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CHAPTER 1 

 

An Introduction to Computational Methods for 
Enhanced Sampling Dynamics 

 

PROLOGUE  

The fundamental laws necessary for the mathematical treatment of a 

large part of physics and the whole of chemistry are thus completely 

known, and the difficulty lies only in the fact that application of these 

laws leads to equations that are too complex to be solved.   

Paul A. M. Dirac (attributed) 

 

Theoretical chemistry owes its existence almost entirely to modern physics, which 

recursively owes its existence to chemistry.  Before people observed that clouds of 

hydrogen atoms absorbed electromagnetic radiation in an odd, discrete pattern 

(among other interesting phenomena), physics was considered almost a dead science.  

The discovery that these lines could be explained by the newly emerging quantum 

mechanics propelled physics to new heights, and simultaneously gave chemistry the 

beginnings of its now universally recognized fundamental underpinnings.  Given this 

fact, I like to think that Dirac’s words were prophetic.  We now do routinely solve 

these equations, and other ones Gibbs might be more familiar with, with a degree of 

accuracy that might impress even the likes ones of the great scientists of the 20
th

 

century, Paul A. M. Dirac. 

1.1 BASIC OVERVIEW OF THEORETICAL CHEMISTRY  

The practice of theoretical chemistry is an important part of modern chemical 

research because the field has demonstrated its ability to make predictions,
1-6

 to 
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resolve disagreements,
7-14

 and to determine or estimate results.
15-18

   Advancements in 

theoretical chemistry are also important research efforts in themselves because of the 

potential for impacting important areas of human understanding, such as protein 

folding.
19

   Like any other scientific discipline, theoretical chemistry can be 

subdivided using a variety of classification schemes.  One important way to divide 

this field is between qualitative and quantitative theories.  For example, qualitative 

models that serve as a guide to understanding physical phenomena are useful for a 

variety of reasons.  They provide insight, which can guide research activities, but also 

serve to define the language scientists use to communicate their research.  For 

example, even though bond hybridization has not been used for decades among 

quantitative practitioners of theoretical chemistry, it is still one of the most basic 

bonding models taught to young scientists – from high school to graduate level 

chemistry.  The power of this theory is now purely qualitative; it is an important way 

of communicating results for a large part of the chemical literature.  More commonly 

used by contemporary theoretical chemists, though, are theories designed to produce 

an accurate answer to a quantitative problem.  Quantitative theories are now generally 

the preferred approach, firstly, because quantitative problems can be expressed most 

easily in mathematics (which is the natural language of a theoretical science), and 

ultimately as computer programs.  But it is also true that quantitative theories are 

favored because oftentimes more qualitative theories introduce misleading 

uncertainty.  Problems in chemistry are notoriously sensitive to approximate 

treatments. Small differences in the value of the energy of a system, for example, 

might correspond to dramatic differences in the observed structure.  To be most 
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useful, theoretical methods must be able to produce answers with “chemical 

accuracy”
20

 (a few kcal mol
-1

) or even “spectroscopic accuracy”
21

 (a few cm
-1

).  

Striving to achieve such results, two separate
7, 22

 (increasingly compatible) 

approaches to theoretically solving quantitative chemical problems now exist: the 

quantum and classical approaches. 

1.1.1 Quantitative Theories   

In the first of these approaches, the quantum approach,
22, 23

 problems are solved 

by describing the interactions between nuclei and electrons, the very things which 

determine the behavior of chemical systems. Strictly speaking, this method 

approaches chemical problems using the most appropriate tool for the job – by 

calculating an approximate solution to a molecule’s Schrödinger equation (this, of 

course, glosses over differences between wavefunction methods and density 

functional methods, semi-empirical methods and ab initio methods, variational and 

nonvariational methods, etc.) 
24

  Information about wavefunctions, electron densities, 

energy levels, vibrational and rotational structure of molecules, and accurate 

predictions for molecular geometry are provided by such treatment.  These data can 

be of great help in interpreting spectra, for example, since quantum mechanics can 

tell a great deal about the state of individual (or only weakly interacting) molecules.   

In the second approach, the classical approach,
7
 molecular systems are treated as 

billiard balls connected by springs.  The system is designed so as to hold each 

molecule into a desirable shape which is generally assumed to bear some relation to 

an experimentally observed geometry.  Before computers, similar simulations were 

performed using real mechanical molecular models.
25

  However, methods that use the 
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classical approach are fraught with all the dangers inherent in using an empirical 

model to solve a problem.  The results are heavily dependant on the quality of the 

model, and the quality varies greatly from system to system.  Because of such 

concerns, the quantum approach is generally used in each technically feasible 

opportunity.   

Unfortunately, the quantum approach requires more computer resources than is 

generally practically available if the size of the molecule of interest is too large or, 

certainly, if the behavior of large collections of relatively strongly-interacting 

molecules is to be studied.  In this situation, which is typically the domain of 

statistical mechanics and thermodynamics, the classical approximation is 

overwhelmingly favored – if for no other reason than the fact that it is the only 

approach practically possible when using a realistic system is required for the 

analysis.  Of course, quantum molecular dynamics has recently begun to bridge this 

gap, and further improvements are topics of active research.
26-28

  Also, sometimes 

quantum problems can be reformulated to be solved using molecular dynamics or 

Monte Carlo methods using a classical potential, as in path integral techniques.
29, 30

  

Still, results from the classical approach can be used to calculate diffusion times, 

thermodynamic information, paths, and generally any other measurement where 

complete knowledge of the trajectory of the complete system is sufficient 

information.
31, 32

  The work presented in the following chapters generally advances 

the classical approach. 
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1.1.2 Molecular Dynamics and Monte Carlo – Classical dynamics applied to 

chemistry 

The classical approach mentioned above is deemed classical because the particles 

can be assumed to have simultaneously known locations and momentum, with a 

potential energy generally defined to be: 

  

V(
r 
X ) =

Aij

rij
12

Bij

rij
6 +

eqiq j

4 0rij

 

 
  

 

 
  +

overatompairs

kn (rij rn )2

overbondpairs

+ kn ( ijk n )2

overanglepairs

+ Kn (1+ cos(m( nm 0m ) m )).
overtorsiontermsovertorsionpairs

 

The first term of this equation describes the van der Waals and electrostatic 

potentials.  The van der Waals interaction is represented by a (12-6) Lennard Jones 

potential,
33

 with A and B acting as the required constants, provided by the designer of 

the potential energy function, and r is the distance between the atom pairs.  In the 

electrostatic term, the q’s are the partial-charge of the atom which is also provided by 

the designer of the potential energy function.  The next two terms represent the 

springs in the ball and spring model.  The first of these represents the spring holding 

the molecule’s bond in shape, the second acts to hold the angles into shape, and the 

final term (which is not strictly harmonic, but does have a similar shape) holds the 

dihedral angles fixed in their proper shape.
7
  Each of these terms use constants 

provided by the designer of the potential energy function, as well.  Such 

parameterized potential energy functions are usually called “force fields”
34

 in the 

literature of this field.  This force field is used (at least when using this approach to 
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calculate statistical and thermodynamic quantities) to generate a collection of states 

(or particular examples of the system) that belong to a desired ensemble.  Among the 

many ensembles available to be considered, the canonical ensemble (NVT) and the 

isothermal-isobaric ensemble (NPT) are most commonly encountered in 

computational chemistry.  There are (basically) two competing methods available to 

generate such collections.  In the first technique, Monte Carlo,
35

 some version of 

Metropolis importance sampling
36

 is generally employed.  This method, simply 

explained, takes an initial state, and then performs a trial move.  The trial move is 

accepted or rejected depending (at least in the canonical ensemble) solely on the 

energy difference between the two states.  If the energy of the state after the trial 

move is lower than the previous state’s energy, then the move is always accepted.  If 

the energy is higher, the state is accepted with a probability corresponding to the 

Boltzmann distribution: 

( E) = exp( E), 

where E is the difference in energy between the two states,  is (kT)
-1

, the 

Boltzmann constant is k, and T is the temperature.  This method has several 

advantages, not the least of which is computational.  Monte Carlo methods are among 

the easiest methods to parallelize, and computer scientists describe it as an 

“embarrassingly parallel”
35

 computational problem.  However, despite its advantages, 

it is deficient in certain chemical problems, most notably those requiring knowledge 

of a trajectory, because the “path” a Monte Carlo calculation takes is typically not 

physical. 
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Molecular dynamics, on the other hand, takes a system from one state to the next 

following Newton’s laws of motion.  This can be accomplished using a variety of 

algorithms; one common example is the velocity Verlet algorithm.
7
  Molecular 

dynamics trajectories are suitable replacements for most applications of Monte Carlo, 

plus they represent physical paths.  However, since the path the simulation takes must 

be physical, molecular dynamics is generally considered to have a few disadvantages.  

First, it is much more difficult to make a MD calculation parallel.  Efforts that 

improve accuracy and computational efficiency have been taken to improve 

electrostatic potential calculations.
37

  More importantly, molecular dynamics 

simulations undersample some molecular motions and have been shown to require 

more computational effort to achieve results that converge as well as comparable 

Monte Carlo simulations.
38, 39

  The methods described in the next section were 

designed, in part, to provide researchers methods to improve calculations based on 

molecular dynamics. 

1.2 MD METHODS TO IMPROVE “SAMPLING” 

It has been shown that molecular dynamics converges 2-3 times slower than 

Monte Carlo calculations do when estimating structural and thermodynamic 

properties of a typical condensed phase system.
39

  Though the previous fact is perhaps 

somewhat controversial, it is true that a common complaint found in the literature is 

that the MD method provides poor “sampling.”  That is to say that, even though a 

system might be assumed to be ergodic (which is to say that all areas of the system 

can be sampled given enough time), typical molecular dynamics simulations only 

slowly visit all accessible areas.  The systems will explore a single energy “well” for 
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a long period of time, at least at temperatures and pressures of usual chemical interest, 

with only rare transitions to another configuration.  To address this particular 

complaint, a variety of methods have been proposed seeking to improve the 

performance of molecular dynamics.  In addition, some tasks, such as finding 

minima, take considerable time, regardless of the method, and related efforts have 

been made to improve their performance.  One of the simplest improvements that can 

be made to either molecular dynamics or Monte Carlo simulations is simulated 

annealing,
36, 40

 which aids in finding minima.  Other techniques designed to improve 

“sampling” include locally enhanced sampling (LES),
41, 42

 collisional LES (cLES),
43

 

replica exchange,
44

 and other less frequently used ideas.
45-48

  These methods will be 

introduced briefly below.   

1.2.1 Simulated annealing 

Simulated annealing is an approach taken to optimize a quantity, often molecular 

geometry when applied to chemical problems, and can be coupled with either 

molecular dynamics,
49-51

 Monte Carlo,
52-54

 or other techniques capable of generating 

a suitable ensemble.
36

  The method is quite general, and has been used to study a wide 

variety of situations where a “cost function” can be defined.  The cost function, 

analogous to the energy in chemical problems, is a function for which extrema are 

sought.  Examples of other problems simulated annealing is well suited for include 

the “traveling salesman” problem, optimally designing electrical circuits, 

reconstructing images and sounds, and many others.
36

 

Simulated annealing has been proven to be an effective optimization technique in 

certain circumstances
55

 and its validity can be rather easily understood using a few 
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concepts known to chemists.   In its initial state, a system is located in some well 

inside the system’s potential energy surface.  From its initial position, subsequent 

heating increases the probability that the system will move to ever higher energies, 

until the rugged features of the potential energy surface no longer constrain it.  

Finally, cooling increases the probability that the system will lose energy to the 

surroundings, and it will once again become trapped inside a well in the potential 

energy surface.  The Boltzmann distribution makes it seem reasonable that the system 

will have a better chance of becoming trapped in a deeper well, and repeated 

applications of the heating/cooling cycle make it seem even more reasonable.  Of 

course, control over the convergence of simulated annealing methods requires careful 

study of the “cooling schedule.”
56

 

Simulated annealing has been used widely as an optimization technique for 

chemical systems.  For example, it is still a widely popular method for 

crystallographic and NMR structure refinement
51, 53

 and is used as a geometry 

optimization technique for both small molecules
50

 and peptides.
54

  It can also be used 

to optimize mathematical functions, for example, solving  the Ginzberg-Landau 

equations for a magnetic system. 
52

 

1.2.2 “Mean Field” Methods - Locally Enhanced Sampling 

Locally enhanced sampling (LES) is a simulation method developed in 1990
41

 

and initially designed to provide increased efficiency in observing escape times and 

trajectories of a gas molecule trapped inside a globular protein.  It belongs to a wider 

family of techniques called “mean-field” methods
42

 that includes the  multiple-copy 

simultaneous search (MCSS) algorithm,
57

 which is used in drug design.  In addition, a 
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version of LES with improved handling of collisions was also developed, which 

improved the estimated escape times, as well as other properties of the simulation.
43

  

This method, called cLES, or collisional LES, detects collisions between atoms and 

handles them as a special case.  LES was inspired by an earlier method, called 

trajectory bundles, designed to study the vibrational modes of small molecules.
58

 

LES, simply described, is a simulation technique where the system under study is 

divided into two parts.  The first part, a small part of the system of interest to the 

researcher, is copied several times.  In the original LES application, the copied part 

was the diffusing gas particles.  None of the copies interact with each other, but 

instead interact normally with the remainder of the system, called the bath.  The bath 

in the original example was the protein.  The particles in the bath, of course, interact 

normally with each other, but interact with the average structure of each of the copied 

particles.  The average interaction is both the source of the advantages, and as was 

discovered, the source of many undesirable properties in “mean-field” simulations. 

LES has been applied beyond its initial role, and is widely touted as a method that 

improves the performance of molecular dynamics in searching for low energy states 

of a system
59-61

 and in finding free-energy differences,
62

 besides the original gas 

diffusion example.  It has also been shown to be useful in understanding the effects of 

a mutation in myoglobin.
63

  Each of these tasks use the brute force approach offered 

by pure molecular dynamics and represent studies where LES has had mixed success.   

Because of its relative popularity, LES has been implemented in the majority of 

commercial and high-quality academic molecular dynamics programs including 

CHARMM,
64, 65

 AMBER,
66

 and NAMD.
67

  It is used, however, despite several issues 
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that have been know almost since the method was invented.  Among the issues that 

the initial presentation did not address include the “temperature-disparity problem,”
68-

70
 which is the observation that the temperature of the copied portion of the 

simulation is always hotter than the bath; the related cooling problem,
69

 which is 

observed when an excited atom in the bath fails to cool as it would be expected to; 

and the potential energy surface problem,
71

  so named because minima on the LES 

potential energy surface do not always correspond to minima on the real potential 

energy surface. 

1.2.3 Replica exchange 

The replica-exchange molecular dynamics method, belongs to a superset of 

methods called “generalized ensemble” methods, of which simulated tempering and 

the multicanonical algorithm are members.
44

  Replica exchange, in particular, has 

become a popular tool for finding free energy minima for peptides and for calculating 

free-energy differences and other thermodynamic quantities. Replica exchange has 

been of particular use to the study of protein folding.  Though much younger than 

simulated annealing, the replica exchange method has been implemented in most of 

the popular molecular dynamics packages, including CHARMM,
64, 65

 AMBER,
66

 and 

NAMD.
67

 

Replica exchange works by making several copies of the entire system, but 

simulating each at a different temperature, ranging from very cold to very hot.  The 

copies do not directly interact.  One system is kept at each of the temperatures.  At a 

predefined interval, the simulation attempts to exchange the temperature of one of the 

systems with another (by exchanging atomic velocities), and the temperature change 
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is accepted or rejected according to a Metropolis-like probability.  Changes between 

systems closer in temperature are more likely than those further apart, so generally 

only exchanges between neighboring temperatures are attempted.  Simulating in this 

way has been shown to improve the rate of conformational sampling, and since the 

method was formulated to allow obtaining thermodynamic quantities, it has been so 

used. 

In the first published work involving replica exchange molecular dynamics,
44

 a 

pentapeptide called met-enkephalin was studied.  This work demonstrated that the 

method evenly sampled a wide range of potential energy values over the course of the 

simulation, whereas conventional molecular dynamics sampled approximately the 

same range, but with gaps.  Replica exchange also sampled a greater variety of 

torsion angle conformations.  Because of its sampling ability is has been applied to 

measuring free energy differences using umbrella sampling,
72

 and also to measure the 

free energy of folding for a model peptide.
73

  But because of its great ability to 

explore conformational space, it has been used most often to search pathways 

important to protein folding.
74-76

 

1.2.4 Other interesting methods 

In addition to the widely used methods discussed above, there are many other 

ideas that deserve attention.  Despite their relatively less frequent use, many methods 

are clever attempts to improve sampling, and can provide insight for future efforts.  

Among these are included the diffusion equation method,
47

 the Gaussian phase packet 

method,
46

 SWARM-MD,
45

 and a variable transformation method.
48

  In first method 

listed, the diffusion equation method, the function to be optimized (generally the 
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potential energy function of the system) is transformed in such a way as to introduce 

a smoothing parameter, which reduces the depth of the least “important” shallower 

wells.  The minima are found using the transformed function, and then returned to 

their original form.  In the Gaussian phase packet method, dynamics were derived for 

the case that atoms are not located at fixed points, but rather somewhere inside a 

Gaussian distribution.  The averaged nature of the interactions between particles 

smoothed potential energy barriers.  SWARM-MD, on the other hand, allows that 

important parts of the system can be copied.  Then the simulation proceeds a flocking 

algorithm which causes the copied parts to mimic the swarm-like way birds fly which 

causes the algorithm to sample parts of the energy surface it would not ordinarily 

explore.  Finally,  Zhu, Tuckerman, Samuelson, and Martyna
48

 designed a clever 

variable transformation that when applied to the canonical partition function created 

an effective potential energy function that was much smoother than the original.  The 

method was shown to sample configurations of relatively complicated molecules 

effectively in a manner that preserved all of the properties desirable in a molecular 

dynamics calculation.  The approach, though clever and deserving of further study, 

proved unwieldy. 

1.3 OUR CONTRIBUTIONS TO THE FIELD 

The three main methods described above:  simulated annealing, “mean field” 

methods, and replica exchange are each common methods used to study systems of 

chemical interest using molecular dynamics, and each has been addressed by this 

group. This dissertation addresses simulated annealing and the “mean field” methods 

directly, in particular “mean field” methods are heavily addressed in the following 
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chapters.  We derive mean field equations to illuminate the limitations of LES and 

correct them. First, approximations to our equations are shown to provide an alternate 

derivation of LES, the most used “mean-field” method, and thus clarify several of its 

limitations.  We also implemented the equations by designing a computational 

method to further illuminate (and correct) limitations of LES.  In the final chapter, we 

demonstrate a method that uses variable pressure, along with temperature, to conduct 

simulated annealing to find low energy structures of model polymer systems. 

All of the work described in Chapters 2-4 was performed using “folly”, a suite of 

programs developed by our group.   Providing a complete molecular dynamics 

implementation, folly reads the initial state of the system, integrates the appropriate 

equations of motion, and provides output consisting of the details of the motion.  

Using the AMBER 94 and 99 force fields, folly implements a large number of the 

features in popular MD programs including the velocity Verlet integration algorithm, 

Ewald sums, the generalized born/surface area (GB/SA) implicit solvent model, the 

SHAKE algorithm for maintaining constant bond distances, and the Nosé-Hoover 

chain thermostat.  Each of these features was not only implemented with conventional 

MD, but also in our implementation of LES and our EXACT approximation (the 

ensembles extracted by atomic coordinate transformation approximation).  Extending 

some of these methods to be used in the LES and EXACT approximations is partially 

the subject of Chapter Three.
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CHAPTER 2 

 

Rigorous classical-mechanical derivation of a 
multiple-copy algorithm for sampling statistical 
mechanical ensembles 
 

 

2.1 INTRODUCTION 

More than ten years ago, Elber and Karplus presented a multiple-copy molecular 

dynamics method designed to accelerate a simulation’s convergence to a global 

energy minimum.
1
 The method, called locally enhanced sampling LES, is based on 

creating a set of non-interacting copies of a small subsystem of primary interest and 

allowing a larger subsystem, the “bath,” to interact with each copy of the sub-system. 

The force each copied atom experiences from the bath is the total force the 

corresponding real atom would experience. The bath atoms, on the other hand, 

experience the average of the forces due to the copied atoms. As a result, energy 

barriers that copies of the subsystem must overcome to avoid being trapped in local 

energy minima are decreased compared to those in a conventional molecular 

dynamics simulation. LES and related mean field methods, have been used 

successfully in a variety of optimization problems,
1-16

 but they suffer limitations 

common to other ad hoc geometry optimization methods:
17-25

 since the underlying 

energy surface and/or its sampling is modified, the methods do not generate 

trajectories that correspond to any of the familiar statistical mechanical ensembles. 

So, phase-space averaging over these trajectories is not useful in a statistical 
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mechanical sense and any information obtained in this manner (free energy 

differences, radial distribution functions, or even temperatures) must be used with 

caution. It should come as no surprise, then, that data acquired from LES has been 

found to violate fundamental principles, including the equipartition of energy 

theorem.
26, 27

 It has been claimed
26-28 that this manifests itself as the “temperature 

disparity problem,” which is a failure of the subsystem and bath temperatures to reach 

the same equilibrium value. On a separate issue, Stultz and Karplus have provided a 

proof that minima located using LES are not necessarily minima on the original 

energy surface.
29

  

Although optimization methods based on mean field theory show great practical 

utility,
1-16, 30-32

 current multiple-copy implementations are clearly flawed. The current 

contribution was inspired by LES, but our approach is intended to improve phase-

space sampling by using a rigorously derived method, so our approximations are well 

known and may be controlled. By controlling the approximations, we hope to 

generate trajectories that more closely approximate trajectories expected of systems 

belonging to one of the well-studied statistical mechanical ensembles. Our starting 

point is fundamentally different from that of Elber and Karplus, but it is nonetheless 

instructive to reiterate briefly their rationale for LES.  Next we describe known 

drawbacks of LES and attempts to remedy them. Finally, we derive our generalization 

of multiple-copy methods, present a numerical test, and relate our algorithm to 

existing multiple-copy methods. 
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2.2 CONVENTIONAL MULTIPLE-COPY MOLECULAR DYNAMICS 

 

As it was originally presented,
1
 LES flows from the assumption that the classical 

phase-space density can be written as  

  

r 
X ,t( ) = s

r 
X s,t( ) b

r 
X b ,t( ),          (2.1) 

where s is the density of the subsystem to be copied, b  is the density of the bath, 

and   
r 
X  is the vector that indicates the system’s location in phase space. It is also 

assumed that the bath’s density can be written as a single delta function:  

  
b

r 
X ,t( ) =

r 
X b t( )( ),                   (2.2) 

while the copied subsystem’s density can be taken to be a “swarm” of delta functions, 

such as 

  
s

r 
X s,t( ) = wsk

r 
X s t( )( ).

k=1

C

               (2.3) 

Equation 2.3 is a construct describing the positions in phase space of the various 

copies, weighted bywsk . In LES, the weights are taken to be 1C , where C is the 

number of copies. Requiring that this form of the phase-space density satisfies 

Hamilton’s equations of motion for ensemble averages of the individual particles and 

momenta derived from the Liouville equation
33, 34 gives analogous differential 

equations describing motions of the bath atoms and the copied system atoms:  

˙ q i,k =
Hk

pi,k

,                          (2.4a) 

˙ p i,k =
Hk

qi,k

,                        (2.4b) 
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˙ Q i = wk

Hk

Pik=1

C

,                   (2.4c) 

˙ P i = wk

Hk

Qik=1

C

.                 (2.4d) 

Here, lower case variables refer to the copied subsystem and uppercase variables refer 

to the “bath.” The i refers to the coordinate index, while k indicates the copy. The 

chosen form for the phase-space density is never rigorously justified, but rather is 

rationalized by analogy to the time-dependent Hartree (TDH) approximation for 

quantum mechanical wave functions. This analogy was previously used to obtain a 

similar, rigorous method intended for small molecules,
35

 after taking the quantum 

expression to the classical limit. The original method is rigorous because the entire 

small system is replicated and “trajectory bundles” are simulated, whereas LES 

replicates only a small part of the system. Although the quantum mechanical analogy 

is very clever and insightful, it provides limited prospects for improving approximate 

multiple-copy simulation methods and has left many workers wondering exactly how 

the approximation alters the dynamics.  

To understand and resolve the limitations and uncertainties inherent in LES, 

subsequent workers have tried to put multiple-copy methods on a more stable 

foundation. Most notably, Zheng and Zheng
28 claim a derivation of LES by starting 

with copies of the entire system. Then, they perform a unitary transformation of 

coordinates for particles of the bath and integrate out of the phase-space density all of 

the transformed variables except for those corresponding to the mean of the bath’s 

coordinates. The transformation employed was of the form  
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Qi =
1

n
Qi,k

k=1

C 

 
 

 

 
 ,                  (2.5a) 

Pi =
1

n
Pi,k

k=1

C 

 
 

 

 
 ,                   (2.5b) 

 Q i,l =
1

n
Qi,1 + cl ,kQi,k

k= 2

C 

 
 

 

 
 ,     (2.5c) 

 P i,l =
1

n
Pi,1 + cl ,kPi,k

k= 2

C 

 
 

 

 
 ,      (2.5d) 

where we refer to Qi{ }
i=1

`N
 and Pi{ }

i=1

`N
 as the ‘‘major ’’ variables,  Q i,l{ }

i=1,l= 2

`N ,C
 and 

 P i,l{ }
i=1,l= 2

`N ,C
 as the “minor” variables, and ci, j{ } are the transform coefficients. The 

major variables correspond to the average position of the bath coordinates for all of 

the copies, and the minor variables can be viewed as an orthogonal set of vectors that 

describe the fine details of the dynamics. There are, of course, constraints that define 

the transformation. Not only must the coefficients generate an orthogonal 

transformation, it is also convenient to normalize them such that  

1+ cn,kcm,k = C m,n
k= 2

C

 

with the additional constraint that  

1+ cn,k
k= 2

C

= 0 . 

In their work, Zheng and Zheng used a probability density appropriate for the 

canonical ensemble and only considered the special case of a harmonic potential 

energy function. After transforming and integrating out the minor variables, their 

result seemed to imply that by choosing the value of n used in the transformation 
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above, the temperature disparity problem could be solved. The choice of n = C  

makes the transformation canonical, which when applied to the arguments in 

references 26 and 27, the authors felt, would correct the equipartition problem for the 

harmonic potential considered.  

To investigate the general temperature disparity problem, an originator of LES 

showed that LES conserves the following Hamiltonian:
27  

HLES =
Pi
2

2mi

+ V Qi,Qj( ) +
1

C

pi,k
2

2mi

+ V qi,k,q j ,k( ) + V qi,k,Qj( )
j=1

N

i=1

S

i> j=1

S

i=1

S 

 
  

 

 
  

k=1

C

i> j=1

N

i=1

N

,   

(2.6) 

where S is the number of copied particles, C is the number of times the particles are 

copied, and N is the number of uncopied “bath” particles. Lowercase variables refer 

to the copied particles, while uppercase variables indicate the “bath.”  Dynamical 

information is obtained by integrating the equations  

˙ q i,k = C
HLES

pi,k

,                          (2.7a) 

˙ p i,k = C
HLES

qi,k

,                        (2.7b) 

˙ Q i =
HLES

Pi

,                              (2.7c) 

˙ P i =
HLES

Qi

.                            (2.7d) 

 

This is an approximation to the dynamics of C systems.  

Straub and Karplus, who originally introduced the Lagrangian generator of this 

Hamiltonian, propose energy scaling as a solution for the temperature disparity 



 28 

problem.
26

  Ulitsky and Elber derived the Hamiltonian given above
27 and noted that 

the TDH approximation does not follow the classical virial theorem and therefore 

violates energy equipartitioning, and claimed that this fault is the source of some of 

the more apparent limitations of LES. To remedy this, Ulitsky and Elber appealed to 

the Boltzmann equation of transport theory and created an algorithm that monitored 

“collisions” between atoms of copied particles and the bath, in analogy to the 

collision integral. Then, they modified their dynamics to treat the collision exactly, 

instead of using the LES approximation. With this “collisional” LES (cLES) scheme, 

they achieved improved behavior in the dynamics of systems studied.
27, 31

 

2.3 RIGOROUS ALGORITHM FOR MULTIPLE-COPY DYNAMICS  
 

Inspired by the insightful approach of Zheng and Zheng,
28

 we decided to take an 

exact expression for an ensemble of C independent copies of a system, and transform 

it to obtain an exact multiple-copy dynamics for systems with a more general 

potential energy function than the harmonic form considered by Zheng and Zheng. 

Using a transform similar to the one given above makes this possible. The key is to 

realize that the reverse transform has the form  

Qi,1 =
C

n
Qi +  Q i,k

k= 2

C 

 
 

 

 
 ,                 (2.8a) 

Pi,1 =
C

n
Pi +  P i,k

k= 2

C 

 
 

 

 
 ,                  (2.8b) 

Qi,k =
C

n
Qi + cl,k  Q i,l

l= 2

C 

 
 

 

 
 ,             (2.8c) 

Pi,k =
C

n
Pi + cl,k  P i,l

l= 2

C 

 
 

 

 
 ,              (2.8d) 
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which can then be applied to the exact Hamiltonian of C noninteracting copies of a 

system. This can be done by first writing the Hamiltonian of a collection of C 

equivalent copies of the same system assuming a two-body form for the potential 

energy:  

                                  

H =
pi,k
2

2mii=1

S

+ V qi,k,q j,k( )
i> j=1

S 

 
  

k=1

C

+ V qi,k,Qj ,k( )
j=1

N

i=1

S

+
Pi,k
2

2Mii=1

N
  

+ V Qi,k,Qj ,k( )
i> j=1

N  

 
                        (2.9) 

Here the first two terms are the energy due to the copied subsystem, the middle term 

is the interaction energy between the copies and the bath, and the final two terms are 

the energy due to the bath. Applying the transform yields  

 
 
 

                      

˜ H =
pi,k

2

2mik=1

C

i=1

S

+ qi,k,q j,k( )
k=1

C

i> j=1

S

+
n2Pj

2

2M jCj=1

N

+ V
C

n
Qi +  Q i,k

k= 2

C 

 
 

 

 
 

 

 
  

k=1

C

i> j=1

N

,
C

n
Qj +  Q j,k

k= 2

C 

 
 

 

 
 
 

 
  

 

+
n2  P j ,k

2

2M jCk= 2

C

j=1

C

+ V q j,k,
C

n
Qi +  Q i,k

k= 2

C 

 
 

 

 
 

 

 
  

 

 
  

k=1

C

j=1

S

i=1

N

. (2.10) 

 

Here, again, the first two terms are the energy of the copied particles. The transform 

has split the bath energy into three terms in Eq. 2.10: the kinetic energy of the major 

variables, the potential energy due to the bath, and the kinetic energy due to the minor 

variables. The last term in Eq. 2.10 is the interaction energy between the copies and 

the bath.  



 30 

Obviously, the original Hamiltonian can be used to generate equations of motion, 

which can be integrated to generate the desired trajectories. The transformed 

Hamiltonian’s equations of motions, though, are more interesting. The 

untransformed, “copied” part is just the same as in the untransformed representation, 

but the “bath” part is more complex.  For example, the time derivative,  

                                              ˙ Q i =
1

n
˙ Q i,k

k=1

C 

 
 

 

 
 , 

can be rewritten as  

                                             ˙ Q i =
1

n

˜ H 

Pi

Pi

Pi,k

 

 
 

 

 
 

k=1

C

, 

which can finally be reduced to  

˙ Q i =
C

n2

˜ H 

Pi

.                (2.11) 

Given all of this, the entire set of equations of motion can be rewritten as  

˙ q i,k =
˜ H 

pi,k

,                   (2.12a) 

˙ p i,k =
˜ H 

qi,k

,                 (2.12b) 

˙ Q i =
C

n2

˜ H 

Pi

,                  (2.12c) 

˙ P i =
C

n2

˜ H 

Qi

,                 (2.12d) 

˙  Q i,k =
C

n2

˜ H 
 P i,k
,                (2.12e) 

˙  P i,k =
C

n2

˜ H 
 Q i,k

.              (2.12f) 
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These equations are the exact equations of motion in the transformed representation. 

It should be noted that if n = C , we have a canonical transformation, as Zheng and 

Zheng accomplished for harmonic potentials. But if n = C , the point transform 

generated yields equations of motion that are very similar to the LES equations.  

Now, if all of the bath particles start from the same initial positions with the same 

velocities in all of the copies and all of the minor variables are ignored (assumed to 

vanish), the LES equations of motion are recovered. We claim that all of the error 

present in this sort of multiple-copy method comes from this holonomic constraint 

and that previously noted faults flow from this idea. Numerical simulations presented 

in Fig. 2.1 support this view for the temperature disparity problem. The flattest curve 

in Fig. 2.1 shows the temperature of an argon bath as a function of time and the curve 

that oscillates around it is the temperature of a single argon atom calculated using 

exact dynamics. The top, bold curve is the temperature of a single argon atom, 

represented by four copies, in the LES approximation. Clearly, the LES particle’s 

temperature does not relax to equilibrium as it should, and its fluctuations are much 

larger than in exact dynamics. Our algorithm can be used to generate each curve in 

Fig. 2.1, including those intermediate between LES and exact dynamics. These curves 

were generated using a scheme practically similar to cLES, but with a fundamental 

difference in implementation and basis. In cLES, “collisions” were detected by 

physical proximity between a copied particle and a bath particle, whereas the 

correction presented here calculates the “minor” variables’ forces (the  ˙ P ’s from 

above), which are neglected in both LES and cLES. Our method still ignores these 

forces when they are sufficiently small, but when the force exerted on the minor 
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Figure 2.1. The flattest curve is the temperature as a function of time for a bath of 64 

Ar atoms calculated using molecular dynamics. The curve that oscillates around it is 

the temperature of a single Ar atom relaxing to equilibrium calculated using exact 

molecular dynamics. The bold curve is the temperature of one Ar calculated using the 

LES approximation. The curves between the exact and LES curves were calculated 

using the algorithm presented.  

 

variable is greater than some threshold, the particle is then removed from the bath and 

treated exactly, as if a copied particle. By adjusting the threshold force, the dynamics 

can be scaled from purely LES to exact dynamics, in principle visiting all points in 

between. This allows the computational advantage of LES to be largely maintained, 

while providing a rigorous procedure that leads to improved dynamics. 
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2.4 COMPARISONS WITH CONVENTIONAL MULTIPLE-COPY 
DYNAMICS  

 

As most of the work produced to explain conventional multiple-copy dynamics 

depends on a phase-space density approach
1, 6, 26-28 often involving the Liouville 

equation, further comparisons of our work with previously published methods would 

be helped by casting our work in such a formalism. First, we consider a formal 

representation of the density that satisfies the Liouville equation,
34  

  

r 
X ,t( ) = e

ˆ L t
r 
X ,0( )                     (2.13) 

where ˆ L  is a Liouville operator,  

 
 
 

                                  ˆ L =
H

pi,k qi,k

H

qi,k pi,k

 

 
 

 

 
 

k=1

C

i=1

S

 

    +
H

Pi,k Qi,k

H

Qi,k Pi,k

 

 
 

 

 
 

k=1

C

i=1

N

       (2.14) 

 

and 
  

r 
X ,0( )  is the density at time zero: 

                       
  

r 
X ,0( ) = qi,k qi,k,0( ) pi,k pi,k,0( )

k=1

C

i=1

S 

 
 

 

 
  

Qi,k Qi,k,0( ) Pi,k Pi,k,0( )
k=1

C

i=1

S 

 
 

 

 
 .   (2.15) 

 

Next, we apply the same point coordinate transformation as before to both the 

Liouville operator and the initial probability density. This generates the transformed 

Liouvillian  

             ˆ L =
˜ H 

pi,k qi,k

˜ H 

qi,k pi,k

 

 
 

 

 
 

k=1

C

i=1

S
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    +
C

n2

˜ H 

Pi Qi

˜ H 

Qi Pi

 

 
 

 

 
 

i=1

N 

 
 +

˜ H 
 P i,k  Q i,k

˜ H 
 Q i,k  P i,k

 

 
 

 

 
 

k= 2

C

i=1

N  

 
 .       (2.16) 

 

After applying the Jacobian of the transformation, 
  
J

r 
X ,

r ˜ X ( ) , and assuming that the 

bath’s initial positions and velocities are the same in all of the copies, the transform 

also generates the density
*
,  

            

  

r 
X ,0( ) =

1

J
r 
X ,

r ˜ X ( )
qi,k qi,k,0( ) pi,k pi,k,0( )

k=1

C

i=1

S 

 
 

 

 
  

Qi Qi,0( ) Pi Pi,0( )
i=1

N

 Q i,k( )  P i,k( )
k= 2

C 

 
 

 

 
 .                 (2.17) 

 
 
Thus the exact time-dependent phase-space density in the transformed representation, 

  
˜  

r ˜ X ,t( ), is formed by using the transformed Liouvillian and transformed initial 

densities in the above formal expression. One can then follow the example provided 

in Zheng and Zheng’s work to arrive at a reduced density, 
  
˜   

r ˜ X ,t( ) , that can be used to 

generate LES- type equations of motion. This is simply done by integrating over the 

minor variables  

  

˜   
r ˜ X ,t( ) = d   J

r 
X ,

r ˜ X ( )e ˜ ˆ L t ˜  
r ˜ X ,0( ),                              (2.18) 

where d    is the volume element in the space that the minor variables occupy. Not 

only does this integration directly generate a density that can be used to obtain the 

LES equations of motion, but it also serves to enforce the holonomic constraints that 

were found above to result in LES.  

                                                
*
 This was obtained via the identity (x  x ) (y  y ) = 1

J
(   ) (   ), c.f. in 

CRC Standard Mathematical Tables and Formulae, 30
th
 ed. (CRC Press, Boca Raton, 

FL, 1996). 
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The approach presented to generate a multiple-copy method also sheds some light 

onto the violation of energy equipartitioning
26 or equivalently, the incorrect virial 

given by LES.
27

 One of the well known results of classical mechanics is that the time 

or assuming ergodicity, the ensemble average of the kinetic energy can be expressed 

in the following way:
36  

T = 1
2 qiFi

i

,
  

˜   
r ˜ X ,t( ) = d   J

r 
X ,

r ˜ X ( )e ˜ ˆ L t ˜  
r ˜ X ,0( ),        (2.19) 

where A  is the ensemble average of quantity A, and the summation is taken over all 

the degrees of freedom in the system. In the canonical ensemble, this produces the 

familiar result that T = N
2 , where N is the number of degrees of freedom in the 

system,  is 1kT , and it is assumed that the potential diverges on the surface of the 

volume of integration. This assumption corresponds physically to considering a 

bound system. In this special case of a bound system, Ulitsky and Elber showed that 

the virial theorem generates a strange result, T = N +CS( )
2 , when applied.

27
 From this 

expression, it appears that the temperature of the copied subsystem is C times hotter 

than the bath’s. Our approach confirms this result, but demonstrates that this too can 

be traced to a neglect of the minor variables.  

In the canonical ensemble, evaluating qiFi  for a bound system entails solving 

the integral   

qiFi =
1

Z
d dqiqi

H

qi
e H qi ,( ) .                 (2.20) 

Here, Z is the partition function and qi can be any of the coordinates described in this 

paper, be it major, minor, or untransformed. The integral is evaluated most easily by 
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integrating by parts and its exact value is 1 . Therefore, the virial theorem generates 

an average kinetic energy for an ensemble of C systems as simply 

T = 1
2 qi,k

H

qi,kk=1

C

i=1

S
1
2 Qi,k

H

Qi,kk=1

C

i=1

N

=
(SC + NC)

2

 

After making the transformation,  

Qi,k

H

Qi,k

=
C2

n3
Qi + cl ,k  Q i,l

i= 2

C 

 
 

 

 
 

H

Qi

+ cm,k

H
 Q i,mm= 2

C 

 
 

 

 
 , 

and using the result in the virial theorem, the exact result, T = NC +CS( )
2 , is generated. 

However, if the minor variables are ignored, one obtains the result T = N +CS( )
2 .  

So, the problem with the LES virial is simply a counting problem and the average 

kinetic energy takes the Ulitsky-Elber form because of the reduced number of degrees 

of freedom found in LES.  

2.5 CONCLUSIONS 

 

Starting from an ensemble of identical systems and applying a point 

transformation to the coordinates of a large number of “bath” particles generates an 

algorithm for efficiently replicating the dynamics of the ensemble. The 

transformation gives a description of the bath in terms of “major” variables located at 

the average phase-space position of equivalent atoms and a set of “minor” variables 

describing the finer details of the bath dynamics. Numerical tests show that the 

algorithm can recover exact dynamics or give dynamics identical to conventional 

multiple-copy dynamics,
1
 if the minor variables are neglected. If the minor variables 

are included in the dynamics only when the corresponding forces exceed a chosen 
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threshold, results of intermediate accuracy are obtained. Varying the threshold force 

controls the accuracy of the calculation and the computer time required.  

Applying the point transformation to an ensemble of identical systems also opens 

a new perspective on conventional multiple-copy dynamics. First, neglecting 

Hamilton’s equations of motion for the minor variables of the bath gives the 

equations of motion that define LES.
1
 Second, applying the same point 

transformation to the Liouville equation and probability density, followed by 

enforcing the holonomic constraint that the minor variables vanish, gives a 

probability density similar to that assumed for LES. Third, neglecting the minor 

variables gives the same incorrect virial as LES, but including the minor variables 

yields the correct virial for the ensemble. Finally, the success of collisional LES is 

understandable, as cLES includes the minor variable dynamics in an empirical way.  

Since mean field theories such as LES have proven extremely useful for locating 

global minima on complex free energy surfaces,
1-16

 work is currently underway to de- 

velop the algorithm described here into a similar tool. In addition, we are 

investigating the limitations of the algorithm for calculating ensemble average 

properties accurately and quickly.  
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CHAPTER 3 

 

Practical multiple-copy methods for sampling 
classical statistical mechanical ensembles  

 

3.1 INTRODUCTION  

 

Molecular dynamics (MD) is a technique that has found widespread application to 

problems ranging from the purely classical to the purely quantum mechanical,
1, 2

 from 

finding minima on potential energy surfaces to approximating integrals required to 

find statistical mechanical phase-space averages.
2-4

  Despite its widespread use, MD 

easily allows a system to become trapped in shallow, local wells in its potential 

energy surface. Diverse methods have been realized to correct this.
5-13

  Perhaps the 

most accepted, and certainly most widely used of these techniques is simulated 

annealing.
8, 13, 14

  

Another class of techniques used to more efficiently explore the potential energy 

surface are the mean field methods.
9
 Since their early use,

15, 16
 mean field methods 

have been used to generate approximate classical trajectories.  These trajectories have 

been used for a wide variety of purposes, but have generally been employed in four 

areas that require large amounts of computational effort: finding global energy 

minima of complex systems,
17-19

 studying non-equilibrium behavior such as ligand 

diffusion,
20, 21

 increasing sampling during the calculation of a free energy 

difference,
18

 and searching for molecules that bind to an active site.
22-24

 The benefits 

of using mean field methods, and the locally-enhanced sampling (LES) method in 



 43 

particular, are generally thought to overshadow any uncertainties
25-29

 caused by such 

an approximation.  

LES, as it was originally described,
15

 allows a small part of the system of interest 

to be copied several times. Each copy feels the same force that the corresponding real 

particle would feel, while the rest of the system (the uncopied part, or “bath”) feels 

the average of the forces contributed by the copied atoms (the mean field). Thus, the 

force on the bath particles is much the same as it would be in a conventional 

simulation, differing only due to the average nature of the interactions with the 

copies. This interaction force is calculated with a relatively small effort. Of course, 

this rather severe approximation is not particularly accurate in non-equilibrium 

situations or in finding global minima.  Various workers have noted that copied 

particles’ non-equilibrium behavior in the LES approximation wanders far from 

expectations.
26-29

  

In this contribution we develop our previously derived algorithm
25

 into a new 

computational method, called Ensembles EXtracted from Atomic Coordinate 

Transformations (EXACT). The EXACT approximation is rigorously justified by our 

previous work
25

 and generates trajectories for the evaluation of approximate ensemble 

averages, but should not be confused with exact (conventional) molecular dynamics 

(MD). The level of accuracy in the EXACT approximation can be scaled by a user-

defined parameter from a conventional mean field technique, LES, to the 

conventional molecular dynamics of an ensemble of particles. We therefore briefly 

review a key result of our purely classical mechanical approach in the next section. 

Then we derive the equations of motion that generalize our algorithm from 
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approximating the microcanonical ensemble to approximating the canonical 

ensemble, using the Nosé-Hoover Chain method.
30

 Then, we describe the 

computational details of the EXACT approximation. Finally, using tests involving 

Lennard-Jones clusters, we illustrate some advantages our method provides over 

conventional multiple-copy methods and conventional MD.  

3.2 THEORETICAL BACKGROUND  

 

It is amazing that the same result, i.e. the LES equations of motion, can be 

obtained from three widely different starting points. In the original presentation, the 

result was obtained by taking the classical limit of a quantum-mechanical, time-

dependent Hartree self-consistent-field procedure.
16

 Elber and Karplus also obtained 

the LES equations of motion by assuming a particular form for the classical phase-

space density distribution and then integrating this distribution using the Liouville 

equation.
15

  Finally, we obtained
25

 them by replicating the entire system and then 

applying a point transformation to the “bath” coordinates. Our approach generates a 

transformed Hamiltonian in the untransformed “copied” coordinates, a set of “major” 

bath coordinates, and a set of “minor” bath coordinates. The “major” coordinates 

correspond to the coordinates of the bath particles in the LES approximation, and the 

“minor” set of coordinates are simply ignored in LES.  

The point transformation required to obtain our result is defined previously
25, 29

 

and is used to write the system’s Hamiltonian in a new representation:  
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.              (3.1) 

The coefficients of this transformation are needed in the implementation of the 

EXACT approximation, and details for their calculation are provided in 

supplementary material. The first two terms refer to the copied particles (lowercase 

variables). The next three terms in Eq. (3.1) are the kinetic energy of the major 

variables (capitalized unprimed variables), the potential energy due to the bath, and 

the kinetic energy due to the minor variables (capitalized unprimed variables). The 

last term in Eq. (3.1) represents the potential energy of interaction between the copies 

and the bath. This result demonstrates that if all of the bath particles start from the 

same initial positions and velocities in all of the copies and all of the minor variables’ 

coordinates are holonomically constrained to vanish, the LES Hamiltonian is 

recovered.  

3.3 EXTENSION TO THE CONSTANT TEMPERATURE ENSEMBLE  

 

To extend this algorithm to constant temperature ensembles, we use the Nosé-

Hoover Chain method.
30

 The Nose-Hoover Chain (NHC) method for controlling 

temperature in molecular dynamics works by appending to the original Hamiltonian 

an extended system designed to act as a heat bath. This is done, qualitatively, in 

analogy to the procedure used in the derivation of the canonical ensemble’s 

probability density expression. The heat bath is composed of “chains” of particles that 
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are linearly coupled to the original system and each other. One end of the chain 

interacts with the system and the second member of the chain, the second member of 

the chain interacts with the first and the third members, until the other end of the 

chain is reached. Thus, the following Hamiltonian is conserved for NHC chain length 

of 2 and C copies of a system of interest:  

HNHC = H +
p

i ,k
2

2μi
+ kBT D 1,k + 2,k[ ])

i=1

2 

 
 

 

 
 

k=1

C

.                        (3.2) 

In this equation, H is just the Hamiltonian of the system, p
i ,k

 and i,k  are the 

momenta and “position” of the heat bath’s chain particles, and μi is the “mass” of the 

chain particle. The subscripts on p
i ,k

 indicate chain particle i in copy k. The 

temperature of the system is denoted T, kB is Boltzmann’s constant, and D is the 

number of particles to be copied. The exact “non-Hamiltonian”
2, 30, 31

 equations of 

motion then can be written as  
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Here, Kk is the kinetic energy contained in the kth copy. The transform described in 

Section (3.2) can then be applied to Eq. (3.2) to generate the transformed Hamiltonian 

and the equations of motion that control the temperature in the EXACT 

approximation. The transformation leaves the equations of motion for the copied 

particles and the bath momenta ( ˙ Q i ) unchanged from Eq. (3.3).  The forces on the 
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major variables, on the other hand, can be expressed as  

˙ P i =
1

C
˙ P i,k

k=1

C

,                 (3.4) 

which can be rewritten exactly (using the properties of the transformation 

coefficients
25

) as:  
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  .               (3.5) 

Setting the minor variables to zero allows the final term to be ignored and leaves 

the first two terms as the force required to maintain a constant temperature in the 

EXACT approximation. Doing a transformation similar to the one used to derive Eq. 

(3.5) gives the temperature controlled force on the minor variables. Applying the 

holonomic constraint to eliminate the “minor” variables of the bath yields the final 

expression:  
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.             (3.6) 

Equation (3.6) is used in constant temperature implementations of the EXACT 

approximation.  

3.4 COMPUTATIONAL METHODS  

 

The computational goal of this work is to demonstrate the ability of the EXACT 

approximation to provide a more accurate alternative to LES. All calculations 

reported in this work were obtained by using our own implementations of 

conventional MD,
2
 LES,

15
 and the EXACT approximation. We integrated the 

equations of motion using the velocity-Verlet
2, 3, 32

 algorithm with a time step of 1 fs. 
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Instantaneous quantities were calculated using information obtained at each time step, 

while phase space averages (such as the pair distribution function) were obtained by 

using data collected at every tenth time step.  

The system studied was a 64 atom Ar
33

 cluster at 20 ± 5 K, in vacuum. This 

system was selected for its relative simplicity and the fact that it has been studied 

before
28

 in other evaluations of mean field methods. This system was used to test the 

behavior of EXACT as it approached the conventional MD limit. The Ar cluster was 

equilibrated for at least 100 ps. Before data collection, in the constant energy 

formalism the system maintained temperature fluctuations on the order of 5-10 K. 

Constant temperature simulations using the Nosé-Hoover chain
30

 method as described 

in Section 3 were performed to assess the relaxation properties of a hot Ar atom. The 

Lennard-Jones parameters (  = 0.238 kcal mol
1
 and  = 3.405 Å) were obtained from 

previous work on these Ar clusters.
28

  

3.4.1 The “EXACT” approximation Careful inspection of Eq. (3.1) reveals that 

the LES approximation is good only in regions of phase-space where the minor 

variables are small and the corresponding pseudoparticles may be ignored. The 

EXACT approximation accounts for this by using Eq. (3.1) along with an initial 

holonomic constraint to force the minor pseudoparticles to vanish. Along the way the 

forces on the minor pseudoparticles are calculated at each step (while still assuming 

the holonomic constraint) and compared to the force on the corresponding major 

pseudoparticle by calculating the ratio, i,l =
 P i,l

Pi

.  For any coordinate in which the 

ratio, i,l , is greater than a user-defined tolerance, , the associated particle is 

removed from the bath and treated exactly (as a copied particle) for a user-defined 
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number of time steps, and then returned to the bath in a manner that ensures that the 

energy is conserved. In general, smaller values of  produce more exact results. In 

the limit,   0, conventional dynamics for an ensemble of system copies is 

produced. Conversely,    produces LES. Practically, the value of  should be 

chosen to provide balance between improved accuracy (smaller values) and 

computational efficiency (larger values).  

Actually calculating the force on the minor variables requires little more effort 

than an LES simulation would. For momenta independent of spatial coordinates we 

can express the forces as derivatives of the potential energy:  

˜ H 
 Q i,m

=
VB ,k

 Q i,m
+

VX ,k

 Q i,m

 

 
 

 

 
 

k=1

C

                       (3.7) 

In this representation of the force on the minor pseudoparticle, VB,k is the bath-

bath interaction’s potential energy in the kth copy and VX,k is the bath-copy 

interaction potential energy due to the kth copy. Since the bath’s potential energy is 

the same for each copy due to the holonomic constraints, VB,k is the same in each 

copy and is replaced by the common value, VB . Further, Eq. (3.7) can be rewritten:  

˜ H 
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and further simplified (using properties of the transform coefficients) to:  

˜ H 
 Q i,m

=
VX ,1

Qi

+ cm,k

VX ,k

Qik= 2

C

.                                              (3.9) 

Eq. (3.9) indicates that the force on the minor variables is entirely derived from the 

force on the major variables, a quantity calculated even in the LES limit.  
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3.5 COMPUTATIONAL TESTS 

  

Tests were performed to compare the results generated by conventional MD, LES, 

and the EXACT approximation. The tests performed are similar to those used by 

Ulitsky and Elber
28

 to test their cLES method for calculating phase space averages 

and efficiently returning systems to equilibrium. These tests include finding the time 

required for a hot (300 K) Ar atom to cool inside a cluster of Ar atoms at 17 K using 

both constant temperature and constant energy methods, and calculating the pair 

distribution function of an Ar atom in an Ar cluster at 20 K. The Ulitsky-Elber tests 

were well chosen, as they comprise a good sample of the techniques required in 

molecular dynamics including a phase-space average (the distribution function) and 

equilibration properties (Ar cooling).  

3.5.1 Pair distribution function as indicators of enhanced sampling Inspection 

of the Fig. (3.1) illustrates both a major advantage and disadvantage of LES. The 

peaks in the pair distribution function generated by LES are located in the correct 

places, but are clearly too broad and short compared to the MD result. So LES indeed 

samples regions of space forbidden to particles in a conventional MD simulation. The 

EXACT approximation, however, allows some control over the extent of sampling. 

The result with the threshold  = 0.8 generates a clearly improved distribution with a 

taller and narrower initial peak. The initial peak due to the calculation with  = 0.3 is 

nearly indistinguishable from the MD result, differing only by a slight broadening of 

the tails of the peaks.  

3.5.2 Temperature equilibration times The Ar cooling simulation described 

above was performed using conventional MD, LES, and the constant energy  



 51 

Figure 3.1. Normalized density distribution for a single, copied Ar atom in a bath of 

Ar.  Simulations correspond to exact MD (highest, narrowest peak, marked by 

diamonds), LES(shortest, broadest peak, blue), and intermediate cases, generated 

using the EXACT approximation (green and red). 

 

implementation of the EXACT algorithm, and the results are shown in Fig. (3.2a). 

Temperatures were estimated by calculating the instantaneous kinetic energy.
3
 This 

figure illustrates a well-documented flaw in LES, termed the “temperature-disparity 

problem.” This problem manifests itself as the failure of a hot particle to cool 

properly, and has been explained in several ways.
25, 26, 28, 29

 Comparing LES with the 

conventional MD result demonstrates the spectacular nature of the difficulty. 

Whereas Ar cools quickly to the bath temperature using conventional MD, in the LES 

approximation the single particle temperature does not seem to cool at all. The two  
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Figure 3.2. Comparison of temperature vs. time for the bath of 64 Ar atoms (flattest 

curve near the bottom) with the temperature of one Ar atom in exact MD(bold curve 

oscillating about the bath temperature), LES (bold curve at the top showing large 

oscillations), and intermediate cases, generated using the EXACT approximation for 

a) (top) constant energy simulations and b) (bottom) constant temperature 

simulations.  

  

additional curves in the figure illustrate results generated by the EXACT 



 53 

approximation using thresholds =0.8 and 0.3. The threshold of 0.8 is clearly 

intermediate between LES and conventional MD, as it cools to about 50K in the 5 ps 

of simulation time. The result with  = 0.3, though, cools to the temperature of the 

bath within 5 ps and represents a more obvious improvement over LES.  

Figure (3.2b) depicts Ar cooling in a constant temperature scheme. The particle 

treated with LES seems to be slowly approaching equilibrium, however the 

temperature is still about 100K after 5 ps. It was noted
26

 that a possible correction to 

the “temperature disparity problem” might be to perform a constant temperature 

simulation. Figure (3.2b) shows that using the Nosé-Hoover chain method does not 

resolve the issue.  The EXACT approximation is a better solution.  

3.6 CONCLUSIONS 

  

We have used our rigorous derivation of a multiple-copy mean-field algorithm to 

generate a new computational method called Ensembles Extracted from Atomic 

Coordinate Transformations (EXACT), and have extended the method to approximate 

the canonical ensemble using a transformed Nosé-Hoover formalism. The EXACT 

approximation works by incorporating the effects of minor variables that are ignored 

in conventional multiple-copy methods, but which complete the description of 

conventional molecular dynamics. The minor variables’ effects are treated in the 

EXACT approximation by calculating the force on a corresponding pseudoparticle, 

and then comparing it to the force the bath particle would feel by calculating their 

ratio, i,l . This ratio is compared to a user-defined tolerance, . If i,l > , the 

particle is removed from the bath and copied for a user-defined number of timesteps. 
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After this, it is returned to the bath in a manner that conserves the energy. The user 

can thus control the accuracy of the dynamics by judiciously selecting . As   0, 

the dynamics become exact; as   , conventional multiple-copy dynamics results. 

EXACT performed better than LES in each test case, and differs from cLES because 

of the scaling property found in , which scales both the level of accuracy and the 

amount of computer time spent to obtain results of the desired accuracy.  
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CHAPTER 4 

 

New perspectives on multiple-copy, mean-field 
molecular dynamics methods  
 

4.1 INTRODUCTION 

 

Molecular dynamics (MD) has been a part of computational chemistry for some 

time
1-3

 and has proven its value for solving problems in classical mechanics and 

quantum mechanics.
3-5

  Despite this fact, MD has several well known limitations. 

One well-known limitation is the difficulty an MD simulation experiences in moving 

from one energy well to another. For example, if one is interested in using MD to find 

global minima on a complicated potential energy surface, a long simulation must be 

performed before there is much chance that all available areas of phase space are 

explored. Practically, even this may not be enough, but there are methods available to 

address this difficulty.
6-14

 

A popular method of addressing the above problem uses the same laws of physics 

in the solution that are the source of the problem. This method, called simulated 

annealing,
9, 14, 15

 raises and lowers the temperature to facilitate the movement of the 

system between energy minima. Raising the temperature increases the probability that 

a barrier crossing can occur; subsequent temperature lowering traps the system, 

presumably in a lower energy well.  

Other possible solutions for the sampling problem have been proposed.
11, 13, 16

 

One group of methods, though, uses an approximation of the laws of physics in order 
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to hasten energy minima transitions. These methods, called mean-field methods,
10, 17, 

18
 divide the system into a bath and a smaller, more interesting section. The smaller 

section is copied several times, and the simulation is run using a mean-field 

approximation. Stated another way, a group of non-interacting copies of the smaller 

system are allowed to interact with the larger bath. The force each particle in the 

copied sections experiences is the force it would normally feel, while the force each 

particle in the bath experiences is the averaged force of the bath’s interaction with the 

copied sections. Despite the fact that the trajectories generated with such methods do 

necessarily not correspond to physically possible trajectories,
19-24

 they have been used 

to find global minima,
25-28

 to study non-equilibrium behavior,
29, 30

 to enhance free-

energy calculations,
31

 and to search for molecules that bind to an active site.
32-34

 

Though many mean-field methods exist,
10, 17, 18, 20, 23, 32

 this work will focus on the 

most commonly used method, called locally enhanced sampling (LES),
17

 and our 

contribution, called Ensembles eXtracted from Atomic Coordinate Transformations 

(the EXACT approximation).
19, 20

 

The mean-field approximation, though resulting in desirable features can also 

cause defects in mean-field trajectories and quantities derived from them.
19-24

 The 

consequences of such approximations include the fact that mean-field trajectories 

violate the equipartition of energy theorem
21, 23, 24

 and that local minima of a mean-

field trajectory do not necessarily correspond to minima on a physically accurate 

trajectory.
22

 The equipartition of energy violation is especially important and has been 

studied by many workers.
19-21, 23, 24

 

This group’s contributions
19, 20, 25

 to this field include both theoretical and 
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practical contributions important for understanding and improving mean-field 

methods. For example, we have provided two new approaches that result in mean-

field equations of motion. These methods each provide unique insights. Further, we 

developed a method that can be used to control the degree of approximation included 

in a calculations, allowing a researcher to decide the degree of sampling or accuracy a 

calculation should posses.  

This paper is divided into three sections. The first reviews studies that inspired 

our work, the second reviews our theoretical contributions, and the last section shares 

some of our practical experience and characterizes some results.  

4.2 THEORETICAL BACKGROUND  

 

4.2.1 Original TDH approximation Gerber, Buch, and Ratner
18

 originally 

devised a mean-field method by taking the classical limit of the time-dependent self-

consistent field method (TDSCF). This method is described below by first describing 

the TDSCF method, and then explaining the path to the classical limit that defines the 

self-consistent trajectory bundles method.  This method was used to characterize the 

classical vibrations of small molecules, and its copies are designed to represent 

different normal modes of the molecule’s vibrations.  

The TDSCF method starts with the assumption that a system can be described by 

a Hartree-product wavefunction,  

(x, t) = i(x i,t)
i=1

N

,                               (4.1) 

where  is the wavefunction, x  is a vector describing all N degrees of freedom in the 

system, i is a wavefunction which describes the ith normal mode, and x i  is a vector 
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that describes that normal mode. Time is represented by t.  

Applying Equation 4.1 to the time-dependent Schrödinger equation and then 

operating with j  gives  

ih i

t
= hi

SCF x i,t( ) i x i,t( ) ,                      (4.2) 

where i x i,t( )  is ei t
i(x i,t).  Most importantly, hi

SCF x i,t( )  is the kinetic and 

potential energies of the ith normal-mode plus an extra average term. So,  

hi
SCF x i,t( ) = Ti + V x i( ) + V i x i,t( ).                  (4.3) 

The final term of this expression is an averaged potential of the form  

V i x i,t( ) = j

j i

Vij x i,x j( ) i ,                     (4.4) 

where i and j are normal-mode labels. Thus, V i x i,x j( )  is the interaction energy 

between modes i and j . This term was the original basis for the development of 

mean-field methods, which include LES, and the self-consistent trajectory bundle 

method in particular. It is a “mean-field” term because it averages the interaction 

energy of the ith normal mode with all the other normal modes of the system.  

The self-consistent trajectory bundle method is the classical correspondence of the 

above method, and redefines the average classical potential as  

V i x i,t( ) =
1

N
Vij x i,x j

( )( )
=1

C

i j

,                         (4.5) 

where i and j are normal mode labels, and x
j

( ) describes the th copy of the jth 

normal mode. So in this method, all the normal modes are simultaneously simulated, 

but one is specially prepared in different states. These states interact with the other 

normal modes according to the potential described in Equation 4.5, but not with other 
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states.  

4.2.2 Phase space TDH Elber and Karplus
17

 begin their derivation of LES with 

the assumption that the classical phase-space density function can be expressed as a 

product of the “copied” sub-system’s density and the “bath” sub-system’s density:  

  

r 
X ,t( ) = s

r 
X s,t( ) b

r 
X b ,t( ).                       (4.6) 

Here   
r 
X  is a vector representing all degrees of freedom in the system and t is the time. 

They further assumed that the bath’s density can be written as a single delta function:  

  
b

r 
X ,t( ) =

r 
X b t( )( ) ,                               (4.7) 

while the copied sub-system’s density can be written as a “swarm” of delta functions. 

Thus,  

  
s

r 
X s,t( ) = wsk

r 
X s t( )( )

k=1

C

,                         (4.8) 

where each delta function represents the positions in phase space of the various 

copies, and wsk  is a weighting function. In LES the weighting functions are generally 

taken to be 1C , where C is the number of copies. Elber and Karplus refer to this as the 

time-dependent Hartree (TDH) approximation, in analogy with Gerber, Buch, and 

Ratner’s
18

 previous work, described above.  

Using this assumed density, they derive the approximate equations of motion by 

proving that  

Qj

t
=

H

Pj

;
Pj

t
=

H

Qj

,                         (4.9) 

where H is the Hamiltonian for one copy interacting with the bath, Qj  is a 

generalized coordinate of the jth particle, and Pj  is the momentum of the jth particle. 
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They then use their assumed density to determine the LES equations of motion:  

˙ q i,k =
Hk

pi,k

,                          (4.10a) 

˙ p i,k =
Hk

qi,k

,                        (4.10b) 

˙ Q i = wk

Hk

Pik=1

C

,                   (4.10c) 

˙ P i = wk

Hk

Qik=1

C

.                 (4.10d) 

The index i refers to the particle and the index k refers to the copy. The lower case 

variables refer to the copied sub-system while the uppercase variables refer to the 

“bath.”  

4.2.3 Limitations of LES Because LES and other mean-field techniques employ 

an approximate dynamics, there are limits to the ability of these trajectories to model 

a Newtonian trajectory. One of the limitations include the fact that LES violates the 

equipartition of energy theorem.
21, 23

  Some have speculated
21, 23, 24

 that this violation 

results in the “temperature disparity problem,” which is a failure of the sub-system 

and bath temperatures to reach the same equilibrium value. Another problem is that 

geometry-optimization problems solved in LES are definitive only if the global 

energy minimum is desired. Stultz and Karplus have proven that local-minima found 

using LES cannot be assumed to be minima on the original energy surface.
22

  

4.3 THEORETICAL CONTRIBUTIONS  

 

4.3.1 Classical mechanical approach We derived
19

 mean-field equations of 

motion in an attempt to better understand the approximation involved in methods 
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such as LES and to improve on them. The derivation begins by writing the 

Hamiltonian of C non-interacting copies of the original system,  

                                

H =
pi,k
2

2mii=1

S

+ V qi,k,q j,k( )
i> j=1

S 

 
  

k=1

C

+ V qi,k,Qj ,k( )
j=1

N

i=1

S

+
Pi,k
2

2Mii=1

N
  

+ V Qi,k,Qj ,k( )
i> j=1

N  

 
  .                       (4.11) 

Lowercase variables refer to the sub-system of interest while uppercase variables 

refer to the bath. The constants C , N , and S represent the number of copies, the 

number of particles in the bath, and the number of particles in the sub-system of 

interest respectively. Upper and lowercase q’s indicate positions, p’s indicate 

momenta, and m’s indicate masses. The first two terms are the energy due to the 

copied subsystem, the middle term is the interaction energy between the copies and 

the bath, and the final two terms are the energy due to the bath. This Hamiltonian, for 

the sake of simplicity, assumes a pair form of the potential. We then make a point 

transformation defined by  

Qi =
1

n
Qi,k

k=1

C 

 
 

 

 
 ,                  (4.12a) 

Pi =
1

n
Pi,k

k=1

C 

 
 

 

 
 ,                   (4.12b) 

 Q i,l =
1

n
Qi,1 + cl ,kQi,k

k= 2

C 

 
 

 

 
 ,     (4.12c) 

 P i,l =
1

n
Pi,1 + cl ,kPi,k

k= 2

C 

 
 

 

 
 ,      (4.12d) 
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where Qi{ }
i=1

`N
 and Pi{ }

i=1

`N
 are the ‘‘major ’’ variables,  Q i,l{ }

i=1,l= 2

`N ,C
 and  P i,l{ }

i=1,l= 2

`N ,C
 

are the “minor” variables, and ci, j{ } are the transform coefficients. The constant C is 

equal to the number of copies. The “major” variables denote the average coordinates 

of all copies of the bath particles, and the “minor” variables complete the description 

of the exact dynamics. For future use, the transform coefficients possess three useful 

properties - orthonormality, Hermiticity, and zero-average:  

1+ cn,kcm,k = C m,n
k= 2

C

,                  (4.13a) 

cij = cij
* ,                                     (4.13b) 

 

and 

1+ cn,k
k= 2

C

= 0 .                               (4.13c) 

 

 

Equation 4.13b is actually a more stringent requirement than necessary, as we expect 

all the coefficients to be real. This transformation was used in a previous work
24

 

attempting to explain LES, but its solution was limited to the harmonic 

approximation.  

For a general potential, the transformed Hamiltonian can be written as
19

  

˜ H =
pi,k

2

2mik=1

C

i=1

S

+ qi,k,q j,k( )
k=1

C

i> j=1

S

+
n2Pj

2

2M jCj=1

N

+ V
C

n
Qi +  Q i,k

k= 2

C 

 
 

 

 
 

 

 
  

k=1

C

i> j=1

N

,
C

n
Qj +  Q j,k

k= 2

C 
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+
n2  P j ,k

2

2M jCk= 2

C

j=1

C

+ V q j,k,
C

n
Qi +  Q i,k

k= 2

C 

 
 

 

 
 

 

 
  

 

 
  

k=1

C

j=1

S

i=1

N

. (4.14) 

  

The first two terms represent the Hamiltonian of the copied particles. The next three 

terms in Equation 4.14 are the kinetic energy of the major variables of the bath, the 

potential energy due to the bath, and the kinetic energy due to the minor variables of 

the bath. The final term contains the interaction energy between the two subsystems. 

The equations of motion for the major and minor variables can then be obtained:  

˙ q i,k =
˜ H 

pi,k

,                   (4.15a) 

˙ p i,k =
˜ H 

qi,k

,                 (4.15b) 

˙ Q i =
C

n2

˜ H 

Pi

,                  (4.15c) 

˙ P i =
C

n2

˜ H 

Qi

,                 (4.15d) 

˙  Q i,k =
C

n2

˜ H 
 P i,k
,                (4.15e) 

˙  P i,k =
C

n2

˜ H 
 Q i,k

.              (4.15f) 

If the bath particles are initially in the same phase-space coordinates and all of the 

coordinates of the minor variables are neglected, the LES equations of motion are 

recovered.  

4.3.2 Liouville operator approach A complimentary view of the results from the 

previous section can also be gained by using a phase-space density approach.
19

  In 

fact, most theoretical work done regarding mean-field methods depends on a phase-
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space density approach,
10, 17, 21, 23, 24

 and often employs the Liouville equation.  

The start of the analysis requires a density that satisfies the Liouville equation,
35, 

36
  

  

r 
X ,t( ) = e

ˆ L t
r 
X ,0( )                                     (4.16) 

where ˆ L  is a Liouville operator,  

                             ˆ L =
H

pi,k qi,k

H

qi,k pi,k

 

 
 

 

 
 

k=1

C

i=1

S

 

+
H

Pi,k Qi,k

H

Qi,k Pi,k

 

 
 

 

 
 

k=1

C

i=1

N

                   (4.17) 

  

r 
X ,0( ) is the initial phase-space density:  

                  
  

r 
X ,0( ) = qi,k qi,k,0( ) pi,k pi,k,0( )

k=1

C

i=1

S 

 
 

 

 
  

Qi,k Qi,k,0( ) Pi,k Pi,k,0( )
k=1

C

i=1

S 

 
 

 

 
 ,                   (4.18) 

and   
r 
X  is a point in phase-space. After applying the transformation defined by 

Equation 4.12 to the Liouville operator and the initial probability density, we obtain  

      ˆ L =
˜ H 

pi,k qi,k

˜ H 

qi,k pi,k

 

 
 

 

 
 

k=1

C

i=1

S

 

    +
C

n2

˜ H 

Pi Qi

˜ H 

Qi Pi

 

 
 

 

 
 

i=1

N 

 
 +

˜ H 
 P i,k  Q i,k

˜ H 
 Q i,k  P i,k

 

 
 

 

 
 

k= 2

C

i=1

N  

 
 . (4.19)  

With the assumption that the bath particles are in the same locations in each of the 

copies, the transformed density can be written as:  

                     

  

r 
X ,0( ) =

1

J
r 
X ,

r ˜ X ( )
qi,k qi,k,0( ) pi,k pi,k,0( )

k=1

C

i=1

S 

 
 

 

 
  

Qi Qi,0( ) Pi Pi,0( )
i=1

N

 Q i,k( )  P i,k( )
k= 2

C 

 
 

 

 
 . (4.20) 
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Here, 
  
J

r 
X ,

r ˜ X ( ) is the Jacobian of the transformation and   
r ˜ X  is a point in the transformed 

phase-space. The transformed time dependent phase-space density, 
  
˜  

r ˜ X ,t( ), is written 

using Equations 4.19 and 4.20 in the Liouville equation. Following Zheng and 

Zheng’s work
24

 the reduced density, 
  
˜  

r ˜ X ,t( ),that can be used to generate LES-type 

equations of motion is found when the minor variables are integrated out, as in  

  

˜   
r ˜ X ,t( ) = d   J

r 
X ,

r ˜ X ( )e ˜ ˆ L t ˜  
r ˜ X ,0( ),           (4.21) 

where d   is the minor variables’ volume element. Solving Equation 4.21 serves the 

purpose of generating a density that can be used to obtain the LES equations of 

motion shown in Equation 4.15. It does so by enforcing the holonomic constraints 

shown to result in LES.  

4.3.3 Explanation of the “temperature disparity” problem In the canonical 

ensemble, the average, qiFi ,for a bound system can be written as  

qiFi =
1

Z
d dqiqi

H

qi
e H qi ,( )            (4.22) 

Here, Q is the partition function, qi is a general coordinate of the ith atom, and Fi 

is the force on the ith atom. The integral’s exact value is 1 , where  is 1kBT (kB is 

the Boltzmann constant). Therefore, after applying the virial theorem the average 

kinetic energy for C copies of a structure is simply  

T = 1
2 qi,k

H

qi,kk=1

C

i=1

S
1
2 Qi,k

H

Qi,kk=1

C

i=1

N

=
(SC + NC)

2

              (4.23) 

After making the transformation,  
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Qi,k

H

Qi,k

=
C2

n3
Qi + cl ,k  Q i,l

i= 2

C 

 
 

 

 
 

H

Qi

+ cm,k

H
 Q i,mm= 2

C 

 
 

 

 
  (4.24) 

and using the result in the virial theorem, the exact result T = NC +CS( )
2 is 

generated.  

However, if the minor variables are constrained to vanish, the average kinetic 

energy is T = N +CS( )
2 . Consequently, the LES virial is incorrect because mean-field 

systems have fewer degrees of freedom, and this manifests itself as the temperature 

disparity problem.  

4.3.4 Analysis of validity of the LES approximation It should be noted that the 

work shown above presents a purely classical mechanical description of the 

approximations inherent in mean-field methods. It also allows some comments to be 

made regarding the accuracy of mean-field trajectories. For example, mean-field 

methods can be viewed as a collection of separate systems coupled together through 

the requirement that the particles labeled as a “bath” are required to occupy the same 

positions in each system.  

Knowing this allows one to consider the approximation’s range of validity. From 

this work it should be expected that mean-field methods can accurately reproduce the 

correct classical trajectories when the force on the “minor” variables are small. Two 

conditions might give rise to this. The first occurs when the interactions between the 

copied particles and the bath particles are small, as might be expected in a low density 

simulation. The second condition is that the simulation is of short enough duration 

that the dispersal of the copies of the bath particles is not important. If either 

condition is true, the trajectory generated with a mean-field method would be 
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expected to be accurate. Unfortunately, useful simulations are frequently impossible 

to perform under these conditions, because long trajectories need to be analyzed or 

because the system of interest is in a condensed phase. Our contribution described in 

the next section
20

 is designed to alleviate this problem, and allow mean-field methods 

to be used to simulate condensed-phase systems more accurately.  

4.4 PRACTICAL CONTRIBUTIONS  

 

4.4.1 The EXACT approximation  

4.4.1.1 Description of the algorithm The main result from Equations 4.14 and 

4.15 is that the LES approximation can only be accurately applied where the minor 

variables are small enough to be ignored. We developed a method that accounts for 

the minor variable’s influence called the EXACT approximation.
19, 20

 Equation 4.14 

along with an initial holonomic constraint set to force the minor variables to vanish is 

the basis, but corrections are applied when the forces on the minor variable at each 

step are large when compared to the force on the corresponding major variable. The 

ratio i,l =
 P i,l

Pi

, the force on the minor variable divided by the force on the major 

variable, is calculated and then compared with a user-defined tolerance, . For any 

coordinate associated with a particle in which the ratio, i,l  , is greater than the 

tolerance (  < i,l), the particle is removed from the bath and treated exactly (as a 

copied particle) for a user-defined number of time steps, and then returned to the bath 

in a manner that ensures that the energy is conserved. As   0, conventional 

dynamics for an ensemble of system copies is produced; when   , LES results.  

4.4.1.2 Calculation of the “minor” forces It is necessary to calculate the force 
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on the minor coordinates to use the EXACT approximation. This is accomplished 

economically by first writing the forces as derivatives of the potential energy:  

˜ H 
 Q i,m

=
VB ,k

 Q i,m
+

VX ,k

 Q i,m

 

 
 

 

 
 

k=1

C

.             (4.25) 

We have earlier shown that this can be rewritten as:  

˜ H 
 Q i,m

=
VB

Qi

1+ cm,k
k= 2

C 

 
 

 

 
 +

VX ,1

Qi

+ cm,k

VX ,k

Qik= 2

C

k= 2

C

 (4.26) 

Finally, applying Equation 4.13 to Equation 4.26 yields:  

˜ H 
 Q i,m

=
VX ,1

Qi

+ cm,k

VX ,k

Qik= 2

C

.            (4.27) 

Equation 4.27 is important because it shows that the forces on the minor variables 

can be calculated with trivial effort since
VX ,k

Qi

, the forces between bath atoms and 

copies, is already calculated - it is the force on the corresponding major variable. This 

equation also requires that the transform coefficients be explicitly known, unlike in 

other mean-field methods. We have previously published a method to calculate 

them.
20

  

4.4.2 Extension of LES and EXACT to constant temperature ensembles  

Because the Nosé-Hoover Chain (NHC) method
37

 has been shown to be a useful 

method for constant temperature simulations, we showed
20

 how to implement this 

algorithm for the mean-field methods LES and EXACT. An extended system 

designed to act as a heat bath is appended to the original Hamiltonian of a system. 

Thus, the Hamiltonian for an NHC system of C non-interacting systems can be 

written as:  
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HNHC = H +
p

i ,k
2

2μi
+ kBT D 1,k + 2,k[ ])

i=1

2 

 
 

 

 
 

k=1

C

.           (4.28) 

In this equation, H is given by Equation 4.11, p
i ,k

  and i,k are the momenta and 

“position” of the heat bath’s chain particles, and μi is the “mass” of the chain particle. 

The subscripts on p
i ,k

 indicate that this is the momentum of chain particle i and D is 

the number of particles to be copied. From the above Hamiltonian the forces on the 

major variables can be expressed as  

˙ P i =
1

C
˙ P i,k

k=1

C

                   (4.29) 

which can be rewritten using Equations (4.12) and (4.13) as  

˙ P i =
1

C

HNHC

Qi

+ Pi

HNHC

p
1 ,kk=1

C

+  P i,l
l= 2

C

cl ,k

HNHC

p
1 ,kk=1

C 

 
  

 

 
  . (4.30) 

An assumption of both LES (and EXACT when the minor variables of the bath 

are ignored) is that the minor variables expressing the constant temperature constraint 

can be assumed to vanish, so the final term can be ignored. Thus, the first two terms 

comprise the force needed to ensure a constant temperature simulation. Doing a 

transformation similar to the one used to derive Equation 4.30 gives the temperature 

controlled force on the minor variables, after applying the holonomic constraint 

shown to yield the LES equations of motion:  

˙ P i,l =
1

C

HNHC

 Q i,l
+ Pi

HNHC

p
1 ,1

+ cl ,k

HNHC

p
1 ,kk= 2

C 

 
  

 

 
  

 

 

 
 

 

 

 
 
. (4.31) 

With these two equations, both LES and EXACT algorithms can be designed to 

simulate constant temperature trajectories. Similar logic can be used for barostats.
3, 38
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4.4.3 Tests of the EXACT approximation  

4.4.3.1 Effect on simple pair distribution functions Figure 4.1 is a collection of 

pair distribution functions of a 64 atom cluster of argon.
20

 The curve generated from 

purely LES data contains peaks located in the correct places, but they are too broad 

and short compared to the MD result. This is evidence that LES samples regions of 

space forbidden to particles in a conventional MD simulation. The EXACT 

approximation’s results, however, scale between these two extremes. When the 

threshold is set with  = 0.8, the simulation produces a taller and narrower initial 

peak. When the threshold is set with  = 0.3, the simulation produces a result that is 

only slightly different from the conventional MD result. By carefully selecting the 

threshold, , the simulation’s sampling properties can range from conventional MD 

for C non-interacting copies to the mean-field (LES) limit.  

4.4.3.2 Effect on cooling behavior of copied particles The same Ar cluster 

described above was used to perform a cooling simulation using conventional MD, 

LES, and the constant energy implementation of the EXACT algorithm.
20

  The 

simulation consisted of choosing a particle near the center of the cluster, and raising 

its kinetic energy to 300K, and observing its coolings. Results are shown in Figure 

4.2, and demonstrate the effect of the “temperature-disparity problem.” The problem 

has been described as the failure of a hot particle to cool properly during a mean-field 

simulation, and has been the focus of several theoretical investigations. 
19, 21, 23, 24

  The 

crux of the problem is that although the Ar atom cools quickly to the bath temperature 

using conventional MD, LES simulations do not seem to demonstrate any cooling at 

all. Also shown in the figure are results generated by the EXACT approximation 
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Figure 4.1. Normalized density distribution for a single, copied Ar atom in a bath of 

Ar. Simulations correspond to conventional MD (highest, narrowest peak, marked by 

diamonds), LES (shortest, broadest peak, blue), and intermediate cases, generated 

using the EXACT approximation (red and green). The EXACT approximation allows 

interpolation between conventional MD and the enhanced sampling of LES.  

 

using thresholds  = 0.8 and 0.3. The 0.8 simulation improves the simulation, but not 

markedly. The  = 0.3 simulation, though, relaxes to the correct temperature within 5 

ps. This is a clear improvement over LES.  

4.4.3.3 Effect on sampling a torsion angle of melatonin Melatonin,
39

 a 

tryptophan derivative, is a molecule with seven flexible torsion angles, as shown in 

Figure 4.3. There are three main sections of melatonin which include the 5-methoxy 

group, the indole ring, and the peptide-like side chain located on the C3 position of 
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Figure 4.2. Comparison of temperature vs. time for the bath of 64 Ar atoms (flattest 

curve near the bottom) with the temperature of one Ar atom in conventional MD 

(bold curve oscillating about the bath temperature), LES (bold curve at the top 

showing large oscillations), and intermediate cases, generated using the EXACT 

approximation. The EXACT approximation allows the hot Ar to cool to the 

temperature of the bath but LES does not.  

the ring. The dihedral angles of the methoxy group and side chain determine the 

molecule’s spatial conformation, while the indole ring remains essentially planar. The 

methoxy group has two torsion angles - one represents the nearly free rotation of the 

hydrogens around the methyl group (T7 ) and the other determines the position of the 

methyl carbon group (T6 ). The peptide-like side chain contains the balance of the 

flexible torsion angles, of which only T1 , T2 , and T3 are both interesting and free to 

rotate, as T4 is a peptide bond, and T5 determines the conformation of a nearly free 
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Figure 4.3. Structure of melatonin, along with its standard numbering scheme. Interesting 

torsion angles are labeled as Ti .  

 

 

 

methyl rotor. 

Melatonin proves an excellent test system to illustrate the ability of a method to 

enhance conformational sampling, as its T1 torsion angle must overcome a relatively 

high energy barrier to rotate the side chain from one face of the indole ring to the 

other. As a consequence, T1 is expected to be relatively fixed with an angle near ±90 . 

It is around this torsion angle that the boundary is made between the copied region 

and the bath. Everything in the indole ring is designated bath, every atom in the 

sidechain is copied four times. Thus, the T1 torsion angle is expected to enjoy the 

bulk of the enhanced sampling in EXACT simulations.  

For this test, a gas phase conventional MD simulation of melatonin was 

performed as described in Sec. (4.5) to observe the degree of sampling normally 

found in molecular dynamics simulations of this molecule. This was followed by a 
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gas phase EXACT simulation expected to benefit from enhanced sampling, using a 

threshold expected to be near the LES limit (   ). Each of these tests were 

allowed 300 ps of simulation time.  

Histograms of the T1 dihedral are presented for both the gas phase conventional 

MD and EXACT simulation of 300 ps in Figure 4.4a and Figure 4.4b, respectively. 

The conventional simulation does not provide balanced sampling on both faces of 

melatonin’s indole ring (defined by T1 = ±90 ). The positive dihedral region is greatly 

favored in the conventional simulation, because there was not adequate time for equal 

sampling to be achieved. For the EXACT simulation, both faces of melatonin’s indole 

ring are sampled nearly equally. The centers of the peaks are at ±90 , and are almost 

equal in area.  

4.5 DETAILS OF MELATONIN SIMULATION  

 

Simulations on melatonin were performed to ensure that EXACT could properly 

allow for the enhanced sampling that mean-field methods allow.
25

 The melatonin 

simulations used the AMBER94 all-atom force field
40

 with charges obtained using 

electrostatic fitting from electron densities obtained using Gaussian 94,
41

 at the 

B3LYP/6-31G* level of theory.  Gas-phase simulations of melatonin were performed 

using our own implementation, using the molecular modeling toolkit (MMTK)
42

 to 

prepare the initial conditions. Temperature was controlled with the Nosé-Hoover 

chain algorithm.
37

 Covalent bond distances involving hydrogen were constrained 

using the SHAKE algorithm
43

 for conventional MD, and with a slightly modified 

SHAKE (to account for the common bath) in the EXACT approximation simulations. 

Atoms involving the side-chain of melatonin (which is the functional group attached  
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Figure 4.4. (a) Normalized histogram recording the number of times melatonin’s T1 

torsional angle visited a given value during a 300 ps gas-phase conventional MD 

simulation. The asymmetry indicates preferential sampling on one side of the indole 

ring. (b) Normalized histogram recording the number of times melatonin’s T1 

torsional angle visited a given value during a 300 ps gas-phase EXACT simulation. 

More balanced sampling on both sides of the indole ring is achieved, as indicated by 

the more symmetrical distribution of torsion angles. 
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to carbon 3 in the indole ring, as depicted in Figure 4.3) were copied four times in the 

EXACT simulations. 

4.6 CONCLUSIONS  

 

LES and other mean-field methods have been successfully used in a variety of 

applications
26, 27, 29-34

 and have been the subject of a great deal of theoretical scrutiny. 

19-24
  Two new routes to obtain the mean-field equations of motion shown here add 

interesting insights to the understanding of mean-field methods. We show that mean-

field methods can be viewed as a type of constrained dynamics.
19

  These constraints 

reduce the number of degrees of freedom in the system, which affects the temperature 

equilibration properties of the system. Further, the classical-mechanical view 

demonstrates the degree of approximation in mean-field methods and indicates that 

these methods can be truly accurate under certain conditions. Finally, we use this 

knowledge to create a new method, called the EXACT approximation,
20

 that is 

designed to allow a researcher to decide the degree of accuracy or enhanced sampling 

a simulation requires.  
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CHAPTER 5 

 

Mean-field molecular dynamics from a classical 
mechanical perspective 

5.1 INTRODUCTION 

 

Classical mechanical principles are important to learn, but are often 

underappreciated since many research problems in modern physics are more 

appropriately addressed by quantum mechanics.  What follows is a description of a 

class of computational techniques used by chemists and physicists in modern 

research. In this contribution, we demonstrate how the concepts of the point 

transformation and holonomic constraint can be used to derive the equations of 

motion for a class of molecular dynamics based techniques, called multiple-copy, 

mean-field methods.  First we introduce the field of molecular dynamics, and 

multiple-copy, mean-field simulation techniques in particular.  Then we discuss point 

transformations and holonomic constraints and the particular techniques required to 

understand multiple-copy, mean-field molecular dynamics.  Finally we discuss two 

published multiple-copy, mean-field methods and provide a simple example 

illustrating the two methods. 

5.1.1 Background 

Molecular dynamics
1
 is a popular computational method designed to simulate the 

behavior of molecular systems by integrating the equations of motions of a model 

system obeying a classical, empirically parameterized potential energy function.
2
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This technique has formed the basis for a large number of applications which use the 

data generated by molecular dynamics simulations to extract secondary quantities for 

further analytical use.  For example, molecular dynamics simulations have been used 

as the basis for estimating phase space averages including free energy differences
3
 

and radial distribution functions,
1
 transport properties such as viscosity or diffusion 

coefficients,
4
 and many other quantities.  Molecular dynamics, particularly when 

coupled with simulated annealing,
5
  is also the basis for geometry optimizations,

6, 7
 

where the search is performed along the physical path over which the system evolves. 

However, there are a variety of reasons that conventional molecular dynamics proves 

to be a poor choice for providing the underlying trajectory over which the calculation 

is performed, due to the properties of classical mechanics.  For example, once a 

system reaches equilibrium, it only slowly explores phase space, which means that 

the great variety of configurations that the system can adopt is generally woefully 

undersampled.
8
  Many techniques have been developed to address this issue.  One 

class of such methods is called multiple-copy, mean-field methods.
9
   

5.1.2 Multiple-copy, mean-field methods 

The multiple-copy, mean-field methods are related by a common way of 

constructing the Hamiltonian of the system to be simulated.  This is accomplished by 

separating the system into two parts.  First a bath is defined.  This is the largest part of 

the system and contains the parts of the system that are required to exist, but are 

otherwise unimportant.  The remainder of the system (which is composed of parts that 

are of most interest to the researcher) is copied some number of times.  If C copies are 

made, then we can write the Hamiltonian of the system, 
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Htotal = Hbath +
1

C
Hcopy
(i)

+ Hcross
( i)

i=1

C 

 
 

 

 
 ,                      (5.1) 

where Htotal is the Hamiltonian of the entire system (which comprises all copies), 

Hbath is the Hamiltonian of the bath region of the system, H
(i)

copy is the Hamiltonian of 

the ith copied part, and H
(i)

cross covers the interaction between the bath and the ith 

copied part.  The consequence of such a choice is that while each copied particle 

experiences the full force of each bath particle, the bath particles experience only an 

averaged force due to the copied particles. 

Figure 5.1 illustrates how mean-field dynamics differs from conventional MD.  

The cluster of particles in the top right of the figure each exert and experience similar 

forces of interaction with the bath particle, because they are at similar distances.  

However, the red particle is much closer to the bath particle ‘B,’ so it exerts and 

experiences a much stronger force.  Since the bath particle only experiences the 

average force exerted on it, it follows an altered trajectory compared to its trajectory 

in a classical MD simulation.  This is so, because it experiences a much stronger force 

than the distant cluster would exert, but a much weaker force than the red particle 

ought to exert.  This gives the red particle the ability to approach the bath particle 

much more closely than it would in a conventional MD simulation.  Of course, as a 

consequence of such an approach, the dynamics is no longer “real,”  but this type of 

dynamics allows the system to explore a greater fraction of phase space than it would 

otherwise.  This enhanced sampling has a significant disadvantage because it can 

significantly alter the ability of the simulation to provide accurate secondary 

quantities.  For example, the radial distribution function is directly affected,
10

 since  
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Figure 5.1 Depiction of an illustrative situation encountered in multiple-copy, mean-

field simulations.   The colored balls represent copied atoms, and the black ball 

containing the letter ‘B’ corresponds to a bath particle.  Because the red particle is far 

from the others, its dynamics will be altered due to the way the forces are calculated 

in mean-field simulations. 

 

the distribution of distances allowed over the course of the simulation is much 

broader.  Since the radial distribution function is directly related to the partition 

function, all thermodynamics properties of the system are affected. 

The method was originally explained in a variety of ways,
10

 but can be simply 

explained by appealing to classical mechanics.  A classical approach could construct 

a system where the entire structure is copied.  Then, the coordinates of the bath 

particles are subjected to a point transformation.
11

  Finally a holonomic constraint
11

 is 

applied to selected variables in the new coordinate system.  We have shown that 

selectively relaxing the constraints can dramatically improve the properties of the 

simulation, and have developed this idea into a new simulation technique.
12
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5.2 BRIEF REVIEW OF CLASSICAL MECHANICS CONCEPTS 
APPLIED TO MOLECULAR DYNAMICS 

 

Before delving deeply into the task of describing this application of textbook 

concepts from classical mechanics, it is helpful to ensure that a common framework 

for understanding molecular dynamics is developed.  In the following, ideas 

important to understand molecular dynamics are introduced, including the form of the 

force field and integration techniques.  Then, a short discussion of point 

transformations and a description of the concept of the holonomic constraint follows. 

5.2.1 Potential Energy Functions 

 

Molecular potential energy functions generally have the following generic form
2
: 

  

V(
r 
X ) =

Aij

rij
12

Bij

rij
6 +

eqiq j

4 0rij

 

 
  

 

 
  +

pairs

kn (rij rn )2

bonds

+ kn ( ijk n )2

angles

+ Kn (1+ cos(m( nm 0m ) m )).
termstorsions

   (5.2) 

This function divides the potential energy into four contributing types of energy, each 

defined by a different summation term.  The first sum, over pairs, is the non-bonded 

interaction and describes interactions between atoms separated by more than three  

chemical bonds.  The first two terms of this part of the potential represent the (12,6)-

Lennard Jones potential model for the van der Waals potential.  The last term 

represents the Coulombic potential between atoms carrying fractional charges.  Here, 

r represents the distance between the atom pair, the constants A and B (the Lennard 

Jones terms) are provided by the creator of the force field, while q, the partial charge 
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on each atom, must be determined (generally via a quantum mechanical calculation) 

for each new molecule to be simulated.  The second sum, over bonded pairs of atoms, 

represents chemical bonds modeled using Hooke’s law, where rn is the equilibrium 

bond length and k is the spring constant.  The third sum, over angles defined by atoms 

i, j, and k, uses Hooke’s law, with n representing the equilibrium angle.  The last 

sum, over all torsion angles, is more complicated than the others.  Each torsion angle 

can be represented by a sum over a Fourier-like expansion, with the number of terms 

and each constant provided by the creator of the force field.
2
 

5.2.2 Integration techniques   

 

Because the kinetic and potential energies are conjugate, we can write the 

system’s Hamiltonian function: 

H =
pn
2

2mnn=1

N

+V ({xn}n=1
N ). 

In the above expression, pn is the momentum for the nth particle, mn is the mass, and 

xn is the position of the nth particle.  The first term represents the kinetic energy of the 

system, which depends only on the momentum of each particle.  The second is the 

function defined in Section 5.2.1, which depends only on the positions. Following 

Hamilton’s rules, we can obtain the instantaneous force and momentum of each 

particle by differentiation.  For example,  

˙ x n =
H

pn

 

is the velocity ( ˙ q  is the time derivative of the quantity q) of the nth particle, while 

˙ p n =
H

xn
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is the force on the nth particle.   

Because exact solutions for the system of differential equations required to obtain 

the trajectory are not possible in such a many-body system, numerically integrating 

the equations of motion is generally performed.  One of the most popular methods is 

called the velocity-Verlet algorithm, and it will be described here.
1
 

Figure 5.2 contains a flow chart that illustrates the flow of a computer program 

implementing the velocity-Verlet algorithm.  First, the initial positions and velocities 

must be somehow provided.  The positions are often taken from an experimentally 

observed structure, or are contrived to test a hypothesis.  Velocities are frequently 

assigned randomly according to the expected behavior of an ideal gas with a 

Maxwell-Boltzmann distribution of velocities corresponding to a selected average 

temperature and deviation in temperature.  Once the initial state of the system is 

determined and the form of the potential energy function is selected, the initial force 

can be calculated.  Now, the initial position, velocity, and force can be used to find 

the next set of positions for the system.  The new positions are used to calculate a new 

force, which is then used to update the velocities.  Now that the velocities and 

positions in the next time step are known, the cycle can repeat for as many steps as a 

user requires. 
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Figure 5.2 Flow chart illustrating the velocity-Verlet algorithm.  This algorithm is 

used to integrate the equations of motion during a molecular dynamics simulation. 

 

5.2.3 Point Transformations 

 

Up to this point, we have treated the system using Cartesian coordinates 

implicitly.  Of course, one of the advantages of using the Hamiltonian formalism is 

that it is consistent in any coordinate system.  As long as a coordinate transformation 

is consistently applied, in the end, the dynamics will be independent of the coordinate 

system.  One type of coordinate transformation that is of particular interest in 

explaining the results of this work is the point transformation.  This type of 

coordinate transformation is quite general, and can be defined as any transformation 

that defines the new coordinates as functions solely of the old coordinates and the 

time.  For example, for old coordinates {qi}i=1
N  and {pi}i=1

N , if the new coordinates can 

be written as functions of the old coordinates: 
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Qi Qi(q1,..., pN ,t)

Pi Pi(q1,..., pN ,t),
 

then a point transformation is defined.  One common type of point transformation is 

the transformation from Cartesian coordinates to spherical coordinates. 

One especially simple point transformation can be described by making the new 

coordinates linear combinations of the old coordinates.  Such a transformation, 

Qi = ci, jqi
j=1

N

Pi = ci, j pi
j=1

N
 

can be completely defined by determining the transformation coefficients, ci,j.  This 

type of transformation is fundamentally important to understanding the classical 

mechanical derivation of multiple-copy, mean-field methods, and will be further 

discussed in the next section. 

5.2.4 A Special Transformation 

 

In the previous section, we introduced a type of point transformation defined by 

using linear combinations of the old coordinates to yield new coordinates.  Such a 

transformation is entirely defined by its transformation coordinates and an infinite 

number of transformation coordinates are possible.  Of the infinitely many 

combinations possible, which transformations are useful?  One interesting problem to 

consider is illustrated in Figure 5.3. 
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Figure 5.3 a.) (left)  Coordinate axis depicting the value of a coordinate for both 

copies of the system.  If both copies’ coordinate have the same value, then the point 

lies on the line of unit slope passing through the origin. b.) (right) Introducing two 

new coordinates, X and X’ important to understanding multiple-copy, mean-field 

methods.  If the point lies on the line described before, X’ is zero. 

 

First imagine some physical system.  Inside this system is a coordinate which we 

designate X.  Now, pretend that we make two copies of this entire system, and call the 

X coordinate of the first copy X1 and the X coordinate of the second copy X2.  Now on 

the left in Figure 2.3 is a plot whose abscissa corresponds to the value of X1 and 

whose ordinate corresponds to X2.  Since we made identical copies of the system, 

notice that the point is depicted as lying on the line of unit slope passing through the 

origin.  Let us now define our goal in terms of identifying the coordinate system 
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where one coordinate, X, represents the average of the coordinates in the original 

system, and X
’
 is zero when the coordinates have the same value.  This situation is 

depicted on the right in Figure 5.3.  This simply corresponds to rotating the 

coordinate axes. 

If we generalize, and rather than limit ourselves to two copies of the system, but 

instead allow some arbitrary C copies of the system, our transformation coordinates 

can be represented as elements of a CxC matrix and, in particular, we can define the 

transformation to have the following form: 

Qi = 1
C ci, jqi

j=1

N

Pi = 1
C ci, j pi

j=1

N

.

 

We can set some limits on which possible values the elements of the matrix can take, 

but still be consistent with our goals described in the previous paragraph.  For 

example, we could require that the matrix be symmetric.  We definitely need the first 

row and column of the matrix to all be 1, because we want the coordinate 

corresponding to the first column to be the average value of the coordinate in all of 

the copies.  The other terms are more loosely defined.  Since we want to have an 

orthogonal basis, we want each column to be orthogonal and we want the length of 

each vector to be C.  This corresponds to the following
13

 mathematical constraints: 

1+ cn,kcm,k = C n,m
k= 2

C

1+ cn,k = 0.
k= 2

C
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We can enforce these constraints while at the same time making a more tractable 

problem by making another simplification.  If we choose to define the transformation 

coefficients by the following expression, 

        c1,k = ck,1 =1

cn,k = y + n,k (x y),           n,k >1
 

i.e. by requiring that the first row and column are filled with 1’s, the diagonal is filled 

with x’s, and the rest is filled with y’s then a solution can be determined algebraically. 

For two copies, there is only one undetermined coefficient and its value is -1.  For 

more copies than two, the following formula will provide the coefficients, which was 

determined by putting the above simplification into the expressions that define our 

constraint: 

x =
1 c c

1+ c

y =
1

1+ c
.

 

Defining our coordinate transformation in this way ensures that one of the 

transformed variables corresponds to the average position across each of the copies 

while the rest remain zero as long as the positions of each copy are the same.  We call 

the coordinate corresponding to the average a “major” variable.  The other variables 

are denoted “minor”. 

5.2.5 Coordinate Transformations and Holonomic Constraints 

 

Coordinate transformations in classical mechanics are useful in a variety of ways.  

Not only can a well planned coordinate scheme shed light on a problem, but, by 

expressing the dynamics in a natural coordinate scheme, intelligent use of constraints 
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can be made.  One sort of constraint that might be imposed is a holonomic constraint.  

Holonomic constraints are functions of the coordinates of the system, but independent 

of time.  One common example is a bond-length constraint.  By fixing the length of a 

bond between two atoms, for example, the dynamics are altered to account for this. 

Putting the concepts of the point transformation and holonomic constraint 

together, let us consider the consequences of applying a holonomic constraint to the 

“minor” variables generated by the coordinate transformation described in the 

previous section.  If we require that the constraint be set to hold these “minor” 

variables at zero, it is apparent that the position of the constrained atoms would be 

required to remain the same across each of the copied systems.  Selective application 

of such constraints is key to the implementation of multi-copy, mean-field methods. 

5.3 SIMULTANEOUS APPLICATION OF COORDINATE 

TRANSFORMATION AND HOLONOMIC CONSTRAINT LEAD TO 

MULTIPLE-COPY, MEAN-FIELD EQUATIONS OF MOTION 

We can derive the equations of motion for any classical system by first 

constructing its Hamiltonian function, 

H({pn},{Pn},{xn},{Xn}) =
pn
2

2mnn=1

N B

+
Pn
2

2mnn=1

B

+

V ({xn}n=1
N B ) +Vbath ({Xn}n=1

B ) +Vcross({xn}n=1
N B ,{Xn}n=1

B ).

 

In this example, a basic system which  includes bath coordinates (introduced in 

Section 5.1.2) in capital letters and the part of interest in lower case is presented.  The 

first potential energy term contains coordinates for only the part of interest, the 

second term just the bath, and the final term is the interaction energy between the two 
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regions.  N is the total number of degrees of freedom in the system, while B is the 

number of bath particles.  We can now copy the system a number of times by first 

defining 

Hi = H({pn,i},{Pn,i},{xn,i},{Xn,i}) 

where the i subscript in the coordinates indicates that the coordinate belongs to the ith 

copy.  Now we can construct the Hamiltonian of the system containing C copies: 

  

( 
H = Hi

i=1

C

. 

This is a perfectly correct Hamiltonian.  We can make this a mean-field Hamiltonian, 

if two steps are taken.  First, we apply the coordinate transformation described in 

Section 5.2.4 to all of the coordinates of the bath particles.  Second, we holonomically 

constrain the “minor” variables to remain zero.  Then the equations of motion for the 

“major” variables and those of the system of interest can be determined as described 

previously in this section.  This can been seen in greater detail in Chapter 2.  These 

equations of motion correspond to those of the previously published Locally 

Enhanced Sampling (LES) method.
4
 

5.4 SELECTIVE USE OF CONSTRAINTS 

 

As previously noted throughout this text, multiple-copy, mean-field methods in 

general are not well suited to collecting trajectories for calculating secondary 

properties.  This is true because the trajectories produce a radial distribution function 

that contains broadened peaks relative to a conventional molecular dynamics 

simulation.  So, at times, it might be desirable to maintain some of the enhanced 

sampling inherent in multiple-copy, mean-field simulations, but produce a trajectory 
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more capable of estimating secondary properties.  This is the role that our algorithm 

“ensemble extracted from atomic coordinate transformations”, the EXACT 

approximation, seeks to fill.  The method works by recognizing that the previous 

section represents an accurate classical mechanical description of multiple-copy, 

mean-field methods.  This understanding makes it plain that the holonomic 

constraints imposed on the “minor” variables constitutes the only difference between 

multiple-copy, mean-field and conventional molecular dynamics, and so selectively 

enforcing and relaxing such constraints is a logical method for interpolating between 

conventionally molecular dynamics methods and the LES approximation. 

5.4.1 Relaxing the Constraints 

 

Some mechanism is necessary for determining when the constraints characteristic 

of multiple-copy, mean-field methods should be relaxed in order to improve the phase 

space averages produced by the trajectories.  The method used in the EXACT 

approximation is as follows.  At each step, the force exerted on the “minor” variables 

is calculated at each step.  This is accomplished by calculating 

  

( 
H 

Qi,m
' = cm,k

Vcross

Qik=1

C

, 

where Qi,m
'  is the “minor” variable of the ith degree of freedom in the mth copy and Qi 

is the “major” variable of the ith degree of freedom.  This was developed in detail 

previously.
12, 14

  The calculated force is then compared with the force on the “major” 

variable as a ratio 

i,l =
 P i,l

Pi

, 
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Figure 5.4  This is the arrangement of the initial positions (in unitless dimension) of 

the atoms in the two simulations described in Section 5.5  The yellow dots are free 

atoms and the blue dots (the bath) are atoms in a diatomic.  Two trajectories were 

simulated.  In the first, the yellow atoms were “fired” in such a way as to collide with 

the nearest blue atom.  In the second trajectory, the yellow atoms were pushed to 

move along the y-axis toward the diatomic. 

 

 

which is compared to a user-defined tolerance, .  If I,l >  then the constraint is 

relaxed and the particle is removed from the bath.  Of course, after the particle is 

removed from the bath, at some point, it makes sense to return it.  This is 

accomplished rather simply:  after a user-defined number of steps, the particle is 

returned to its average location, after checking that this is a safe place for it to be 



 100 

returned.  Of course, such a change breaks the flow of the dynamics.  But its effect 

can be easily hidden in larger systems under the weight of the size of the averages.  In 

smaller systems, sometimes it is preferable to skip the merging process altogether. 

5.5 EXAMPLE TRAJECTORY 

In the interests of illustrating the relationship between conventional MD, LES, 

and the EXACT approximation, we now present the results of two simple simulation 

trajectories performed on a system composed of four bodies.  The simulation was 

performed using unitless variables.  All four particles interact via the (12-6) Lennard-

Jones potential (see the first term of Equation 5.2, A=8x10
-4

, B=4x10
-5

).  Two of the 

particles had a mass of 20, while the other two had a mass of 16.  The particles with 

mass 16 were joined together via Hooke’s law, with an equilibrium distance of 1.5 

and a spring constant of 0.1.  The atoms were arranged as in Figure 5.4, and the 

trajectories were integrated with a time step of 0.1.  The bonded atoms were started 

with no momentum, while the other atoms were given two separate trajectories 

(corresponding to the two simulations).  In the first trajectory, the free atoms were 

each directed to collide with the nearest of the bonded atoms.  In the second 

trajectory, the free atoms were directed along the y axis.  Analogous simulations were 

performed using the LES and EXACT (threshold = 150) methods.  In these 

simulations, the bonded atoms were defined as the bath, and the two copies 

corresponded to the two trajectories described above.  Figure 5.5 depicts the results of  



 101 

 

 

  
Figure 5.5 a.) (top) Distance (unitless) between colliding atoms in the first system described 

in Figure 5.4 using conventional MD, LES, and EXACT.  The conventional and EXACT 

results are similar (but differ only near the end of the course) and the LES result differs.  b.)  

(bottom)  Distance between the same pair during the second trajectory, where no collision 

occurred.  The LES result differs because the bath atom is affected by the first trajectory. 
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the simulations.  In Figure 5.5a, the distance between one of the pairs of colliding 

atoms is plotted.  There are clear differences between the trajectories generated using 

the different simulation techniques.  The atoms in the conventional MD simulation 

collided after approximately 100 steps.  The EXACT simulation’s collision between 

the atoms was almost simultaneous with those of the MD simulation.  In fact, the 

EXACT trajectory mirrored the conventional MD trajectory except near the  

end, differing only because of the accumulated effect of small differences.  The LES 

simulation was starkly different.  The collision was noticeably delayed, and the 

trajectory differs greatly from the MD trajectory.  Looking at the second trajectory 

depicted in Figure 2.5b, we see that the conventional and EXACT trajectories are 

very similar, showing little interaction between the atoms.  The LES trajectory is 

different only because the bath atoms are affected by the results from the first 

trajectory (represented by Figure 5.5a).  The most notable difference between the LES 

results and the other simulations is shown in Figure 5.6.  This plot shows the total 

energy of the system plotted with time.  At the time of the collision, energy is 

removed from the first trajectory and put into the second.  This effect dramatically 

demonstrates that the trajectories interact strongly, allowing simulations to explore 

areas they otherwise would not explore in conventional molecular dynamics 

simulations because of the effects of energy sharing  between the copies. This point is 

illustrated more directly in previously published work.
10, 12, 14

 

5.6 CONCLUSIONS 

 

This contribution shows how point transformations may be used in the context of 

classical molecular dynamics computer simulations to derive equations of motion 
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Figure 5.6  Energy of the system during both trajectories for LES and EXACT 

simulations.  The EXACT simulation maintains a nearly constant energy, but the LES 

simulation demonstrates a great degree of energy sharing between the two 

trajectories.  This is a dramatic difference between the two techniques. 

describing a collection of structures identical to the original system. Restricting the 

transformation vectors to be orthogonal leads to a unique, analytical solution for the 

transformation coefficients. When holonomic constraints are applied to a subset of the 

transformed coordinates, equations of motion for a new family of MD simulations—

multiple-copy, mean field methods—emerge. An existing multiple-copy, mean field 

method, locally enhanced sampling (LES), represents one limit where bath particles 

of every structure are constrained to the same location throughout the simulation, 

whereas the opposite limit, where bath particles of each structure evolve 

independently of every other structure, represents independent MD simulations of 
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multiple copies. An algorithm called ensembles extracted from atomic coordinate 

transformations (the EXACT approximation) has also been developed that allows 

interpolation between the two limits. A simple numerical example shows that 

trajectories evolved under the EXACT approximation may closely approximate a 

conventional MD trajectory, whereas previous publications
10

 show that the 

approximation can also retain the ability of LES to sample geometries that are 

inaccessible to conventional MD simulations. Thus, these results illustrate a use of 

several concepts from classical mechanics in a simple, yet practical research 

application. 
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CHAPTER 6 

 

Evaluating the role of varying pressure in finding 
energy minima during simulated annealing of polymer 
models 
  

6.1 INTRODUCTION 

 

Polymer systems are generally difficult candidates for computational study, because 

their multiple conformations are responsible for a high degree of difficulty in finding 

low energy structures.  This manifests as a glassy potential energy surface which 

complicates application of conventional computational methods
1
 typically employed 

in studying the structural and thermodynamic properties of these systems, such as 

molecular dynamics (MD)or Monte Carlo (MC).
2
  Glassy potential energy surfaces 

are characterized by having a great number of accessible low energy states.  

Generally MD and MC are supplemented by techniques such as simulated annealing 

to improve the quality of the results.
3-9

  This is especially true in structural studies, 

particularly when searching for low energy states of such systems.
6-8

  Alternative 

methods are available and are commonly used,
10, 11

 since no one class of optimization 

methods is suited to all problems.  Presented here is a technique that modifies 

simulated annealing by adding pressure as an additional control parameter.  This extra 

parameter is tested to assess its utility in the special case of frustrated, glassy polymer 

systems.  Frustrated systems are characterized by having several conditions that are 

impossible to simultaneously fulfill.  First we review optimization techniques 

employed in the study of complicated systems, such as the polymer case we study 
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here.  Then we explain the advantages of the simulated annealing approach, and show 

how the addition of pressure as a parameter modifies the method.  Finally, we present 

results that demonstrate the value of our proposed approach. 

6.1.1 Popular Molecular Dynamics Based Optimization Methods 

One of the most important pieces of information useful to understanding chemical 

phenomena is structure.  Understanding the spatial arrangement of the various atoms 

contained in a chemical system may seem rather basic, but it is necessary to provide 

insights into the reactivity, thermodynamics, and spectroscopic behavior of the 

system.  Of course, determining the structure of chemical systems can be 

accomplished experimentally using X-ray crystallography,
12

 NMR,
13

 and other 

methods.
14

  Quite commonly now, chemical structures are determined 

computationally.  Using the quantum approach,
15

 structures of small or even medium 

sized molecules are determined routinely to great accuracy.  For larger systems, 

which includes condensed phase systems, accuracy is traded for computational 

efficiency and molecular mechanics methods are employed.
16

  Molecular mechanics 

methods, for example, take the AMBER forcefield
17

 and use optimization methods 

traditionally used in mathematics, such as the conjugate gradient algorithm,
18

 to find 

minima of the energy function.  This is a useful approach, but is of limited utility for 

a variety of reasons, including that the search is generally limited to finding local 

minima “near” the starting structure.  More commonly used is molecular dynamics or 

Monte Carlo,
2
 coupled with some optimization algorithm.  Some popular algorithms, 

including  simulated annealing,
4
 a popular algorithm fundamentally important to this 

contribution, are discussed below. 
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6.1.1.1 Locally Enhanced Sampling 

Locally enhanced sampling (LES)
19

 is a technique first proposed in 1990 (the original 

idea was taken from another method),
20

 designed initially to improve the search for 

diffusion paths of small ligands inside a protein matrix.  It has since become a fairly 

popular optimization method, useful when the structure of a small part of the system 

is needed in relation to the remainder.  This small part of the system is copied several 

times.  None of the copies directly interact with each other, but instead directly 

interact only with the remainder of the system, generally referred to as the bath.  

Atoms in the bath interact normally with each other, but interact with the average of 

each of the copied systems.  It is often claimed that this algorithm allowed the 

interaction between the copied parts of the system and the bath to be smoothed.  

Specifically, it has been conveyed that any barriers resulting from this interaction 

would be decreased proportionally to the number of times the smaller part of the 

system was copied.
21

  We do not feel this to be strictly true.  Based on the results of 

Chapter 2, it is more likely that LES allows a system to surmount barriers more easily 

because the energy of individual systems is not conserved.  Rather, in the LES 

approximation, the combined energy of the totality of the systems is conserved.  

Individual systems frequently possess more energy than they started with, allowing a 

sort of “tunneling” behavior.  Each copy can be given a greater allotment of energy 

than in traditional molecular dynamics, and so can better explore the potential energy 

surface, if only until the energy is redistributed to the other systems via the bath 

interaction. 
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The method has been used to explore potential energy surfaces in several situations.
11, 

21-25
  The trajectory mapping application used in the original paper is an important 

example.  There have been other applications of LES to finding low energy 

structures.
11, 21-25

  Although not as commonly used as the method described in the 

next section, LES is still a relatively popular method and has been implemented in a 

variety of molecular dynamics packages in common use. 

6.1.1.2 Replica Exchange 

The replica exchange molecular dynamics simulation method is quite popular.  First 

proposed in 1999,
10

 the method has a relatively straightforward implementation.  The 

entire system under study is replicated a number of times.  Each replica is 

independent, but is held at a different temperature, spanning a range of temperatures.  

The systems are allowed to evolve using molecular dynamics for a set number of time 

steps, and then the temperatures of two systems are exchanged subject to a test: a 

Boltzmann-like probability factor based on the two systems’ temperatures and 

energies.  Since the probability of acceptance is low if the temperatures vary too 

much, only exchanges between systems of neighboring temperature are attempted. 

 

The method has shown great utility in mapping low energy structures of peptide 

systems.  Generally described as finding free-energy surface minima, replica 

exchange has been used to study a variety of systems, including polypeptides, 

proteins, and polymers.
10, 26-31

  Many other examples can be found in the literature.  

This method owes a large part of its existence to simulated annealing, as the methods 
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are quite similar in approach, though simulated annealing has been in use for a much 

longer time. 

6.1.2 Simulated Annealing 

The idea that a state possessing a given energy is populated with a calculatable 

probability is one of the most fundamental ideas in statistical physics and is 

immortalized (at least for the canonical ensemble) in the Boltzmann distribution.  

Given this link between such a readily obtainable quantity (the energy) and 

population it should come as no surprise that an optimization strategy, simulated 

annealing, could be formed from it.  Simply put, simulated annealing
4
 is the process 

where an ensemble of states of a system are generated corresponding to high-energy 

conditions (via raising the temperature) followed by allowing the system to evolve 

toward a lower-energy state.  As cooler states are generated, the system tends to settle 

into areas of low energy, because at cooler temperatures these areas are more likely to 

be populated.  Raising the temperature initially widens the search area by increasing 

the volume of phase-space available to be populated because the systems have a 

greater probability of surmounting barriers separating regions of phase-space.  Then, 

lowering the temperature traps the system in wells with a probability that depends on 

their energy and phase-space volume. 

 

One surprising aspect of simulated annealing is that despite its specific link to 

statistical physics, it has shown its worth in a variety of fields as a general-purpose 

optimization technique.
4
  Such general use can be contemplated because there are a 

wide variety of problems that allow a cost function analogous to the energy to be 
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defined.  In one famous example, the traveling salesman problem, the object is to find 

the quickest path connecting two points along some complicated linkage structure 

sharing features found in road maps.  The energy is represented by a cost function 

generally chosen to be a function of the number of nodes the salesman must cross.  

This function is optimized, generally, using a Monte Carlo procedure where each 

newly generated state is compared with the previous one and either accepted or 

rejected according to the Metropolis criterion.
2
  The temperature is a fictitious 

parameter, but by increasing it, the algorithm accepts trial moves with a greater 

frequency allowing higher “energy” states to be visited.  Lowering the temperature 

biases the simulation into lower “energy” states.  This behavior is exactly analogous 

to the role of temperature in condensed phase systems.  Similar methods have been 

used to solve problems in electrical engineering to design circuits, and in signal 

processing to process images and sounds.
4
  Finally, the most traditional area of 

application is in finding energy minima in condensed systems either using the 

Metropolis/Monte Carlo method outlined above, or by using molecular dynamics as 

the ensemble generation engine.
2
  

6.1.3 Role of Pressure 

Complimenting simulated annealing with pressure annealing to improve the speed 

which low-energy geometries can be located has the potential to improve further the 

quality of simulated annealing searches.  As described above, one role that 

temperature plays in a simulated annealing optimization calculation is in (a least 

partially) defining the phase-space area within which the search is to be conducted.  If 

the system is located in an area of phase space separated cleanly from another by a 
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Figure 6.1.  Structures of the polymer models used in this work are shown.  These 

structures include a.) monoglyme, b.) tetraglyme, and c.) the polymer polyethylene 

oxide. 

 

large barrier, the separated area will only rarely be considered within the calculation.  

This situation requires a particularly long simulation to obtain an accurate result.  

Raising the temperature ever higher, it becomes more likely to surmount such a  

barrier.  Practically, however, raising the temperature can become counterproductive 

by causing the simulation to become unstable or increasing the length of simulation 

time.  Keeping this in mind, making more sensible changes to other simulation 

variables is an avenue worth exploring.  For example, changing other variables which 

allow a greater area of phase space to be considered within the simulated annealing 
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calculation would be desirable.  One such variable is the pressure.  Unlike 

temperature, pressure is not directly related to the energy (at least as directly as in the 

Boltzmann distribution).  Adjusting the pressure indirectly affects the optimization, 

however, because the pressure determines the volume (and the density) of the system, 

which in turn affects the amount of phase space available to be explored.  It increases 

the fraction of explorable phase space using a different approach than using 

temperature alone.  The effects of such changes are explored below. 

6.1.4 Objectives of This Work 

Several systems are tested here to illustrate the benefits that using pressure as an 

optimization control parameter can add to a simulated annealing optimization 

strategy.  First the method was tested on a system composed of Lennard-Jones 

particles.
32

  This system is uncomplicated, and is used here are a control.  Also tested 

were two models for the polymer polyethylene oxide (PEO).
33-35

  Monoglyme is an 

oligomer containing one unit of the PEO polymer, and tetraglyme contains four units 

(see Figure 5.1).  These systems have been previously studied,
33-35

 and PEO is 

interesting because of its potential use as the matrix of polymer-ion batteries,
36, 37

 

among other applications.  Polymers and polymer models are expected to receive 

quite a bit of assistance from pressure in the simulated annealing context because the 

glassy nature of their energy surfaces makes conformational trapping a serious issue.
1
 

6.2 THEORY OF “PRESSURE ANNEALING” 

 

Simulated annealing is among the most used optimization methods employed in the 

field of chemistry for a variety of reasons.  First, the method makes a great deal of 

intuitive sense and can be explained almost entirely using basic appeals to logic.  
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Thus, the fact that it works is something that almost anyone with a basic grasp of 

chemistry can understand.  On the other hand, simulated annealing has actually been 

formally proven  to be an optimization technique, and is on a firm mathematical 

basis.
5, 38

  It has even been shown that when using a proper cooling schedule the 

method is guaranteed to find the global minimum of the system.
38

 Of course, even 

though the conditions required to realize completely the promise of simulating 

annealing are impossible to achieve in practice, the fact that the method could in 

principle attain success is quite appealing.  Perhaps this combination of being easily 

understood, effective, and firmly rooted in theory explains why simulated annealing 

is one of the most popular optimization methods in use, not only in chemistry, but 

also in a wide variety of other fields.  What follows is an abridged summary of 

simulated annealing, along with how a theoretical grasp of simulated annealing helps 

to understand the pressure-temperature annealing procedure proposed in this work. 

6.2.1 Simulated Annealing 

 

A simple, qualitative way of explaining why simulated annealing works starts by 

noting that low temperature states corresponding to low energy should be populated 

with greater probability than higher energy ones, while at higher temperatures the 

populations are less strictly related to the energy of the state, because of the flattening 

of the probability distribution observed at higher temperatures.  In the high 

temperature phase of the optimization, the system wanders and explores phase space 

with relatively lax restrictions, and freezes into the states of higher probability at 

lower temperatures.  Repeated application of heating cooling cycles is guaranteed to 

find the lowest energy states possible, eventually, a fact which has been proven,
5, 38
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but whose explanation is beyond the scope of this contribution.  On the other hand, it 

is instructive to note that simulated annealing is a method that finds the minimum of 

E by manipulating  in the following expression: 

Q(N,V ,T) =
1

C
e E (N,V ,E)dE  

where T is the temperature (  is the inverse of the product between the temperature 

and the Boltzmann constant), V is the volume, C is a normalization constant, and N is 

the number of particles.  Q, is the canonical partition function; , the microcanonical 

partition function; and E is the energy.  In this framework, simulated annealing can be 

interpreted as finding the lowest energy for a system containing N particles in a 

volume, V. 

6.2.2 Pressure Annealing 

 

Using pressure as a variable in an optimization problem at first glance may not seem 

significant.  However, this procedure can be interpreted to produce a well-defined 

result.  Looking at the canonical partition function above, we can write a similar 

expression for a related ensemble.  Since knowing that in the microcannonical 

ensemble, the pressure divided by the temperature is conjugate to the volume,
39

 we 

know that if p (where, p is the pressure of the system) is fixed allowing the volume 

to fluctuate, we can write a partition function for that ensemble as: 

M(N, p,T) =
1

C
e pV (N,V ,E)dE . 

All the variables are the same as described in the previous section, and M is the 

partition function for the NPE ensemble.  This expression for the partition function is 

reasonable since  ~ V
N
 is weighted by e

- pV
 as V gets large.  It is also apparent that 
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as the pressure increases, the volume decreases.  Conversely, decreasing the volume 

increases pressure.  When the pressure vanishes, the volume becomes unbounded. By 

manipulating p as the temperature was manipulated in the simulated annealing 

example, the function V is minimized.  This can be interpreted as finding the smallest 

volume able to contain N particles with an energy, E. 

6.2.3 A Benefit to Including Pressure In Simulated Annealing Optimizations? 

 

In the isothermal-isobaric ensemble (NPT), the partition function contains both the 

pressure and the temperature as fixed variables.  Using this knowledge, we 

constructed an optimization strategy designed to take advantage of pressure as a 

parameter alongside temperature in a pressure-temperature simulated annealing 

strategy.  From the analysis in the previous two sections, it is clear that using pressure 

as an optimization parameter does not act to optimize the energy.  What is true, 

though, is that the pressure does control features of a simulation that can be exploited 

to aid in simulated annealing optimization calculations.   By fixing the pressure to a 

small value, the density of the system decreases, causing the volume of the system to 

increase.  For some systems, this fact is not particularly helpful from the perspective 

of designing an optimization strategy.  However, for bulky systems that are hindered 

at the density of interest, increasing the available volume can be quite helpful.  By 

allowing the molecules to separate, intramolecular energies can be minimized more 

easily.  Then, by increasing the pressure, the molecules can be efficiently compressed 

into a low energy state optimizing the volume, using the procedure explained in the 

previous section.  Using these principles, a pressure-temperature simulated annealing 

optimization strategy can be designed consisting of four steps.  The first step takes the  
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Figure 6.2.  A simple two dimensional model representing a coiled molecule.  The 

molecule exists inside a box whose walls are treated as large potential energy barriers, 

each side of which has length L.  The molecule is composed of beads connected by 

springs, whose equilibrium length is r.  When the length of the side of the box is 

greater than 7r, the molecule can change coil orientation without need to surmount 

any barrier, illustrating that increasing the available volume can make conformational 

searches easier. 

initial state and allows an expansion to occur by fixing the temperature and pressure 

at low values.  After the expansion, the volume is fixed, and traditional simulated 

annealing is performed on the expanded system.  After simulated annealing, the   

pressure is fixed to a large value, as the temperature remains fixed at the final 

simulated annealing temperature.  Finally, after the compression, the system’s energy 

is minimized.  The totality of the method allows two complications of simulated 

annealing to be addressed.  First, in condensed phase systems of molecules with 

hindered rotations, inducing intramolecular conformational changes can be difficult.  
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Also, for the similar reasons, changing the way the system packs can be a challenge 

as well. 

 

Understanding how lowered density might benefit a simulation is not difficult.  

Imagine the simple two dimensional system depicted in Figure 6.2.  This system 

consists of a string of eight beads connected to each other in a coil by springs of 

length r.  The beads do not interact except via the springs, and can be considered hard 

spheres.  The entire coil is contained in a box, with side of length L.  If an 

optimization algorithm seeks to characterize the low energy states of this system, 

moving from the counterclockwise coil depicted to the clockwise coil would be an 

important transition.  The height of the lowest barrier between these two states 

determines the difficult of making the transition.  If the length of the box is 8r or 

greater, no barrier to the transition exists because the system can align as a straight 

line while maintaining each of the springs at its equilibrium length.  If the box is 

smaller than the radius of the semicircle, the system cannot even exist in the low 

energy state.  Systems complicated enough to be of chemical interest not only must 

account for this, but also packing arrangements.  Both are dealt with by the pressure 

annealing procedure. 

6.3 MODEL SYSTEMS AND PROCEDURE 

 

Several systems were used to compare pressure annealing with simulated 

(temperature) annealing.  These systems range from a relatively simple model 

Lennard-Jones system to oligomeric models of polyethylene oxide.  In each case, two 

sets of simulations were performed.  First, traditional simulated annealing was 
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performed.  In these simulations the system was elevated in temperature starting from 

25 K to 1025 K over the course of a simulation on the nanosecond time scale.  After 

the simulated annealing simulation, the system was further minimized using a 

conjugate gradient method.  The minimized structure and energy were reported.  

Secondly, pressure-temperature annealing was performed.  These simulations can be 

divided into three distinct steps.  The first step is heating while allowing the system to 

expand slowly.  The second phase allows the system to expand dramatically while 

maintaining the hottest temperature of the annealing cycle.  Finally the system was 

compressed to its original volume while being cooled.  The system was then 

subjected to the same minimization procedure as in the simulated annealing 

simulation and the final minimized structure and energy were reported. 

6.3.1 Particles with Lennard Jones interactions only 

 

This model system contained particles of argon with a mass of 40 amu.  Here, the 

force between the particles is the (12, 6)-Lennard Jones model for van der Waals 

forces which can be written as 

V (r) = 4
12

r12
6

r 6( ) . 

The parameters for argon were taken from the literature.
40

  The simulation was 

performed using NAMD,
41

 with a time step of 1 fs using a non-bonded cutoff of 12 

Å.  Each simulation involved 540 particles which were randomly placed inside the 

box, and then minimized for 5000 conjugate gradient minimization steps.  For the 

simulated annealing calculations the volume was fixed at 30 Å per side in a cubic 

box.  The temperature ranged from 25 K to 1025 K in 100 K increments with 50 

picosecond simulations at each temperature.  After reaching the highest temperature, 
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the simulation was run for 200 ps, and then cooled by reversing the heating schedule.  

After the system was returned to 25 K, a final equilibration was performed for 50 ps.  

The final structure and energy was obtained after a 5000 step conjugate gradient 

minimization. The pressure-temperature annealing simulations started from the same 

configuration as the corresponding simulated annealing run.  It differed in the 

following ways.  During the heating phase, the pressure was fixed at 0.1 bar, and the 

system was allowed to expand.  During the first 50 ps the system was held at 1025 K 

and the pressure remained at 0.1 bar.  During the next 100 ps at 1025 K, the system 

was allowed to expand dramatically, as the pressure was reduced to 0.025 bar.  By the 

end of this period, the box generally expanded to approximately 40 Å on each side.  

During the final 50 ps the system was held at 1025 K.  During the rest of the cooling 

phase, the pressure was increased to as much as 1000 bar, until the system returned to 

its original volume, at which time the volume was fixed.  The final 50 ps equilibration 

and 5000 step minimization was then performed, and the final energy and structure 

was recorded. 

6.3.2 Monoglyme 

 

Monoglyme (Figure 6.1) is the smallest oligomeric analogue for the polymer 

polyethylene oxide (PEO), and contains a single unit of the glyme repeat unit, capped 

with a methyl group.  The simulations were performed using NAMD and a forcefield 

previously derived for PEO analogues.
33

  Each of the simulations were performed 

after placing the 120 molecules in a random orientation, and then placing them 

randomly in the box ensuring that no two atoms were closer than 1.9 Å apart.  Again, 

the traditional simulated annealing runs were performed at a fixed volume in a cubic 
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box having sides of length 26.25 Å.  The procedure was exactly as described above 

for argon, with the only differences described here.  During the heating phase of the 

pressure-temperature annealing procedure, the pressure was set for 0.05 bar, but 

lowered to 0.025 bar to expand the system.  The final box size was approximately 110 

Å.  The system was compressed during the cooling phase with a pressure of as much 

as 400 bar until the original volume was restored, though as the volume neared its 

original size, the pressure was slowly reduced to avoid overcompressing. 

6.3.3 Tetraglyme 

 

Tetraglyme (Figure 6.1) is an oligomeric analogue for the polymer polyethylene 

oxide (PEO), containing a four repeat units.  The simulations were performed using 

NAMD and the same force field used for monoglyme and intended for PEO 

analogues.
33

  Each of the simulations were performed after placing the 50 molecules 

in a random orientation, and then placing them randomly in the box ensuring that no 

two atoms were closer than 1.9 Å.  Again, the traditional simulated annealing runs 

were performed at a fixed volume in a cubic box having sides of length 26.5 Å.  The 

procedure was exactly as described above, with the only differences described here.  

During the heating phase of the pressure-temperature annealing procedure, the 

pressure was set for 0.1 bar, but lowered to 0.025 bar to expand the system.  The final 

box size was approximately 100 Å.  The system was compressed during the cooling 

phase with a pressure of 500 bar until the original volume was restored, though as the 

volume neared its original size, the pressure was slowly reduced to avoid 

overcompressing. 
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6.3.4 Procedure 

For each of the systems described above, a number of random structures were 

generated.  For the Lennard-Jones system, fifty random configurations were 

generated.  For the polymer models, twenty-five configurations were generated.  For 

each of these random structures, both simulated annealing and pressure annealing 

simulations were performed, and the final energies and structures were recorded.   

6.4 RESULTS AND DISCUSSION 

 

The data collected in the simulations described in the previous section demonstrate 

that the use of pressure as a coordinate in optimization simulations has some 

demonstrable effect on the quality of the structures obtained.  For 52% of the 

Lennard-Jones simulations, 84% of the monoglyme simulations, and 68% of the 

tetraglyme simulations, the energy of the state produced by the pressure annealing 

procedure was lower than that produced from the same starting structure but by 

following the traditional simulated annealing procedure.  Each of the final states was 

characterized by a variety of structural measurements including radial distribution 

functions, radii of gyration, mean square end-to-end differences, and characteristic 

ratios.  Torsion triad analysis was also generated for the polymer model systems.  

Each of the structures produced structural data consistent with published
33-35

 results.  

Following is a more detailed look at the data, along with some discussion of its 

significance. 

6.4.1 Energetic Results 

 

The final energies from each simulation started from a random structure are listed in 

Tables 6.1-6.3.  They reveal two interesting features.  First, the fifty simulations  
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Table 6.1.  Final energies determined by simulated annealing and pressure annealing 

algorithms for each of the fifty Lennard-Jones systems.  Each pair of simulations 

started from the same randomly generated initial structure.  Neither method seems to 

be superior to the other, as lowest energy was found with equal likelihood by both 

methods. 

 
Final Energy (in kcal mol-1) for Lennard-Jones systems 

 

 

 

 

 

Simulated 

Annealing 

Pressure 

Annealing  

Simulated 

Annealing 

Pressure 

Annealing 

1 -953.54 -959.72 26 -955.89 -954.60 

2 -955.53 -958.15 27 -954.38 -957.08 

3 -951.82 -941.17 28 -957.22 -957.02 

4 -963.88 -958.96 29 -955.10 -964.38 

5 -959.86 -957.37 30 -953.17 -954.55 

6 -955.72 -962.54 31 -953.00 -954.04 

7 -958.82 -960.63 32 -953.45 -953.38 

8 -958.23 -952.44 33 -942.91 -955.55 

9 -957.33 -957.85 34 -956.65 -949.70 

10 -952.84 -955.26 35 -955.83 -955.21 

11 -960.52 -958.35 36 -957.34 -959.68 

12 -944.61 -951.79 37 -960.03 -959.50 

13 -955.15 -957.99 38 -956.19 -948.28 

14 -960.71 -947.03 39 -957.45 -960.63 

15 -956.07 -951.94 40 -961.74 -956.73 

16 -955.63 -960.72 41 -952.40 -962.08 

17 -960.70 -953.16 42 -953.11 -961.18 

18 -958.62 -956.65 43 -958.97 -960.29 

19 -956.99 -957.29 44 -959.52 -961.30 

20 -959.05 -953.37 45 -959.73 -959.84 

21 -959.97 -956.79 46 -952.60 -958.94 

22 -957.59 -955.11 47 -945.38 -958.56 

23 -957.30 -954.24 48 -953.92 -963.10 

24 -960.38 -945.11 49 -953.77 -956.70 

25 -958.37 -952.55 50 -958.79 -955.04 
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Table 6.2.  Final energies determined by simulated annealing and pressure annealing 

algorithms for each of the twenty-five monoglyme systems.  Each pair of simulations 

started from the same randomly generated initial structure.  The pressure annealing 

algorithm preferentially gave the lowest energy approximately 80% of the time. 

  
Final energies (in kcal mol-1) for monoglyme 

systems 
  

  Simulated annealing 
Pressure 
Annealing 

1 -734.8209 -741.6008 

2 -722.3525 -741.6008 

3 -721.0294 -741.6008 

4 -735.0073 -741.6008 

5 -737.5804 -741.6008 

6 -729.8086 -741.6008 

7 -728.0307 -741.6008 

8 -741.7752 -741.6008 

9 -727.7178 -741.6008 

10 -730.5577 -741.6008 

11 -729.5520 -736.1320 

12 -729.5520 -737.8802 

13 -729.5520 -738.9512 

14 -729.5520 -740.6107 

15 -729.5520 -725.5618 

16 -729.5520 -734.7025 

17 -729.5520 -717.1497 

18 -729.5520 -732.1472 

19 -729.5520 -733.4708 

20 -729.5520 -741.2944 

21 -744.3963 -715.6028 

22 -737.9864 -751.5224 

23 -719.8457 -742.0861 

24 -734.7466 -737.3870 

25 -728.8936 -733.7409 
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Table 6.3.  Final energies determined by simulated annealing and pressure annealing 

algorithms for each of the twenty-five tetraglyme systems.  Each pair of simulations 

started from the same randomly generated initial structure.  The pressure annealing 

algorithm preferentially gave the lowest energy approximately 70% of the time. 

 
Final energies (in kcal mol-1) for tetraglyme 

systems 
 

 Simulated Annealing 
Pressure 
Annealing 

1 -105.0748 -103.9599 

2 -98.6349 -99.8905 

3 -100.5817 -107.2664 

4 -105.0766 -105.9834 

5 -106.7726 -98.3929 

6 -102.2849 -101.1396 

7 -114.2732 -102.1396 

8 -107.0713 -107.6627 

9 -105.9728 -107.8258 

10 -98.4871 -100.2481 

11 -81.9171 -91.4357 

12 -118.1657 -107.4743 

13 -91.2899 -98.9836 

14 -96.3824 -124.9147 

15 -83.3597 -110.0198 

16 -100.6137 -116.6695 

17 -110.3598 -101.1773 

18 -87.3115 -108.4409 

19 -101.0185 -113.5207 

20 -103.8985 -109.7915 

21 -94.2803 -108.7402 

22 -89.5132 -94.8436 

23 -108.8482 -100.1544 

24 -87.5746 -96.8615 

25 -97.6049 -94.4017 

 

performed on the Lennard-Jones system, 52% of the random structures yielded a 

lower energy during the pressure annealing simulations.  This indicates that pressure  

does not have a significant effect on the results of the simulation, since the result is 

randomly distributed within the two simulation techniques.  For the other two types of 
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simulation the effect seems more pronounced.  For the monoglyme simulations, the 

pressure annealing method generated the lower energy 84% of the time.  For the 

tetragylme simulations, pressure annealing generated the lower energy 68% of the 

time.  Each of these models’ data was accumulated over the course of twenty-five 

random structures.  While the Lennard-Jones system shows no apparent bias towards 

pressure annealing, the bulkier models seem to demonstrate noticeably better results 

when using the pressure annealing method.  This supports the hypothesis that the 

expansion of the system under low pressure, followed by later compression allows the 

system to pack itself more efficiently.  The point particles represented in the Lennard-

Jones simulations have little packing complexity, beyond forming a relatively simple 

lattice.  Each of the polymer models has not only intermolecular packing concerns, 

but intramolecular packing to deal with as well.  Expansion frees the system to 

perform intramolecular reorganization, and the compression helps find an optimal 

intermolecular arrangement.  Based on these results, using pressure as an 

optimization parameter seems to benefit the search for low energy structures of 

hindered systems. 

6.4.2 Structural Results 

 

It is important to verify that each of the states generated correspond to relevant 

structures that have been previously observed to ensure that the data is of high 

quality.  Towards this end, each of the states generated by these methods were 

characterized in a variety of ways, and checked against previous results. For the 

Lennard-Jones simulations, pair-radial distributions functions were generated and 

compared with those of similar systems.  For the polymer models, radii of gyration 
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Figure 6.3.  Radial distribution function formed from the data taken from the lowest 

energy structure found in the Lennard-Jones simulations.  It is representative of the 

results, and compares well with previously obtained results. 

and mean square end-to-end distances were calculated and compared.  These values 

allowed calculation of the system’s characteristic ratio, an additional check.  Finally, 

the torsion angles along the backbone of the polymer models were analyzed using a 

technique called torsional triad analysis, which can be further compared with previous 

results.  In general, the states generated during the course of this work match well 

against previous results, and imply that calculated average structures are similar to 

those reported previously.
33-35

 

6.4.2.1 Radial Distribution Functions 

One of the most basic measures of structure of condensed phase systems is the radial 

distribution function.  Having importance both theoretically and experimentally, this 
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function is used here as a quick look at the arrangement of atoms in the various 

systems understudy.  The function can be represented in an algorithmically suitable 

form, which was used to generate the figures included below: 

g(r) =
V

N 2 (r rij )
j ii

.
2
 

Here, r is the distance between atom pairs, V is the volume, N is the number of 

particles in the system, and rij is the distance between a specific atom pair.  The fact 

that the radial distribution function can be used to indicate the structure of a system is 

apparent:  is counts the number (density) of atom pairs that match a given criteria 

within a certain distance window from each other relative to the density of a bulk 

fluid.  For example in Figure 5.3, the pair-radial distribution function representing the 

lowest energy Lennard-Jones system found in this work is shown.  This radial 

distribution function is typical of fluids with a relatively high degree of order.  The 

function is zero until approximately 3.9 Å (the distance of closest approach due to the 

interatomic potential function).  The high initial peak results from nearest neighbor 

contacts, and the smaller but clearly defined peaks and dips that extend further out 

show a higher than average probability of atoms located in those spots, which 

indicates the presence of additional order.  This figure is typical of the results 

generated in this work for these systems, and is a good comparison with previous 

work performed on like systems.
40

 

6.4.2.2 Radius of Gyration, Mean Square End-to-End Distance, and the 

Characteristic Ratio 

 

The remaining tests in this section are used to characterize the structures of the two 

oligomeric systems studied here.  The three measurements described in this section 
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are interrelated and measure bulk properties of the molecules under study – 

specifically they describe the arrangement of the atoms in relation to the center of 

mass or the ends of the molecule. The first measurement, the radius of gyration, is 

defined as 

S2 = 1
N rk rmean

2

k=1

N

,
42

 

and measures the extent to which the polymer’s mass deviates from its center of 

gravity.  It gives some indication as to how tightly the polymer arranges itself.  Of 

course, the chemical and physical nature of the polymer determines this value, which 

varies according to the physical conditions in which the polymer exists.  However, 

previous studies showed that for tetragylme, the value is approximately 20 Å
2
.
34

  

Published data for monoglyme are unavailable.  The mean square end-to-end 

distance, R
2
, of the polymer is quite easily defined.  It is simply the distance from one 

end of the polymer to the other, squared,
42

 and then averaged over the number of 

polymer molecules in the sample.  This gives a good measure of whether the polymer 

is stretched (or coiled) or compact.  Again, this measurement depends directly on the 

polymer in question, and the physical conditions in which it exists.  In tetraglyme a 

value of approximately 140 Å has been reported.  Finally, the characteristic ratio
42

 is 

an important measurement, because it relates the radius of gyration in a unitless form 

that is easier to compare between oligomers of different lengths.  Additionally, 

according to theoretical calculations, the value has significance in determining the 

amount of flexibility the polymer has.  For a free-jointed polymer of infinite length, 

the characteristic ratio should be 1.  In the freely rotating chain model, the value can 

be used to determine the bond angle.
42

  The characteristic ratio is defined as 
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Table 6.4.  Structural information for each of the runs involving monoglyme is 

presented.  Radii of gyration, mean squared end-to-end distances, and characteristic 

ratios are compiled from the final structures from each run for both the simulated 

annealing and pressure annealing simulations. 

  
Structural data for monoglyme systems 

  
  
  
  
  

Simulated Annealing Pressure Annealing 
  <R2>(Å2) <S2>(Å2) Cn <R2>(Å2) <S2>(Å2) Cn 
1 29.95462 12.64294 4.131672 30.05138 12.63144 4.145018 

2 29.25339 12.642 4.03495 30.05138 12.63144 4.145018 

3 29.04504 12.68264 4.006212 30.05138 12.63144 4.145018 

4 29.71162 12.62215 4.098154 30.05138 12.63144 4.145018 

5 29.33647 12.65295 4.04641 30.05138 12.63144 4.145018 

6 29.25582 12.67993 4.035286 30.05138 12.63144 4.145018 

7 29.19647 12.64122 4.027099 30.05138 12.63144 4.145018 

8 29.50217 12.6627 4.069265 30.05138 12.63144 4.145018 

9 29.27499 12.73361 4.03793 30.05138 12.63144 4.145018 

10 29.5682 12.64571 4.078372 30.05138 12.63144 4.145018 

11 29.42254 12.64617 4.058281 29.56905 12.65642 4.07849 

12 29.42254 12.64617 4.058281 29.81467 12.69759 4.112368 

13 29.42254 12.64617 4.058281 29.93132 12.67364 4.128458 

14 29.42254 12.64617 4.058281 29.8647 12.66215 4.119269 

15 29.42254 12.64617 4.058281 29.47143 12.64929 4.065025 

16 29.42254 12.64617 4.058281 29.97904 12.63597 4.13504 

17 29.42254 12.64617 4.058281 29.2091 12.69603 4.028841 

18 29.42254 12.64617 4.058281 29.59777 12.72194 4.082451 

19 29.42254 12.64617 4.058281 29.86696 12.67191 4.119581 

20 29.42254 12.64617 4.058281 29.80467 12.64283 4.110989 

21 29.33573 12.68304 4.046308 29.23696 12.67301 4.032684 

22 29.78779 12.65052 4.108661 29.82505 12.68439 4.1138 

23 29.23872 12.62334 4.032927 30.34298 12.72182 4.185239 

24 30.01462 12.66012 4.139948 30.06649 12.6111 4.147102 

25 29.26337 12.65458 4.036327 29.70253 12.61566 4.096901 
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Table 6.5. Structural information for each of the runs involving tetraglyme is 

presented.  Radii of gyration, mean squared end-to-end distances, and characteristic 

ratios are compiled from the final structures from each run for both the simulated 

annealing and pressure annealing simulations. 

  
Structural data for tetraglyme systems 

  
  
  
  
  

Simulated annealing Pressure Annealing 
  <R2>(Å2) <S2>(Å2) Cn <R2>(Å2) <S2>(Å2) Cn 
1 124.1425 12.95637 4.280776 129.1815 12.76893 4.454534 

2 118.7149 12.88302 4.093617 130.1666 12.89379 4.488503 

3 132.4862 12.90877 4.56849 129.0914 12.898 4.451428 

4 129.6162 12.86335 4.469524 133.3446 12.976 4.59809 

5 124.0264 12.92801 4.276772 123.1806 12.94306 4.247607 

6 119.7428 12.95901 4.129062 138.1344 12.9213 4.763255 

7 130.5432 12.86378 4.50149 128.7697 12.90611 4.440334 

8 135.4648 12.82505 4.6712 132.9224 12.91239 4.583531 

9 132.8103 12.90405 4.579666 125.0199 12.84688 4.311031 

10 116.7909 12.90094 4.027272 128.7571 12.91853 4.4399 

11 124.7005 12.93324 4.300017 128.4394 12.86183 4.428945 

12 133.3978 12.79128 4.599924 134.0236 12.93111 4.621503 

13 117.9688 12.89667 4.06789 138.3031 13.00522 4.769072 

14 119.3006 12.87578 4.113814 125.1847 12.86455 4.316714 

15 123.0498 12.9339 4.243097 139.8334 12.81507 4.821841 

16 128.7497 12.9282 4.439645 134.7138 12.84843 4.645303 

17 135.5878 12.84452 4.675441 140.6227 12.95821 4.849059 

18 130.0819 12.98611 4.485583 136.3271 12.9139 4.700934 

19 129.7357 12.87325 4.473645 141.1341 12.86061 4.866693 

20 131.3619 12.96661 4.529721 148.0451 12.96339 5.105003 

21 131.6316 12.92065 4.539021 131.696 12.83847 4.541241 

22 118.5199 12.95 4.086893 134.5525 12.88816 4.639741 

23 127.7803 12.85471 4.406217 125.419 12.94454 4.324793 

24 134.0905 12.92728 4.62381 137.0178 13.00921 4.724752 

25 110.0911 12.90026 3.796245 129.1935 12.95532 4.454948 
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Cn =
R2

nl2
. 

where n is the number of backbone bonds in the oligomer and l is an average bond 

distance in polymer system and has a value of approximately 1.5 Å for the glymes  

 (based on published geometries, see reference 33, for example).  Cn for tetraglyme 

has been reported to be 4.9.
33, 34

  Tables 6.4 and 6.5 list the radii of gyration, mean 

squared end-to-end distances, and characteristic ratios for the oligomer simulations 

performed here.  The mean squared end-to-end distances for tetraglyme are within 10 

Å of that previously reported, and the characteristic ratio is within a few tenths of an 

Ångstrom.  The radii of gyration are uniformly lower than previously reported, and 

perhaps indicate a difference due to temperature effects, or the fact that these 

represent a single minimized structure, while the published value is taken from an 

ensemble average at 300 K.   

6.4.2.3 Torsional Triad Population 

This measurement
33-35

 is specific to oligomers, as it can only be defined for a given 

backbone atom sequence of three bonds.  Similar measurements can, of course, be 

defined for other polymers.  Triad analysis for PEO requires measuring a series of 

three torsion angles each time they occur, classifying the conformations as trans 

(labeled t, incorporating angles from 120 degrees to 240 degrees), gauche (labeled g, 

incorporating angles from 0 degrees to 120 degrees), or gauche minus (labeled n, 

incorporating angles from 240 degrees to 360 degrees).  The triads are characterized 

by three letters.  The combination ttt, for example, indicates that all three angles in the  

triad are trans.  Finally, the number of times each combination occurs is counted and 

used to generate the figures described below.  As shown in Figure 5.1, the three  
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Figure 6.4.  A pair of histograms detailing the population of triad types found in a 

representative monoglyme system a.) before the simulation was performed and b.) 

after the simulation was performed.  In the initial state, a wide variety of triad 

combinations existed in the system.  After the optimization procedure, only two 

existed, both of which represent low-strain structures as determined by previous 

work. 
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angles of interest are first the torsion angle around the bond between the atoms 

labeled 2 and 3, the bond between the atoms labeled 3 and 4, and finally, between 4 

and 5.  Monoglyme thus contains a single triad.  Tetraglyme, on the other hand, 

contains four triads in each molecule.  Figure 6.4 shows how the distribution of triads 

changed between the random initial state and the final state for the monoglyme 

simulation that produced the lowest energy.  Initially, the triad distribution was 

randomly distributed, containing a wide variety of triad combinations.  After the 

optimization was performed, only two types of triads remained, corresponding to low 

energy states of each individual strand.  The tgt triad dominated, as expected since it 

is a dominant triad in glyme systems. 
33-35

  A similar situation occurred in the 

tetraglyme simulation which yielded the lowest energy, depicted in Figure 6.5.  

Again, the initial state contained a relatively high variety of traid combinations, but 

after the simulation was performed more dominant triads emerged.  Two triads in 

particular, tgt and ttt each became more populated, which is consistent with 

previously reported results.
33-35

  Also, states such as gtg which are only minimally 

populated in previous work dropped in population considerably.
33-35

  

6.5 CONCLUSION 

We have shown that pressure annealing can help to find low energy structures of 

systems complicated by steric hindrance.  We hypothesize that this is due to the effect 

that lowered density (due to the lowered pressure) has on a bulky molecule’s ability 

to rearrange itself.  Pressure annealing was tested here by allowing such conditions to 

be realized.   Additionally, the final compression phase helps to pack the well-folded 

molecules onto each other.  We showed that bulky molecules gave a lower energy 



 136 

Figure 6.5. A pair of histograms detailing the population of triad types found in a 

representative tetraglyme system a.) before the simulation was performed and b.) 

after the simulation was performed.  In the initial state, a wide variety of triad 

combinations existed in the system.  After the optimization procedure, the 

populations shifted.  Triad combinations shown to be common in tetraglyme systems 

increased in population, while those rarely represented in previous results decreased. 
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nearly 70% of the time (and has high as 80% in monoglyme) during pressure 

annealing simulations when compared to conventional simulated annealing.  In 

contrast, for the simpler Lennard-Jones model pressure annealing performed better 

only about 50% of the time and thus gave no appreciable benefits.  For the systems 

studied, the radial distribution functions, radii of gyration, mean squared end-to-end 

distances, characteristic ratios, and torsion triad populations generated by the method 

compare well with published results.  Pressure annealing shows promise and should 

be further studied by applying it to other interesting systems. In particular, 

applications of the technique to studying the low energy conformations of peptides 

and small proteins might be pursued.  This method, especially in simulations with 

explicit solvent, would seem to be a very promising approach. 

 

Finally, different heating and cooling schedules can have a significant effect on the 

results of simulated annealing studies and an extensive literature exists discussing 

various possible heating/cooling schedules. Although we have chosen one particular 

cooling (and expansion/compression) schedule simply to illustrate the utility of 

pressure annealing, many others exist and their effects should be investigated 

systematically in subsequent work.  Another avenue that deserves further exploration 

includes incorporating the ideas of this work into the replica exchange framework.  

Exchanging replicas at different pressures as well as different temperatures could 

perhaps yield a robust optimization technique, particularly in systems containing 

explicit solvent. 
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CHAPTER 7 

 

Summary and Conclusions 
 

 

Shown in the previous chapters are several methods developed to improve the 

conformational sampling of molecular dynamics (MD) computations in a variety of 

applications.  The locally enhanced sampling (LES) approximation was explained 

using a conventional physical explanation.  This explanation was then used to 

construct a new technique, called the ensembles extracted from atomic coordinate 

transformations (EXACT) approximation that provides a scalable link between LES 

and conventional MD.  In addition to advantages of the method itself, computational 

tests of the EXACT approximation demonstrates the validity of the theoretical work 

presented here.  In addition, a method that extends simulated annealing by using an 

additional optimization parameter, the pressure, was described and demonstrated.  

Intended for use on systems who’s density limits the effectiveness of purely 

temperature-based optimization attempts, the method allows molecules greater 

freedom to do a conformational search without being limited by lack of space due to 

intermolecular interactions.  Though different in approach, the methods described 

here each serve as a useful improvement of molecular dynamics as a research tool. 

Though locally enhanced sampling was originally developed by appealing to a 

Liouville density operator approach, we showed that the method works by simply 

adding holonomic restraints which cause “bath” particles to be held in the same 

positions across several copies of the entire system.  We then used this knowledge to 
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provide alternate explanations for several observed behaviors common to locally 

enhanced sampling simulations.  Specifically, we explained why hot particles fail to 

cool in LES simulations and showed exactly why locally enhanced sampling succeeds 

as an optimization strategy. 

Using our understanding of locally enhanced sampling, we developed an alternate 

simulation method, called the EXACT approximation.  This method, in one limit, 

mimics LES.  In the other limit, it mimics conventional MD.  It can also generate 

trajectories intermediate between these extremes.  It works by incorporating the parts 

of the dynamics that LES ignores when the contribution of a particular part (not clear) 

exceeds a user-defined threshold.  We also demonstrated that the method can produce 

trajectories intermediate between LES and conventional MD in systems including 

argon clusters and in the molecule melatonin.  The results generated by the method 

confirm that our understanding of locally enhanced sampling is correct. 

Finally, we developed an optimization strategy that incorporates pressure 

alongside temperature as an analogue to simulated annealing.  The method was 

applied to finding low energy structures for condensed phase systems of argon and 

the polyethers monoglyme and tetraglyme. The strategy was compared directly to 

simulated annealing and in the argon simulations, both methods provide comparable 

results.  However, for both of the glyme systems, the simulations incorporating 

pressure variation produced lower final energies by a significant margin than those 

using conventional simulated annealing.  There is great potential in pairing this 

method both with other cooling schedules and also in incorporating the ideas 

developed in this work into the replica exchange method. 
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Though finding energy minima of condensed phase systems remains a significant 

challenge for MD simulations, our work has contributed to the field in several ways.  

Firstly, we have provided theoretical insights into the relatively popular method, LES.  

We have also provided a rigorously derived alternative, the EXACT approximation, 

which both illustrates the approximation inherent in LES and provides a method that 

allows some of the advantages inherent in conventional MD and in LES to be 

retained.  Finally, we illustrate how parameters other than temperature can affect the 

efficiency of annealing simulations, by demonstrating that pressure is a beneficial 

optimization parameter when studying hindered systems.  The breadth of our work 

demonstrates the flexibility of molecular dynamics simulations as an important basis 

for potential energy surface optimization strategies. 




