induced by the electron beam revealing a directional bias attributable
to the STEM probe scan direction. The analysis presented here extends the methods
in this thesis to crystalline substrates, and shows that they are widely applicable to
the study of atomic-scale surface dynamics with aberration-corrected STEM. Crucially,
combining quantitative ADF imaging with MD simulations maintains both the temporal
resolution and the low dose imaging conditions, which are key criteria for successfully
observing single-atom dynamics.



Chapter 8

Conclusions and future work

8.1 Summary

This thesis has explored the potential of STEM as a technique for time-resolved ma-
terials characterization with atomic resolution. Through a series of case studies, it
has shown how image processing, machine learning and computational modelling can
be combined with aberration-corrected electron microscopy to explore the dynamic
behaviour of atoms on surfaces, and, crucially, to begin to understand the effects of the
beam–specimen interaction at the single-atom level.

Chapter 3 addressed some of the challenges faced in handling and analyzing the
large and noisy EM datasets by exploiting correlations using novel low-rank matrix
techniques. Focusing on time-resolved imaging, a new algorithm for denoising image
sequences under challenging noise conditions was developed. Consideration of the
statistics of the signal acquisition process was highlighted as an important factor in im-
plementing an objective, automated method for parameter selection. The investigation
of low-rank methods was extended using an online robust PCA algorithm, showing the
feasibility of real-time denoising, dimensionality reduction and background subtraction
for immediate feedback on electron microscopy experiments.

The benefits of incorporating prior knowledge into analytical tools were discussed
in Chapter 4, which presented adaptable computational methods for detecting and
tracking the motion of atoms in image sequences. The signal acquisition process was
again analyzed to understand the detection limits for single atom imaging in the pres-
ence of noise, which is an important factor in low-dose STEM imaging. Together these
techniques can guide experimental design to maximize the useful information content
acquired whilst guarding against significant damage by the electron beam.

Chapter 5 presented an initial study of the potential of time-resolved STEM imaging,
showing how Cu atoms adsorbed onto GO undergo anomalous diffusion as a result of
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the spatial and energetic heterogeneity present in the substrate. Extensive simulations
revealed that GO can be modelled using percolation theory, resulting in a fractal-like
surface that was explored further in Chapter 6. The insights gained about the binding
of single Cu atoms to GO were extended to the study of small Cu clusters on GO, where
ab initio random structure searching revealed the importance of accurately modelling
the substrate when considering the structure of small metal clusters.

Finally, in Chapter 7, the image analysis methods developed previously were applied
to the study of a crystalline system. This illustrated the power of quantitative ADF
imaging and image simulation by revealing the evolution of surface structures on
Si(110) over time. Complementary analysis of the motion of Pt adatoms on the surface
was achieved using background subtraction with robust PCA, and showed how the
electron beam can influence the behaviour of adatoms.

These case studies demonstrate the novel materials insights that can be eluciated
using time-resolved STEM, with applications such as the study of heterogeneous
catalysts, surface reconstruction and growth, and the fundamentals of atomic diffusion.
Crucially, this thesis establishes a robust workflow for the qualitative and quantitative
characterization of materials dynamics with electron microscopy. The combination of
state-of-the-art imaging with computational analysis and atomistic modelling provides
an objective, automated framework for exploring important physical and chemical
behaviours at the atomic scale.

8.2 Future work

Two broad aspects of the work presented in this thesis offer potential for further
research. These are the development of methods for real-time data analysis, and the
application of time-resolved (S)TEM techniques to in-situ experiments to investigate
the dynamic behaviours of single atoms under reaction conditions.

8.2.1 Real-time data analysis in electron microscopy

Chapters 3 and 4 introduced a series of techniques for processing and analyzing time-
resolved (S)TEM data. A natural extension would be to combine the denoising, feature
extraction and atom tracking steps into a single, seamless routine that can be integrated
directly with the computer controlling the microscope. This would provide real-time
feedback on experiments and make adjusting the parameters to suit the sample, such
as the electron dose or focus, very straightforward. Successfully constructing such a
system is ultimately a software development challenge, and would require collaboration
with manufacturers to interface with both the microscope hardware and the typically
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closed-source control software. This could include the integration of more powerful
computing resources, perhaps using GPUs or through links to cloud-based services akin
to the distributed computing model in particle physics [329]. Briefly moving away
from single-atom imaging, it was noted in Chapter 3 that robust, online unsupervised
learning is not limited to the ORPCA algorithm. Exploring the potential for online
NMF for processing EELS and EDS datasets in real-time is another avenue worth
pursuing [167], and demonstrating the general applicability of these techniques may
further encourage collaboration.

Returning to single atoms, extending the particle detection and tracking algorithms
of Chapter 4 to work with multiple elements would facilitate the investigation of the
structure and dynamics of bimetallic clusters, thus building on the work with copper
on GO presented in Chapter 6. Use of ABF imaging in conjunction with ADF-STEM
could enable the simultaneous, real-time tracking of heavier metal atoms alongside
lighter atoms such as oxygen during catalytic reactions. Plotting diffusion behaviours
such as the MSD as the data is acquired would highlight any signficant changes in
adatom dynamics, for example the point at which the accumulated radiation damage
leads to a change in the diffusion exponent.

Lastly, an interesting point worth investigating is whether it is possible to recover
the 3D structure of small atomic clusters with temporal resolution. A recent study of
sub-nanometre Ge clusters used ADF-STEM and statistical atom-counting to construct
an initial model of the cluster in consecutive frames of a sequence. Each model
was subsequently relaxed with DFT [330]. This final step is clearly not “real-time”
by any means, and Ref. 330 largely ignores the cluster–substrate interaction in the
calculations, in contrast to the findings in Chapters 5 and 6. Pursuing alternatives
is therefore of significant interest. One possible solution may come from computer
vision methods more commonly found in self-driving cars, where the challenge is to
build a 3D model of the environment from a sequence of 2D images by identifying
common (or corresponding) points and features in each frame. This is known as
“structure from motion” (SfM) [331]. It is possible to reconstruct simple shapes even
when the feature correspondence between frames is unknown using an expectation-
maximization algorithm [332]. This is particularly relevant to atomic clusters since
distinguishing between atoms with the same mass is impossible using Z-contrast alone.
Imposing sensible constraints on interatomic spacing, as well as prior knowledge
obtained from DFT calculations, could make the SfM technique a powerful tool for
analyzing the dynamics of small atomic clusters in three dimensions, building on work
on the reversible dynamics of a Si6 cluster in a graphene pore [109].
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8.2.2 In-situ experiments with single atom catalysts

The second major theme for future work focuses on the materials science questions
outlined in Chapters 5–7. The work in these chapters represents a series of case studies
demonstrating the potential applications of the image processing and data analysis
techniques of the first part of the thesis. The future directions are numerous, but
focusing on the dynamics of single atoms, a key consideration not yet explored is
the effect of temperature and the interplay between thermal and beam-driven effects.
Controlling and analyzing these effects using STEM heating holders is an obvious next
step in studying single atom dynamics with electron microscopy. Going even further,
environmental STEM raises the prospect of following catalytic reactions in the presence
of gases with unprecedented resolution [33–36].

Of course, achieving these goals will require a systematic study of the effects of
the beam dose and accelerating voltage to determine the point at which the beam
interaction is minimized, while the various image processing methods are still able to
recover the motion of single atoms. Chapter 7 suggested that the beam scan direction
may play an influential role, and conducting further studies involving different raster
scan patterns would clarify this effect.

Having addressed the optimal conditions for single atom imaging with in-situ mi-
croscopy, it would be very interesting to investigate the anomalous diffusion behaviour
first discussed in Chapter 5. In that case subdiffusion was observed, raising the question
of whether superdiffusion at the atomic scale is also possible, and what the necessary
characteristics of the system are for it to arise. In a recent paper, Barry et al. showed
that Os atoms deposited on boronic graphene doped with Se moved faster under
the electron beam than on the same material doped with S [333], suggesting that
controlling atomic motion at surfaces through doping is a promising idea for future
study. Although no MSD analysis was presented in Ref. 333, the jump distributions
were shown to be inconsistent with Brownian motion, with more long-range jumps
than expected under normal diffusion.

Returning to subdiffusion, the anomalous motion of Cu on GO was caused by a CTRW
model combined with a fractal-like substrate, resulting in both spatial and energetic
disorder. Investigating other systems with similar disorder would be very important for
heterogeneous catalysis, especially with the recent trend towards developing single
atom catalysts [23]. Understanding the adatom–substrate interaction is crucial to
controlling and tuning the properties of a catalyst, and preventing the aggregation of
atoms is key to preventing the degradation of the system. Exploring the properties of
other technologically-important substrates such as graphitic carbon nitride may prove
enlightening [31, 262], since the fractal properties of GO discussed here may place a
limit on the tunability of the substrate.
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Finally, one of the ultimate goals of aberration-corrected STEM would be to control
materials at the single atom level, in much the same way as STM can be used to carefully
place atoms into small structures on surfaces [334–336]. Of course, understanding
and carefully controlling the beam–specimen interaction is the major outstanding issue.
Combining the real-time analysis techniques in this thesis with systematic studies of
the electron beam effects will constitute a significant step towards overcoming this
barrier.
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Supplementary Materials

A.1 Supplementary Movies

The following movies are available on the supplementary CD. Movies S1–7 and S13
are reproduced from Ref. 117.

Movie S1–6 The Microtubule, Vesicle, Receptor, Microtubule+clouds, Vesicle+clouds and
Receptor+clouds test sequences.
From left: Original images; corrupted with Poisson–Gaussian noise; de-

noised with V-BM4D; denoised with PGURE-SVT.

Movie S7 ADF-STEM sequence of a nanoparticle on graphene oxide, before (left) and
after (right) denoising with PGURE-SVT. Sequence recorded and played back at
4 fps. The field of view is 6.8 nm.

Movie S8 Comparison between the block coordinate descent (BCD) and stochastic
gradient descent (SGD) methods of the ORPCA algorithm for denoising STEM
image sequences including sample drift.
From left: Clean images; corrupted with Poisson–Gaussian noise; denoised

using the BCD method; denoised using the SGD method.
Top row: Simulated ADF sequence of SrTiO3.
Bottom row: Simulated ABF sequence of SrTiO3.

Movie S9 Application of ORPCA for the inpainting of undersampled STEM image
sequences including sample drift.
From left: Clean images; corrupted with Poisson–Gaussian noise and with

only 25% of pixels observed; after processing with ORPCA.
Top row: Simulated ADF sequence of SrTiO3.
Bottom row: Simulated ABF sequence of SrTiO3.
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Movie S10 Foreground–background separation using the ORPCA algorithm, in the
presence of sample drift.
Top row: Simulated ADF sequence of a Si dopant atom in graphene, and

after corruption with Poisson–Gaussian noise.
Middle row: Background and foreground images recovered with the ORPCA

algorithm.
Bottom row: Mean image from the noisy sequence after alignment, and the

difference image between the mean and each frame of the
aligned sequence.

Movie S11 ADF-STEM sequence 1 of copper adatoms on graphene oxide, before and
after denoising with PGURE-SVT. Sequence recorded and played back at 8 fps.
The field of view is 6.8 nm.

Movie S12 ADF-STEM sequence 2 of copper adatoms on graphene oxide, before and
after denoising with PGURE-SVT. Sequence recorded and played back at 8 fps.
The field of view is 6.8 nm.

Movie S13 ADF-STEM sequence of Cu adatoms on graphene oxide adopting a trimer
motif, before and after denoising with PGURE-SVT. Sequence recorded and
played back at 8 fps. The field of view is 4.8 nm.

Movie S14 Sequence 1 of Pt adatoms on Si(110) imaged using ADF-STEM. Originally
recorded at 4 fps, playback has been sped up 4×. The field of view is 5.4 nm.
Top row: As-acquired images, and after denoising and alignment.
Bottom row: Background and foreground after processing with ORPCA.

Movie S15 Sequence 2 of Pt adatoms on Si(110) imaged using ADF-STEM. Originally
recorded at 4 fps, playback has been sped up 4×. The field of view is 4.2 nm.
Top row: As-acquired images, and after denoising and alignment.
Bottom row: Background and foreground after processing with ORPCA.
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A.2 Supplementary Software

The following programs were developed as part of this thesis, and have been made
freely available under an open-source license. The source code for PGURE-SVT and
CTRWfractal is also provided on the supplementary CD:

PGURE-SVT was written in C++ using the Armadillo linear algebra library [337], and
includes a wrapper for use with the HyperSpy software package [338]. The code
is available to download from http://tjof2.github.io/pgure-svt.

ORPCA was written in Python, based on code provided by the original authors of the
algorithm [163], and includes the initialization and gradient descent adaptations
described in Section 3.4. The code has been contributed to the HyperSpy software
package [338].

CTRWfractal was written in C++and adapted to simulate continuous-time random
walks from work on percolation by Newman & Ziff [339]. The code is available
to download from http://github.com/tjof2/ctrwfractal.

http://tjof2.github.io/pgure-svt
http://github.com/tjof2/ctrwfractal




Appendix B

Poisson–Gaussian unbiased risk
estimator

The derivation of the Poisson–Gaussian estimator assumes a mixed noise model de-
scribed in Equation 3.12. For notational convenience, here matrices are replaced with
vectors, which is equivalent to flattening the images. The noise model is then:

y = αz+ e with

z ∼ P
(
x
α

)
e ∼ N

(
µ, σ2

) (B.1)

This model can be rewritten as y = αz+ b+ µ, where b ∼ N
(
0, σ2

)
. The derivation

in this section builds on the work of Le Montagner et al. [144], which set µ = 0. The
derivation makes use of two known results for Gaussian and Poisson-distributed data,
which are restated here.

B.1 Stein’s Lemma

If y = x+ b, where b ∼ N
(
0, σ2

)
, and φ is a weakly differentiable function such that

E
{∑

n

∣∣∣∂φn

∂yn
(y)
∣∣∣} < +∞ for all n, then from Ref. 136:

E {⟨b|φ (y)⟩} = σ2E {Div φ (y)} (B.2)

where Div φ (y) =
∑

n
∂φn

∂yn
(y).



150 Poisson–Gaussian unbiased risk estimator

B.2 Hwang’s Lemma

In Ref. 340, Hwang derived an equivalent of Stein’s Lemma for Poisson-distributed
data. For a function ψ (x), where E {|ψ (x)|} < +∞, and x ∼ P (λ):

E {λψ (x)} = E {xψ (x− 1)} (B.3)

This result can be extended to vectors by setting z ∼ P (x), and ψ be a function such
that E {

∑
n |ψn (z)|} < +∞ for all n:

E {⟨x|ψ (z)⟩} = E
{〈

z|ψ[−1] (z)
〉}

(B.4)

where ψ[−1] (z) = [ψn (z− cn)]n=1...N , and cn is a vector of zeros except for the nth

element, which is set to 1.

B.3 Poisson–Gaussian unbiased risk estimator

The results in Equation B.2 and Equation B.4 can now be used to rewrite the expectation
of the mean-squared error (Eq. 3.9) in terms of the observation vector y only:

E {MSE} =
1

N
E
{
∥f (y)− x∥22

}
=

1

N

(
E
{
∥f (y)∥22

}
− 2E {⟨x|f (y)⟩}+ ∥x∥22

)
=

1

N

E
{
∥f (y)∥22

}
− 2E {⟨x|f (y)⟩}︸ ︷︷ ︸

I

+E {⟨x|y⟩}︸ ︷︷ ︸
II

 (B.5)

Applying Equation B.4 to term I (cf. Ref 144):

E {⟨x|f (y)⟩} = E
{
αEz

{〈x
α
|f (αz+ b+ µ)

〉}}
= E

{
αEz

{〈
z|f [−1] (αz+ b+ µ)

〉}}
= E

{〈
y − b− µ|f [−α] (αz+ b+ µ)

〉}
= E

{〈
y|f [−α] (y)

〉}
− E

{〈
b|f [−α] (y)

〉}
− E

{〈
µ|f [−α] (y)

〉}
(B.6)

Then applying Equation B.2:

E {⟨x|f (y)⟩} = E
{〈

y|f [−α] (y)
〉
− σ2Div f [−α] (y)− µf [−α] (y)

}
(B.7)
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For term II, we replace f (y) in Equation B.7 by the identity function:

E {⟨x|y⟩} = E
{
∥y∥22 − (α+ µ)y

}
+ µ−Nσ2 (B.8)

Putting everything together according to Equation B.5:

PGURE =
1

N

∥∥f (y) ∥22 + ∥y
∥∥2
2
− 2

〈
y|f [−α] (y)

〉
+ 2σ2Div f [−α] (y)

+2µf [−α] (y)− (α+ µ)y + µ

− σ2 (B.9)

The next step is to apply a first-order Taylor expansion:

f [−α] (y) ≈ f (y)− α∂f (y) (B.10)

This simplifies Equation B.9:

PGURE =
1

N

 ∥f (y)− y∥22 + 2µf (y) + 2
〈(
α (y − µ) + σ2

)
|∂f (y)

〉

−2ασ2∂2f (y)− (α+ µ)y + µ

− σ2 (B.11)

Replacing y by Y, and the element-wise product ⟨a|b⟩ by its matrix equivalent A ◦B,
we arrive at Equation 3.13 with E {MSE} = E {PGURE}.





Appendix C

Stochastic gradient descent

C.1 Theory

Gradient descent methods can be used to improve the convergence of the L-update
step in the ORPCA algorithm. First recall that Equation 3.21 has the form:

f (x) =
t∑

i=1

fi (x) (C.1)

Determining the local minimum of this function with a standard batch gradient descent
method involves taking the negative of the gradient at the current point:

x := x− γ
t∑
i

∇fi (x) (C.2)

where γ is the step size. As seen with the closed-form and block coordinate descent
methods presented in Chapter 3, this approach requires a running total of the previous
samples and so will struggle to adapt quickly to any changes in the function over time.
In contrast, stochastic gradient descent seeks the minimum by estimating the gradient
from just a single sample [341]:

x := x− γ∇fi (x) (C.3)

Stochastic gradient descent provides a noisy approximation to the true gradient of
the function, but with improved computational performance and a faster response
to changes in the function. A trade-off can be made to reduce noise by using small
batches of samples in Equation C.2 rather than all previous samples.
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C.2 Derivation of the update step

Applying either gradient descent method requires the derivative:

∂

∂L

(
1

2
∥yi − Lri − si∥22 + λ ∥r∥22 + ξ ∥s∥1 +

λ

2
∥L∥2F

)
(C.4)

To calculate Equation C.4, we make use of the following identities. First, the l2-norm
of a vector x and the Frobenius norm of a matrix X can be rewritten as:

∥x∥22 = xTx = Tr
[
xxT

]
(C.5)

∥X∥2F = Tr
[
XXT

]
(C.6)

where Tr [X] is the matrix trace. The second identity is Equation 119 in Ref. 342:

∂

∂X
Tr
[
(AXB+C) (AXB+C)T

]
= 2AT (AXB+C)BT (C.7)

Defining A = I (the identity matrix), and substituting c = yi − si, we have:

∂

∂L

(
λ

2
∥L∥2F

)
= λL (C.8)

∂

∂L
∥yi − Lri − si∥22 =

∂

∂L
∥c− Lri∥22

=
∂

∂L
Tr
[
(c− Lri) (c− Lri)

T
]

= 2 (Lri − c) rTi

, 2 (Lri − (yi − si)) r
T
i (C.9)

Putting everything together results in the new update equation for L:

L := L− γ
(
Lrir

T
i − (yi − si) r

T
i + λL

)
(C.10)

C.3 Choosing the step size

Determining the appropriate step size, γ, is an open problem in machine learning, and
in practice requires tuning on a small sample of training data*. Setting γ too small
means the algorithm approaches the minima extremely slowly, while if γ is too large
the algorithm can oscillate wildly and take a considerable time to settle down. Typical
gradient descent algorithms use information about second derivatives of the objective
function or expensive line searches to determine the appropriate value of γ. In many
high-dimensional cases such as neural network training, the size of the dataset makes

*The step size is also known as the learning rate.
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the calculation of second derivatives computationally intractable. A common approach
is to use a learning rate “schedule”, which decreases γ as each new sample arrives. The
general expression used in this work is from Ref. 341:

γt = γ0 (1 + γ0λt)
−1 (C.11)

which slowly decreases the step size as the number of samples increases, thus reducing
the effect each new sample has on the estimate of L.

C.4 Accelerating stochastic gradient descent

Gradient descent methods based on first derivatives alone particularly struggle with
saddle points or in long, narrow valleys in the objective function surface. For scenarios
where second-derivative information is not available, novel methods have been devel-
oped to incorporate memory of the previous steps, such as the momentum method and
Nesterov’s accelerated gradient descent [343]. These mitigate the risk of being trapped
at saddle points by adding a term based on the direction of the previous update step.
For example, the momentum method can be written as:

vt = ηvt−1 + γt∇ft (x) (C.12)

x := x− vt (C.13)

where η is a parameter between 0 and 1. Of course, introducting η alongside the
step size makes careful parameter selection through training even more important. As
discussed in Section 3.4, alternative accelerated methods such as AdaDelta do away
with γ altogether [168]. The improved convergence properties and robustness to
saddle points of these accelerated methods may prove particularly useful in scenarios
where sharp transitions occur between video frames, which are smoothed out by the
slower response of standard SGD.





Appendix D

Density functional theory

D.1 Theory

Density functional theory (DFT) is a widely-used approach to calculating the electronic
structure of materials [344]. A full quantum mechanical treatment of a system of
atoms and electrons involves solving the time-dependent Schrödinger equation:

i
∂

∂t
Ψ(rj ,RJ , t) = ĤΨ(rj ,RJ , t) (D.1)

where rj represents the positions of j electrons, RJ the positions of J atomic nuclei,
and Ĥ is the Hamiltonian operator. Solving this problem beyond the simplest of
systems is well beyond the scope of modern computational resources. However, since
the mass of the nucleus is typically 103 times larger than the mass of the electron,
the wavefunction can be separated into an electronic component ψ and a nuclear
component χ:

Ψ(rj ,RJ , t) = ψ (rj ,RJ)χ (RJ , t) (D.2)

This is known as the Born-Oppenheimer approximation, with the electrons instanta-
neously updating their positions as the nuclei move. In the electronic component,
the nuclei positions are parameters rather than variables, and the problem reduces
to solving the time-independent Schrödinger equation, Ĥψ = Eψ. However, this
calculation still involves j interacting electrons, and quickly becomes intractable for
large systems.

To overcome this problem, Hohenberg and Kohn showed that the ground state proper-
ties of a system are uniquely determined by the electron density n (r), which depends on
only three spatial coordinates rather than 3j [345]. Minimizing an energy functional,
F [n (r)], will give the correct ground-state electron density of the system. Finally, the
Kohn-Sham equations further reduce the problem from a system of interacting electrons
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to a system of non-interacting electrons moving in an effective potential [344]:

E (n (r)) =

∫
Vext (r) d

3r + F [n (r)] (D.3)

The functional F [n (r)] in Equation D.3 consists of three terms:

F [n (r)] = T [n (r)] + EH [n (r)] + Exc [n (r)] (D.4)

T [n (r)] is the kinetic energy and EH [n (r)] is the classical electrostatic (or Hartree)
energy of the electrons. Unlike the first two terms, the exchange-correlation func-
tional Exc [n (r)] is not known exactly, and the accuracy of DFT calculations is largely
dependent on this final term [346].

The simplest exchange-correlation functionals are based on the local density approxi-
mation (LDA), and assume a uniform electron gas. However, LDA functionals tend to
overestimate binding energies. The generalized gradient approximation (GGA) goes a
step further and also incorporates the gradient of the electron density, thus accounting
for inhomogeneity in the density. As a result, GGA functionals tend to better predict
properties such as total energy. Further improvements in predicting properties can be
made by combining GGA functionals with a non-local Hartree-Fock exchange [347].
These are known as hybrid functionals, and often give much better descriptions of
properties such as bond lengths than standard GGA approaches, although this comes
at the expense of significantly longer computation times.

Lastly, density functionals are typically limited in their ability to correctly account
for long-range van der Waals interactions [346]. This effect is particularly relevant
in surface studies, where adsorption of atoms and molecules is often dominated by
non-bonding interactions. A straightforward remedy is to apply a semi-empirical
dispersion correction to the functionals derived from the electron density and reference
values [348].

D.2 Calculation details

All of the ab initio calculations in this work used the plane-wave density functional
theory code CASTEP [349], with the Perdew-Burke-Ernzerhof (PBE) GGA functional
unless otherwise stated [350]. The Tkatchenko-Scheffler semi-empirical dispersion
correction scheme was used to account for van der Waals interactions [348], and all
calculations were spin-polarized, starting from a uniformly distributed initial magnetic
moment as implemented in CASTEP. The anionic and cationic clusters in Chapter 6
were simulated using the charge parameter implemented in CASTEP.
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The isolated cluster searches with AIRSS in Chapter 6 used a supercell measuring
14×14×14 Å, which was determined using convergence tests to minimize any interac-
tions between the periodic supercell images. For the calculations involving graphene,
the interlayer separation was 14 Å, again chosen to minimize interactions between
supercell images. For initial structure searches using the AIRSS and USPEX methods,
the Brillouin zone was sampled at the Γ-point only, while final refinements of the
graphene supercells used a Monkhorst-Pack sampling scheme [351], with a 3×3×1
grid following the method in Ref. 229.

A plane-wave cut-off-energy of 400 eV was used for the valence electrons in the
structure searches, while the final refinements and energy calculations used a cut-off
energy of 550 eV. An exception is the hybrid functional analysis of Cu clusters (Fig. 6.9),
which required the use of norm-conserving rather than ultrasoft pseudopotentials, and
so a larger cut-off energy of 900 eV was employed. Pseudopotentials are designed
to approximate the complex interactions caused by the core electrons, under the
assumption that only the valence electrons are chemically active.

Geometry optimizations were carried out using either a two-point steepest descent
method (TPSD) or the quasi-Newton BFGS method as implemented in CASTEP. In all
cases the systems were relaxed until the maximum force on all atoms was less than
0.01 eV Å-1 and the maximum atom displacement between optimization steps was less
than 0.001 Å.

The adsorption energies of the copper adatom on graphene oxide (Chapter 5) were
calculated according to the following expression:

Eads = ECu/GO − (ECu + nCEC + nOEO) (D.5)

where ECu/GO is the energy of the optimized copper–graphene (oxide) system, ECu

is the energy of an isolated copper atom, nC is the number of carbon atoms in the
graphene supercell, and EC is the energy of a carbon atom in graphene. The number
of oxygen atoms is nO, and EO is calculated from the energy of an isolated oxygen
molecule.
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