644 research outputs found

    Parallel multiplication and powering of polynomials

    Get PDF
    AbstractThis paper examines the most efficient known serial and parallel algorithms for multiplying and powering polynomials. For sparse polynomials the Simp algorithm multiplies using a simple divide and conquer approach, and the NOMC algorithm computes powers using a multinomial expansion. For dense polynomials the FFT multiplies and powers by evaluating polynomials at a set of points, performing pointwise multiplication or powering, and interpolating a polynomial through the results. Practical issues of applying these algorithms in algebraic manipulation systems are discussed

    Arithmetic circuits: the chasm at depth four gets wider

    Get PDF
    In their paper on the "chasm at depth four", Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree

    Square-rich fixed point polynomial evaluation on FPGAs

    Get PDF
    Polynomial evaluation is important across a wide range of application domains, so significant work has been done on accelerating its computation. The conventional algorithm, referred to as Horner's rule, involves the least number of steps but can lead to increased latency due to serial computation. Parallel evaluation algorithms such as Estrin's method have shorter latency than Horner's rule, but achieve this at the expense of large hardware overhead. This paper presents an efficient polynomial evaluation algorithm, which reforms the evaluation process to include an increased number of squaring steps. By using a squarer design that is more efficient than general multiplication, this can result in polynomial evaluation with a 57.9% latency reduction over Horner's rule and 14.6% over Estrin's method, while consuming less area than Horner's rule, when implemented on a Xilinx Virtex 6 FPGA. When applied in fixed point function evaluation, where precision requirements limit the rounding of operands, it still achieves a 52.4% performance gain compared to Horner's rule with only a 4% area overhead in evaluating 5th degree polynomials

    Parallel Polynomial Permanent Mod Powers of 2 and Shortest Disjoint Cycles

    Get PDF
    We present a parallel algorithm for permanent mod 2^k of a matrix of univariate integer polynomials. It places the problem in ParityL subset of NC^2. This extends the techniques of [Valiant], [Braverman, Kulkarni, Roy] and [Bj\"orklund, Husfeldt], and yields a (randomized) parallel algorithm for shortest 2-disjoint paths improving upon the recent result from (randomized) polynomial time. We also recognize the disjoint paths problem as a special case of finding disjoint cycles, and present (randomized) parallel algorithms for finding a shortest cycle and shortest 2-disjoint cycles passing through any given fixed number of vertices or edges

    On the evaluation of modular polynomials

    Get PDF
    We present two algorithms that, given a prime ell and an elliptic curve E/Fq, directly compute the polynomial Phi_ell(j(E),Y) in Fq[Y] whose roots are the j-invariants of the elliptic curves that are ell-isogenous to E. We do not assume that the modular polynomial Phi_ell(X,Y) is given. The algorithms may be adapted to handle other types of modular polynomials, and we consider applications to point counting and the computation of endomorphism rings. We demonstrate the practical efficiency of the algorithms by setting a new point-counting record, modulo a prime q with more than 5,000 decimal digits, and by evaluating a modular polynomial of level ell = 100,019.Comment: 19 pages, corrected a typo in equation (8) and added equation (9

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve
    • …
    corecore