
Square-Rich Fixed Point Polynomial Evaluation on FPGAs

Simin Xu
Xilinx Asia Pacific

Singapore
siminx@xilinx.com

Suhaib A. Fahmy
School of Computer

Engineering
Nanyang Technological
University, Singapore

sfahmy@ntu.edu.sg

Ian V. McLoughlin
School of Information Science

and Technology
University of Science and

Technology of China
ivm@ustc.edu.cn

ABSTRACT
Polynomial evaluation is important across a wide range of
application domains, so significant work has been done on
accelerating its computation. The conventional algorithm,
referred to as Horner’s rule, involves the least number of
steps but can lead to increased latency due to serial com-
putation. Parallel evaluation algorithms such as Estrin’s
method have shorter latency than Horner’s rule, but achieve
this at the expense of large hardware overhead. This paper
presents an efficient polynomial evaluation algorithm, which
reforms the evaluation process to include an increased num-
ber of squaring steps. By using a squarer design that is
more efficient than general multiplication, this can result
in polynomial evaluation with a 57.9% latency reduction
over Horner’s rule and 14.6% over Estrin’s method, while
consuming less area than Horner’s rule, when implemented
on a Xilinx Virtex 6 FPGA. When applied in fixed point
function evaluation, where precision requirements limit the
rounding of operands, it still achieves a 52.4% performance
gain compared to Horner’s rule with only a 4% area overhead
in evaluating 5th degree polynomials.

Categories and Subject Descriptors
B.2.4 [Arithmetic and Logic Structures]: High-Speed
Arithmetic—Algorithms; F.2.1 [Analysis of Algorithms
and Problem Complexity]: Numerical Algorithms and
Problems—Computations on polynomials

Keywords
Fixed point; field programmable gate arrays; polynomial
evaluation.

1. INTRODUCTION
Polynomials are commonly used in high-performance DSP

applications to approximate the computation of functions,
or to model systems parametrically. They are found inside

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 26–28, 2014, Monterey, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2671-1/14/02 ...$15.00. http://dx.doi.org/10.1145/2554688.2554779.

many basic digital circuits including high-precision elemen-
tary functional evaluation circuits [1] and advanced digital
filters [2].

Simple polynomials can be evaluated using lookup tables.
However, when the degree and wordlength increases, lookup
tables become infeasible and thus computation is more ap-
propriate for polynomial evaluation.Work on software and
hardware approaches for speeding up polynomial evaluation
is numerous. The simplest scheme for computing polyno-
mials is Horner’s rule, which is an inherently serial pro-
cess. Parallel schemes for software implementation, such
as Estrin’s method [3], have been shown to offer a signif-
icant speed improvement. With more resources available,
polynomial evaluation can be accelerated significantly. For
example, Estrin’s method takes 2dlog2(k + 1)e iterations
with dk/2e processing units to evaluate a kth order poly-
nomial. More recently, fully parallel hardware architectures
have been more commonly investigated [4].

Field programmable gate arrays (FPGAs) offer an ideal
architecture for such systems due to their fine-grained cus-
tomisability in terms of datapath wordlength and pipelining.
Numerous FPGA-based polynomial evaluation architectures
have been presented [5, 6], and various methods have been
proposed to speed up polynomial evaluation [7, 8, 9, 10, 11].

In this paper, polynomial evaluation methods are first re-
viewed, followed by the proposal of a novel evaluation al-
gorithm that takes advantage of the reduced complexity
of squaring compared to general multiplication. The new
method is then evaluated against both Horner’s rule and
Estrin’s method. The novel algorithm has two variations,
suited to different implementations, called the Square-Rich
method and Modified Square-Rich method. While this ap-
proach can be applied to both floating and fixed point eval-
uation, we discuss the latter in this paper.

2. BACKGROUND

2.1 Polynomial Evaluation
The general format for kth degree polynomial is,

f(x) =

k∑
i=0

aix
i (1)

The fixed point number x is the input of the polynomial with
a set of coefficients ai. These coefficients are defined by the
application, and are computed in various ways. We assume
that the coefficients do not change frequently, although they
can be updated from time to time, as is the case in most

99

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30708646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

f(x)

f'(x)

...ak

x ak-1 x a0

x2 x4 … xk

a1

x

ak

a0

x ak-2

sq

ak-j+1

mk-j+1 nk-j+1

x ak-1

x a2

a3

...

+

sq

ak

mk nk

... +

...

xj

xk-2j

...

xk-3j+1

x

sq

mk-j+1 nk-j+1
ak-j+1

sq

mk nkak

... +
x2 ...

xj

xk-2j

...

xk-3j+1

x x2 ...

f(x)

f'(x)

Figure 1: Architecture of polynomial evaluator us-
ing Horner’s rule.

systems. In other words, we consider a system in which the
computation using fixed ai is the limiting factor, rather than
the computation of ai values themselves.

Polynomial evaluation procedures have been the subject
of investigation since the 1950s. Apart from directly com-
puting the polynomial, which is only practical for low degree
polynomials [12], a few prominent methods have emerged.

2.1.1 Horner’s Rule
Horner’s rule is a basic and widely used method for com-

puting polynomials, and is used in numerous complex ap-
plications [13, 14, 15, 16]. It works by transforming the
polynomial into a series of multiply-add operations. Con-
sidering the polynomial equation stated in (1), Horner’s rule
re-writes the formula as:

f(x) = {...((ak · x+ ak−1) · x+ ak−2) · x+ ...+ a0} (2)

Horner’s rule has been proven in [17] and [18] to use the
minimal number of iterations to evaluate a particular poly-
nomial, i.e. it is optimal in terms of the number of compu-
tational steps. Furthermore, it also has a regular structure
which is easily implemented, and these factors have lead to
its widespread adoption.

In a hardware context, where a custom pipelined datap-
ath can be built, the required amount of hardware resources
for polynomial evaluation increases linearly as the degree of
the polynomial increases. k multiply-add computations are
needed (generally k multipliers and k adders) in a parallel
implementation. Figure 1 shows the structure of a polyno-
mial evaluator using Horner’s rule.

While the structure is simple, Horner’s rule suffers from
a long latency due to the serial arrangement of operations.
If we denote multiplier latency as Tmul, squarer latency as
Tsq, and adder latency as Tadd, the latency for kth order
polynomial is k · Tmul + k · Tadd, which increases linearly
with the degree of the polynomial.

2.1.2 Parallel Methods
For applications with low latency requirements, such as

communications or cryptography, parallel evaluation is de-
sirable. Dorn [19] proposed a parallel scheme for Horner’s
Rule. Tree structure approaches have also been presented
[20, 21, 22] for ultra-high degree polynomial evaluation (k >
20). Among parallel schemes, Estrin’s method has been pre-
ferred due to its short latency [23].

Estrin’s method has since been adopted in many applica-
tions [5, 24] for fast evaluation of polynomials. It works by
reforming (1) as follows:
If k is even:

f(x) = ak · xk +

(k−2)/2∑
i=0

(a2i+1x+ a2i) · x2i, (3)

f(x)

f'(x)

...ak

x ak-1 x a0

x2 x4 … xk

a1

x

ak

a0

x ak-2

sq

ak-j+1

mk-j+1 nk-j+1

x ak-1

x a2

a3

...

+

sq

ak

mk nk

... +

...

xj

xk-2j

...

xk-3j+1

x

sq

mk-j+1 nk-j+1
ak-j+1

sq

mk nkak

... +
x2 ...

xj

xk-2j

...

xk-3j+1

x x2 ...

f(x)

f'(x)

Figure 2: Architecture of polynomial evaluator us-
ing Estrin’s method.

else if k is odd:

f(x) =

(k−1)/2∑
i=0

(a2i+1x+ a2i) · x2i (4)

Each sub expression can be computed in parallel and the
results summed together at the end. The worst case latency
is determined by the exponential function xk and it can be
computed in a total of dlog2(k)e steps, which consists of a
series of multiplication and/or squaring operations. This is
followed by the multiplication of its coefficient and the final
additions. Estrin’s method is shown pictorially in Figure 2.

The overall latency for polynomials up to k = 6 is summa-
rized in Table 1. Generally, the latency increases at a slower
rate than Horner’s Rule with increasing degree, and hence,
for higher degree polynomials the latency is shorter.

Degree Tmul Tsq Tadd

2 1 1 1
3 2 0 2
4 1 2 1
5 1 2 1
6 2 2 1

Table 1: Latency for evaluating kth degree polyno-
mials using Estrin’s method.

This performance is enabled by increased hardware cost.
Although the same number of additions is required as for
Horner’s rule, as many as bk/2cmore multiplications/squares
are required in Estrin’s method to compute each even degree
of xk and this leads to blog2(k)c more squarers and bk/2c−
blog2(k)c more multipliers needed in hardware. Overall im-
plementation costs are summarized for polynomials up to
k = 6 in Table 2.

2.2 FPGA Computation
Modern FPGAs include hard DSP blocks that enable fast

and area efficient multiplication and addition. In the Xil-
inx Virtex 6, and all subsequent 7 Series FPGAs from Xil-
inx, the DSP48E1 blocks support 25×18 bit signed multi-
plication, followed by a programmable ALU in the datap-

100

Degree Mults Squarers Adders

2 2 1 2
3 3 1 3
4 4 2 4
5 5 2 5
6 7 2 6

Table 2: Hardware cost for evaluating kth degree
polynomials using Estrin’s method.

a0

b0

a1

b0

a0_pipe0

b1_pipe0
33:17

16:0

50:34

67:51

103:68

a1_pipe1

a2_pipe2

b0_pipe2

a0_pipe3

b2_pipe3

a1_pipe4

a2_pipe5

b1_pipe5

b2_pipe6

Figure 3: Pipelined 52-bit multiplier built using
DSP blocks.

ath. These blocks can also be efficiently cascaded to sup-
port wider arithmetic. The DSP48E1 primitives also sup-
port dynamic modification of their datapath functions [25],
which can be leveraged for iterative implementations of fun-
damental computational blocks [26]. For polynomial eval-
uation, the basic functions of multiplication and squaring
can be efficiently built using DSP blocks. In order to ob-
tain maximum performance, it is important to consider the
structure of the DSP block when building a computational
datapath [27].

Fast, wide multipliers are built by cascading together chains
of DSP blocks using dedicated hard wires that do not add
significantly to the routing delay. This allows for wide op-
erations to be computed at near full frequency, as long as
all the stages are pipelined. A 52-bit multiplication using
three DSP blocks is shown in Figure 3. Each shaded block
is a single DSP block, with the cascade chains between the
blocks shown. The only extra resources needed are registers
to maintain alignment in the datapath between subsequent
DSP block stages. The pipeline stages before DSP blocks
are indicated by the names of the input bus for simplicity
while the alignment of pipeline stages within and after DSP
blocks are illustrated using small rectangles.

While a squarer can be implemented using multiplication
with its inputs tied together, it is also possible to build wide
squarers more efficiently. The number of DSP blocks re-

carry in
c

a0

a0

2a1

a0

2a2

a0

2a2

a1

a2

16:0

a0
a1

33:17

67:34

max: 68

a0

a1

2a2

a0

2a1

a0

a0

a0

2a2

a1

a2

a1

a0

16:0

33:17

67:34

103: 68

Figure 4: Pipelined 52-bit squarer using DSP blocks.

quired for a squarer grows more slowly than for a general
multiplier, as operand wordlength increases [28]. Hence,
where it is possible to use a squarer instead of a multiplier,
efficiency gains are possible in terms of both area and per-
formance. In our previous work [28], an efficient squarer was
proposed which consumes up to 50% less hardware resources
than an equivalent width multiplier. It can use 1 fewer DSP
block than the method in [29] at a cost of only 127 addi-
tional LUTs. The architecture for a 52-bit squarer is shown
in Figure 4.

The squarer design also benefits in terms of latency. After
pipelining the circuit to meet the maximum frequency of the
DSP blocks, a 52 bit squarer has a pipeline 23% shorter than
an equivalent multiplier. For a 64 bit squarer, this advantage
increases to 31%. Note that in order to achieve maximum
DSP block frequency, it is necessary to add an additional
register stage any time a DSP block output is passed to
LUTs (for implemented small adders for example). This
has not been taken into account in [29] and [13], but is done
by default in this work.

3. SQUARE-RICH METHOD
In this section, we present the novel polynomial evaluation

algorithm. It involves transformation of the general form of
a polynomial into a “square rich” format and so we name it
the “Square-Rich” (SR) method. The main benefit of the al-
gorithm is to achieve faster evaluation with minimum hard-
ware overhead. Although the total number of operations is
more than for Horner’s rule, the hardware implementation
can be more efficient than the “optimum method in theory”,
thanks to the efficiency gains achieved by using squarers
instead of multipliers. The latency of this method will be
shown to be close to that of Estrin’s method but using fewer
hardware resources. Although this paper only presents re-
sults for polynomials up to the 6th degree, the approach can
be applied to polynomials of arbitrary degree.

3.1 Algorithm
The SR method is based on the following hypothesis, il-

lustrated by a 2nd degree polynomial example:

Hypothesis 1.

To evaluate the 2nd degree polynomial,

f(x) = a2x
2 + a1x+ a0 (5)

101

it is advantageous to reform the equation as,

f(x) = a2 · ((x+m2)2 + n2) (6)

Where m2 and n2 are defined as,

m2 =
a1
2a2

(7)

n2 =
a0
a2
− a21

4a22
(8)

The new format completes the square and converts the orig-
inal polynomial into its vertex form. In (6), m2 and n2 are
coefficients derived from a1 and a0, thus they can be con-
sidered precomputed values. It can be seen that four steps
are needed to compute (6): one addition, one square fol-
lowed by another addition, and a final multiplication. The
same number of steps is needed using Horner’s rule but
with two multipliers and two adders. The latency is thus
Tmul + Tsq + 2Tadd for the proposed method, compared to
2Tmul + 2Tadd for Horner’s rule. If Tsq < Tmul, this rep-
resents a saving. The SR method also results in reduced
hardware cost since the resources required for a squarer are
fewer than for a multiplier.

To apply Hypothesis 1 to the general kth degree polyno-
mial in (1), we define an integer number j, which is the
binary logarithm of k:

j = blog2kc (9)

and define

pt(x) = (ak−tx
k−t + ak−j−tx

k−j−t + ak−2j−tx
k−2j−t),

(10)

where t ranges from [0, j − 1]. Then the equation can be
divided into the following groups:

f(x) =

j−1∑
t=0

pt(x) + f ′(x), (11)

where f ′(x) only exists if k − 3j ≥ 0 and is

f ′(x) =

k−3j∑
i=0

aix
i. (12)

In pt(x), a common divisor of ak−tx
k−2j−t can be extracted

so that the equation becomes

pt(x) = ak−tx
k−2j−t(x2j +

ak−j−t

ak−t
xj +

ak−2j−t

ak−t
) (13)

Completing the square in (13), it becomes

pt(x) = ak−tx
k−2j−t[(xj +mk−t)

2 + nk−t], (14)

where

mk−t =
ak−j−t

2ak−t
(15)

nk−t =
ak−2j−t

ak−t
−
a2k−j−t

4a2k−t

(16)

Equation (11) with (14) are the general forms of the SR
method for evaluating polynomials of arbitrary degree. The
same iteration process from (10) to (14) is applied on f ′(x)
with degree k′ and for f ′(x), the degree k′ is now k−3j. This
continues until the lowest degree of polynomial has been
computed.

The latency required for the SR method applied in 2th to
6th degree polynomial is shown in Table 3. It is clear that
the SR method has shorter latency than Horner’s rule for
parallel evaluations of higher degree terms and a gain from
an increased number of square operations instead of multi-
plications shown in Hypothesis 1. The latency is no longer
limited by the computation of xk as the highest power ex-
ponential that must be computed is only xj . Therefore, the
SR method can at least equal, or potentially improve upon
the performance of Estrin’s method. This will be discussed
in more detail when FPGA implementation results are pre-
sented in Section 5.

deg Tmul Tsq Tadd

2 1 1 2
3 1 1 3
4 1 2 3
5 1 2 3
6 1 2 4

Table 3: Latency for evaluating kth degree polyno-
mials using SR method.

The hardware resource requirements for the SR method
are shown in Table 4 and a diagram of the architecture is
shown in Figure 5. The hardware requirements are smaller
than for Estrin’s method since fewer multipliers and fewer
squarers are used. Compared to the Horner’s rule, which
needs the minimum number of computational steps, the SR
method can have reduced hardware overhead as a result
of the more efficient squarer (compared to multiplication).
This comparison, in the context of FPGA implementation,
is presented in Section 5.

deg Multiplier Squarer Adder

2 1 1 2
3 2 1 3
4 3 2 4
5 3 3 5
6 4 3 6

Table 4: Hardware cost for evaluating kth degree
polynomials using SR method.

3.2 Coefficients
The SR method needs a new set of coefficients, which are a

one-off derivation from the original polynomial coefficients.
For an application such as an adaptive filter, this may re-
sult in an additional overhead every time the polynomial
adapts, however the generation process can be performed
when deriving the polynomial. Even when the coefficients
are computed on the fly, compared to the actual polyno-
mial evaluation process, this overhead is small and tends
to be negligible as the number of evaluations performed us-
ing each new coefficient set increases. In this paper, the
coefficients are pre-computed and stored in block RAMs at
design time. This is considered to be a typical real-world
scenario; the polynomial is generated during system setup
or programming rather than on the fly.

102

f(x)

f'(x)

...ak

x ak-1 x a0

x2 x4 … xk

a1

x

ak

a0

x ak-2

sq

ak-j+1

mk-j+1 nk-j+1

x ak-1

x a2

a3

...

+

sq

ak

mk nk

... +

...

xj

xk-2j

...

xk-3j+1

x

sq

mk-j+1 nk-j+1
ak-j+1

sq

mk nkak

... +
x2 ...

xj

xk-2j

...

xk-3j+1

x x2 ...

f(x)

f'(x)

Figure 5: Architecture of polynomial evaluator us-
ing SR method.

4. ERROR ANALYSIS
In real applications, like function approximation, the com-

plexity and latency of polynomial evaluation is often traded-
off against accuracy. A certain tolerance of error, including
evaluation error and other errors may be allowed and the de-
signer can implement faithful rounding for coefficients and
perform truncation in intermediate computations while con-
trolling the total error. In this paper, as we are only inter-
ested in the process of polynomial evaluation, we assume
that all other error factors involved are the same among all
the evaluation algorithms except for evaluation error caused
by rounding. The error contributed by the coefficient gener-
ation process in previous sections is negligible and we assume
that the new coefficients themselves are computed without
additional errors being introduced.

Two types of wordlength optimization for fixed-point im-
plementation in FPGA will be discussed in this paper and
the error analysis will performed differently in the individual
contexts.

4.1 Fixed Point Implementation
First, we consider a general fixed point implementation

where each computation will only truncate its result to the
same wordlength as the input operands, which is common
practice in many signal processing systems. In this case,
as the error is mainly associated with the multiplications,
different evaluation algorithms will have different evaluation
error, due to the differing structures. Generally, as Horner’s
rule requires the least number of computational steps, it
is more accurate than any other evaluation scheme in this
context. Take a 3rd degree polynomial as example. The
total evaluation error using Horner’s rule can be calculated
from

εtotalf(x) =

2∑
i=0

εeval(qi · x+ ai) · xi (17)

In (17), qi is the multiply-add result for the i+ 1th term ex-
cept for the highest degree, which is ak. Each multiply-add
evaluation error only depends on the previous multiply-add
result. Assuming x is in the range of [0, 1], for higher de-
gree terms, each multiply-add evaluation error is multiplied

by the exponential of x and thus it is less significant in the
overall error than the lower degree terms.

For Estrin’s method, as more multiplication steps (includ-
ing squares) are required, it naturally has larger error than
Horner’s rule in this context. For the same 3rd degree poly-
nomial, the total evaluation error has four terms rather than
three and it can be represented as,

εtotalf(x) = εeval(a1 · x+ a0)

+ (a3x+ a2) · εtrunc(x
2)

+ x2 · εeval(a3 · x+ a2)

+ εtrunc((a3x+ a2) · x2) (18)

The first and third error term refer to the evaluation errors
of the multiply-add computation and they are comparable
with Horner’s rule. However, the other two error compo-
nents may contribute to a larger total error than Horner’s
rule, depending on the value of the coefficients. The second
error term εtrunc(x

2), which refers to the truncation error
of the square and is comparable with εeval(q1 · x + a1) in
(17), is multiplied by a3x + a2 which can be larger than x.
The last error term εtrunc((a3x + a2) · x2), which refers to
the truncation error of the multiplication indicated by ·, is
due to the additional multiplication that Horner’s rule does
not require. For higher degree polynomials, Estrin’s method
is worse in terms of total evaluation error with the current
wordlength optimization. There will be more error compo-
nents for Estrin’s method than Horner’s rule due to a larger
number of operations and the error from the exponential
computation is significant as well, however, we do not detail
them here due to space constraints.

In contrast, the SR method has smaller error than Es-
trin’s method due to fewer multiplication operations. For
the same 3rd degree polynomial, the total evaluation error
can be represented as,

εtotalf(x) = εeval(a0 + p0)

+ a3x · εeval((x+m3)2 + n3)

+ ((x+m3)2 + n3) · εtrunc(a3 · x3) (19)

The first error term εeval(a0+p0) refers to the evaluation er-
ror of the final multiplication in p0 and the addition with a0,
which is the same amount as the first error term in Estrin’s
method (18). The second error term refers to the evaluation
error for computing the square and the addition of n3 while
the last error term refers to the truncation error of a3 · x3.
Depending on the value of the coefficients, these two terms
have similar values to the second and third error terms in
(18). Therefore, the SR method is better in terms of evalu-
ation error than Estrin’s method as it has three comprable
error components instead of four. For higher degree poly-
nomials, as the SR method has much fewer multiplication
operations and does not require a large degree exponenti-
ation of x, it can be more accurate than Estrin’s method
generally.

However, the SR method is not always as accurate as
Horner’s rule. In fact, with the current optimization scheme,
the SR method has the same number of evaluation error
components for a 3rd degree polynomial, but the total eval-
uation error could potentially be larger than Horner’s rule,
depending on the value of the coefficients. For higher de-
gree polynomials, the SR method has more error compo-
nents than Horner’s rule due to the number of computa-

103

tions being higher and this difference increases as the de-
gree increases. Therefore, a modified formulation, we call
the “Modified Square-Rich” (MSR) method can be created
and applied to reduce the total evaluation error. The new
format is

p′t(x) = xk−2j−t(ak−t · (xj +mk−t)
2 + n′k−t), (20)

where

n′k−t = ak−2j−t −
a2k−j−t

4ak−t
(21)

To implement the MSR method in hardware, the same
amount of hardware resources are needed as for the SR
method, as the total number of operations is the same. How-
ever, MSR has slighly increased latency, where one more
multiplication must be serially computed for 3rd, 5th and
6th degree polynomials, as summarized in Table 5. The
structure of the MSR method is shown in Figure 6.

deg Tmul Tsq Tadd

2 1 1 2
3 2 1 3
4 1 2 3
5 2 2 3
6 2 2 4

Table 5: Latency for evaluating kth degree polyno-
mials using MSR method.

f(x)

f'(x)

...ak

x ak-1 x a0

x2 x4 … xk

a1

x

ak

a0

x ak-2

sq

ak-j+1

mk-j+1 nk-j+1

x ak-1

x a2

a3

...

+

sq

ak

mk nk

... +

...

xj

xk-2j

...

xk-3j+1

x

sq

mk-j+1 nk-j+1
ak-j+1

sq

mk nkak

... +
x2 ...

xj

xk-2j

...

xk-3j+1

x x2 ...

f(x)

f'(x)

Figure 6: Architecture of polynomial evaluator us-
ing MSR method.

Although one more multiplication must be performed se-
rially, the MSR method reduces the total evaluation error.
Without the common factors to be taken out, the total evalu-
ation error for the same 3rd degree polynomial now becomes,

εtotalf(x) = εeval(a0 + p′0)

+ a3x · εtrunc((x+m′3)2)

+ x · εeval(a3 · (x+m′3)2 + n′3) (22)

Similarly, the first error term refers to the evaluation error
including final multiplication of p′0 and the final addition.
The second error term multiplies the same a3x coefficient as
(19) while the last error term has a much smaller coefficient
which leads to smaller total error.

The MSR method shows its advantages further when ak−t

is small, which is usually the case in high degree polynomial

applications. In this case, nk−t tends to be large and the
total evaluation error using the SR method will be large. In
contrast, as the evaluation error is not related to the value
of nk−t, the MSR method retains its small evaluation error.

In summary, with the above general fixed point error anal-
ysis, Horner’s rule remains the most accurate method. For
lower degree polynomials, the SR method is more accurate
than using Estrin’s method and close to the accuracy of
Horner’s rule. However, for higher degree polynomials, the
evaluation error from the SR method is much larger than for
Horner’s Rule and using the MSR method can reduce the
gap. Section 5 presents the implementation results for the
SR method and MSR method with general wordlength opti-
mization along with results for Estrin’s method and Horner’s
rule as reference designs.

4.2 Faithful Rounding in Specific Application
Another optimization is faithful rounding of coefficients

and other operands, which is only possible in the context
of a specific application, like fixed point function evalua-
tion using polynomials. Typically, implementation in FP-
GAs is more flexible than architectures that enforce a fixed
wordlength for each computation as each operand can be
freely optimized according to requirements. Computational
complexity can be reduced by reducing the wordlength of
each operand bit by bit, as long as the total evaluation er-
ror is no worse than the error target. FloPoCo [13] includes
an automated design generator with such optimization for a
function evaluator using Horner’s rule. For a fair comparison
to the FloPoCo design, we apply a similar rounding strat-
egy for function evaluation using Estrin’s method, the SR
method and the MSR method and our target is to achieve
evaluation error no worse than the FloPoCo designs in each
specific interval. We assume no overflow/underflow occurs
in each computational step.

Gappa 1 is used to verify that the optimized designs are
within the evaluation error bounds. Gappa is a tool that
helps verify and formally prove properties of numerical pro-
grams dealing with floating-point or fixed-point arithmetic
[30] and has been used to verify fixed point polynomial eval-
uations previously [5, 8, 13]. It computes the range of a
given function based on the constraints of using interval
arithmetic. In this case, each rounding trail of a particu-
lar algorithm will be verified by Gappa. If the verification
shows the evaluation error for the SR method, MSR method
or Estrin’s method are not within the same bound as the
FloPoCo design, rounding is modified for the next iteration
and verified once more by Gappa. The verification scripts
are not presented due to space constraints, though the opti-
mized design details are presented in Section 6.

5. IMPLEMENTATION IN FPGA
In this section, a series of evaluators using the SR method

and MSR method are built in Verilog and synthesized, placed
and routed using Xilinx ISE 13.4 on a Virtex 6 XC6VLX240T-
1 FPGA as found on the ML605 evaluation board. These
evaluators are built for 52 and 64 bit arithmetic with poly-
nomial degree ranges from 2 to 6 and equal input and out-
put wordlengths. Each intermediate step truncates its re-
sult to 52 or 64 bits after the maximum wordlength has
been computed. Evaluators using Horner’s rule and Estrin’s

1Version 0.16.4 gappa.gforge.inria.fr

104

method with the same wordlengths and degrees are built as
references. Fixed point multiplications used in the evalua-
tor are built using multipliers provided by Xilinx CoreGen
and squarers are built using the method in [28]. Adders are
synthesized to use carry chain resources in CLBs automati-
cally. The designs are all pipelined and targeted to achieve
the maximum frequency of DSP blocks for the targeted -1
speed grade device, which is 450MHz [31]. The same ap-
proach can be used on higher speed grade devices and re-
sult in higher frequencies. We have chosen the slowest speed
grade to prove the baseline performance gain of the proposed
methods, which can be applied across any FPGA containing
the DSP48E1 primitive. DSP block pipelining is done by in-
stantiating Xilinx primitives and turning on all the optional
register stages to maximize performance. Adders with data
flowing from or to DSP blocks are pipelined using flip flops
or shift registers in CLBs.

A comparison of the cost in DSB blocks for all the evalu-
ators is shown in Table 6.

bits deg MSR/SR Estrin’s Horner’s

52

2 14 23 18
3 23 32 27
4 37 46 36
5 42 55 45
6 51 73 54

64

2 24 40 32
3 40 56 48
4 64 80 64
5 72 96 80
6 88 128 96

Table 6: DSP block usage for all evaluators.

Both the SR and MSR methods use same number of DSP
blocks since the number of operations is the same. They
require at least 3 fewer DSP blocks than Horner’s Rule for
a wordlength of 52 bits and 8 fewer blocks for a wordlength
of 64 bits except for the 4th degree evaluators. Compared to
the Estrin’s method, they are much smaller with up to 22
and 40 fewer DSP blocks for wordlengths of 52 and 64 bit
respectively. Hence, both novel methods are more efficient
in terms of DSP usage.

The equivalent hardware cost for all the evaluators is shown
in Figure 7. Cost is determined in terms of the equivalent
number of LUTs, which we use as a metric to combine the
DSP block count and LUT count. The equivalent number
of LUTs for one DSP block is defined as the total num-
ber of LUTs in the device divided by the total number of
DSP blocks. Hence, a circuit that uses an additional DSP
block should save at least that number of LUTs for it to be
considered an overall area saving. While this metric is not
universally applicable, it serves as a useful proxy here. For
the specific target FPGA, with 150720 LUTs and 768 DSP
blocks, this ratio is 196 (it ranges from 160 to 240 for most
general purpose Xilinx Virtex FPGAs).

For 52 and 64 bit polynomials, both novel methods use
up to 20.9% fewer equivalent LUTs than Horner’s rule for
2nd and 3rd degree polynomials and no more than 5% more
for higher degrees. Considering that Horner’s rule has the
fewest operations, the novel methods are very efficient in
terms of resource requirements, mainly as a result of the ef-

2 3 4 5 6

5,000

10,000

15,000

20,000

25,000

Polynomial Degree

E
q
v

n
o
.

o
f

L
U

T
s

MSR/SR(52bits) Estrin’s(52bits) Horner’s(52bits)

MSR/SR(64bits) Estrin’s(64bits) Horner’s(64bits)

Figure 7: Equivalent hardware cost for all evalua-
tors.

ficient squarer design. Compared to Estrin’s method, the
novel methods use up to 38.3% fewer equivalent LUTs for
2nd degree polynomials. The equivalent LUT count for 3rd

degree polynomials is 18.6% less and up to 29.3% less for
higher degrees. The hardware savings become more signifi-
cant as the polynomial degree increases.

Although other FPGA devices have different equivalent
LUT counts, the novel methods still shows an advantage in
terms of overall hardware cost as savings are dominated by
the use of fewer DSP blocks. The SX series DSP-rich FPGAs
from Xilinx, with a different LUT to DSP block ratio, give
a 3% reduction in area savings against Estrin’s method and
Horner’s rule, for example.

Meanwhile, the SR and MSR methods also show a benefit
in terms of latency compared to Horner’s rule, as shown in
Table 7. The evaluator using the SR method can achieve
up to 54.4% shorter latency for a wordlength of 52 bits and
up to 57.9% shorter latency for a wordlength of 64 bits. For
the MSR method, the figures are 40.0% and 42.9% less than
Horner’s rule.

bits deg SR MSR Estrin’s Horner’s

52

2 27 27 25 30
3 29 42 30 45
4 39 39 35 60
5 39 52 35 75
6 41 54 48 90

64

2 36 36 34 42
3 38 57 42 63
4 51 51 47 84
5 51 70 47 105
6 53 72 66 126

Table 7: Latency comparison for all evaluators with
Fmax all above 400MHz.

105

Comparing to Estrin’s method, the SR method is as fast
in terms of latency for both 52 and 64 bit wordlength poly-
nomials below degree 4. For 4th and 5th degree polynomials,
the SR method is four stages or 11.4% longer than Estrin’s
method, as it can only compute two groups of terms in par-
allel while the other is able to compute three at the same
time. With a 14.6% shorter latency for 6th degree polynomi-
als, the SR method shows its benefit in higher degrees where
Estrin’s method is limited by the slow computation of x6.
Although the details of implementation are not presented
here, the latency benefit for the SR method is sustained for
polynomials with degree higher than 6 and below 15, as the
worst case path for the SR method does not change while
the worst case path for Estrin’s method becomes longer.

On the other hand, the MSR method increases latency
by 34.5% on average compared to the SR method for 3rd

5th and 6th degree polynomials and therefore the latency
is longer than Estrin’s method (but still much shorter than
Horner’s). There is no penalty in latency for 2nd and 4th

degree polynomials evaluated using the MSR method.

6. APPLICATION TO FUNCTION
EVALUATION

Function evaluation is one of the most important applica-
tions for polynomials. In this section, we present function
evaluators using the SR/MSR method and compare the per-
formance with designs generated by the FloPoCo fixed point
function evaluator module [13], which uses Horner’s Rule,
as well as function evaluators using Estrin’s method that we
have built.

The function evaluators built in this section are used to
approximate the function log2(x + 1) in the range of x ∈
[0, 1]. 3rd, 4th, 5th and 6th degree polynomials are used in
the designs with input/output precisions of 36, 52, and 64
bits. The same amount of range reduction is applied for all
the evaluators, which divides the range of x into sub intervals
to achieve higher precision. Coefficients generated from the
approximation process for each interval are shared among
all the methods to minimize approximation error.

We implemented evaluators with the SR and MSR meth-
ods as well as the reference designs targeting the same Xilinx
Virtex 6 FPGA (XC6VLX240T-1) using ISE 13.4 with de-
fault settings. Note that the FloPoCo designs are pipelined
by the tool using the default strategy. We additionally en-
able the DSP optional registers and add one register stage
after the DSP blocks to achieve higher frequency. The other
parallel evaluators evaluated are pipelined manually using a
similar pipelining strategy.

Table 8 summarizes the hardware results for all evalua-
tors. The latencies are in clock cycles, with the DSP blocks
fully pipelined. After each optimization iteration, a new set
of coefficients must be applied to both Estrin’s and the SR
method. For Estrin’s method, it is a simple rounding for
reducing complexity while for the SR method, the coeffi-
cients are re-generated and then rounded to the optimized
wordlength. Coefficients are stored in BRAMs after being
generated and optimized. Although final coefficients may
not have exactly the same wordlengths, they all fit into same
number of BRAM blocks. Therefore, the BRAM count is not
included in the results.

With effective optimizations, all of the methods are able
to reduce DSP block usage. Note that the wordlengths of the

operands are sometimes either too large to fit into a smaller
multiplier or too small to fully utilize the DSP blocks in a
larger multiplier. Therefore, LUTs are used to complete the
multiplication rather than wasting DSP resources. This is
reflected in the LUT usage increases in all the evaluators.

The SR method is extremely efficient for the 3rd degree
polynomial evaluator with a wordlength of 36 bit. It is
24.2% smaller in terms of equivalent LUTs and 36.8% faster
in terms of latency than the FloPoCo design. Compared
to Estrin’s method, where both evaluators have 12 pipeline
stages, it is 35.2% smaller in terms of area. The performance
gain and area savings are mainly as a result of the faster and
smaller squarers used in place of multipliers.

It is also efficient for the 5th degree polynomial evaluator
with a wordlength of 52 bits, where the SR method is 52.4%
faster in latency than FloPoCo at the cost of only 4% more
equivalent LUTs. Compared to Estrin’s method, which can
also achieve the same latency gain for the same polynomial,
the SR method saves two DSP blocks and 49 LUTs.

For the 4th degree evaluators with wordlengths of 36 and
52 bits, the SR method has a 45.8% reduced latency com-
pared to the FloPoCo design on average. However, the
equivalent LUT overhead is larger, averaging 17.6%. Eval-
uators using Estrin’s method for these two polynomials do
not have significantly reduced latency compared to the SR
method, but require 6.6% more hardware resources.

When the degree is as high as 6 and the precision require-
ment is up to 64 bits, the SR method needs 38.3% more
hardware resources than the FloPoCo designs to maintain
equal evaluation error. Meanwhile, due to the large multipli-
cation, the latency gain reduces to 34.6%. Estrin’s method
can only achieve a similar latency gain with two more DSP
blocks and 119 more LUTs.

On the other hand, the MSR method is 14.1% faster in
terms of latency than FloPoCo while it uses only 8 more
DSP blocks but less than half the number of LUTs com-
pared to the FloPoCo 6th degree evaluator. Although it has
more computations and the latency is 12.8% longer than
the SR method, it saves 17.2% in terms of resources due
to smaller multipliers. Interestingly, the MSR method is
also efficient for 5th degree polynomial evaluation, where
the MSR method is only 3 stages slower than SR method,
but reduces the equivalent LUT usage by 15.4%. This trans-
lates into a 45.2% latency gain and 11.9% area saving com-
pared to the FloPoCo design. As the MSR method has a
smaller evaluation error by design, it can be used with fewer
operand bits compared to the SR method, reducing area and
minimising the latency overhead. Thus it is useful in high
precision, large degree polynomial evaluation. For lower de-
grees, although it is smaller than the SR method, the MSR
method has a longer latency.

After pipelining, all the parallel evaluators can achieve an
operating frequency in the range of 375MHz to 385MHz,
agains the FloPoCo designs which only achieve a frequency
below 334MHz, representing more than a 12% throughput
improvement. Further pipelining on top of the FloPoCo
default pipeline strategy could increase the frequency, how-
ever, it would increase latency. Note that as the coefficient
BRAM sizes are the same, the latency for the BRAM reads
is identical for all the evaluators and so is not detailed here.

We have also implemented both Estrin’s method and the
SR method to approximate other functions, including sin(x)
and
√

1 + x. For lower degree polynomials, the SR method

106

FlopoCo Estrin’s Method

bits deg LUTs DSPs eq. LUTs Latency F (MHz) LUTs DSPs eq. LUTs Latency F (MHz)

36 3 314 6 1490 19 320 174 8 1642 12 392
36 4 280 7 1652 26 319 214 10 2174 13 395
52 4 665 14 3409 33 332 189 20 4109 18 384
52 5 901 18 4429 42 334 350 24 5054 20 378
64 6 1215 26 6311 52 322 615 44 9239 33 380

Square-Rich Modified Square-Rich

bits deg LUTs DSPs eq. LUTs Latency F (MHz) LUTs DSPs eq. LUTs Latency F (MHz)

36 3 149 5 1129 12 394 149 5 1129 17 390
36 4 190 9 1954 14 388 212 8 1780 19 385
52 4 259 19 3983 18 381 259 17 3591 21 380
52 5 301 22 4613 20 380 375 18 3903 23 375
64 6 496 42 8728 34 379 563 34 7227 39 376

Table 8: Performance and hardware cost for all evaluators when used to approximate log2(x+ 1).

demonstrates that, with faithful rounding, it is able to out-
perform both Estrin’s method and Horner’s rule similarly to
the results shown in Table 8. However, to achieve 64 bit pre-
cision or higher where a 6th degree polynomial is required,
Estrin’s method, the SR method and the MSR methods are
all unable to match the evaluation error of Horner’s rule.
The solution to this problem would be to further increase
the number of intervals, and reduce the range of each to
compensate for the loss of precision due to evaluation error.
The hardware overhead would be more BRAMs and the la-
tency penalty would be negligible. However this refinement
is beyond the scope of this paper.

7. CONCLUSION
In this paper, an efficient polynomial evaluation algorithm

is presented. It can achieve a 57.9% latency reduction over
Horner’s rule or a 14.6% latency reduction over Estrin’s
method in general fixed point implementation without faith-
ful rounding of the coefficients on a Xilinx Virtex 6 FPGA,
with the help of an efficient squarer design. It can achieve
hardware savings over Horner’s rule implementations and
over 38.3% area reduction compared to Estrin’s method.

When the novel method is applied to a function evalu-
ation application on FPGA, using the SR method can be
52.4% faster in latency than design generated by FloPoCo
using Horner’s rule with 4% equivalent LUT overhead. For
higher precisions, although the latency of the SR method
is still 34.6% shorter than the FloPoCo design at a cost of
38.3% more hardware resources, the MSR method is more
efficient as the latency is only 12.8% longer than using SR
method but with a 17.2% reduction in area overhead. Both
the SR and MSR methods are much smaller than Estrin’s
method in terms of area and have lower latency than designs
using Horner’s rule. We aim to demonstrate more function
evaluators, and larger polynomial degrees, before releasing
the source code for our generator tool.

8. REFERENCES
[1] J.-M. Muller, Elementary functions: algorithms and

implementation. Birkhauser Boston, Inc., 1997.

[2] L. Rabiner, J. McClellan, and T. Parks, “FIR digital
filter design techniques using weighted Chebyshev

approximation,” Proceedings of the IEEE, vol. 63,
no. 4, pp. 595–610, 1975.

[3] G. Estrin, “Organization of computer systems: the
fixed plus variable structure computer,” in Proceedings
of Joint IRE-AIEE-ACM Computer Conference, 1960,
pp. 33–40.

[4] J. Duprat and J.-M. Muller, “Hardwired polynomial
evaluation,” J. Parallel Distrib. Comput., vol. 5, no. 3,
pp. 291–309, 1988.

[5] A. Tisserand, “Hardware reciprocation using degree-3
polynomials but only 1 complete multiplication,” in
Proceedings of Midwest Symposium on Circuits and
Systems, 2007, pp. 301–304.

[6] J. A. Pineiro, J. D. Bruguera, and J. M. Muller,
“FPGA implementation of a faithful polynomial
approximation for powering function computation,” in
Proceedings of Euromicro Symposium on Digital
Systems Design, 2001, pp. 262–269.

[7] D.-U. Lee, A. A. Gaffar, O. Mencer, and W. Luk,
“Optimizing hardware function evaluation,” IEEE
Trans. Comput., vol. 54, no. 12, pp. 1520–1531, 2005.

[8] A. Tisserand, “High-performance hardware operators
for polynomial evaluation,” Int. J. High Perform. Syst.
Archit., vol. 1, no. 1, pp. 14–23, 2007.

[9] N. Brisebarre, J. M. Muller, and A. Tisserand,
“Sparse-coefficient polynomial approximations for
hardware implementations,” in Conference Record of
Asilomar Conference on Signals, Systems and
Computers, 2004, pp. 532–535.

[10] M. Wojko and H. ElGindy, “On determining
polynomial evaluation structures for FPGA based
custom computing machines,” in Proceedings of
Australasian Computer Architecture Conference, 1999,
pp. 11–22.

[11] B. Rachid, S. Stephane, and T. Arnaud, “Function
evaluation on FPGAs using on-line arithmetic
polynomial approximation,” in Proceedings of IEEE
North-East Workshop on Circuits and Systems, 2006,
pp. 21–24.

[12] F. Curticpean and J. Nittylahti, “Direct digital
frequency synthesizers of high spectral purity based on
quadratic approximation,” in Proceedings

107

International Conference on Electronics, Circuits and
Systems, 2002, pp. 1095–1098.

[13] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic
generation of polynomial-based hardware architectures
for function evaluation,” in Proceedings of IEEE
International Conference on Application-specific
Systems Architectures and Processors, 2010, pp.
216–222.

[14] F. Haohuan, O. Mencer, and W. Luk, “Optimizing
logarithmic arithmetic on FPGAs,” in Proceedings of
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2007, pp. 163–172.

[15] J. C. Bajard, L. Imbert, and G. A. Jullien, “Parallel
montgomery multiplication in GF(2k) using trinomial
residue arithmetic,” in Proceedings of IEEE
Symposium on Computer Arithmetic, 2005, pp.
164–171.

[16] D. De Caro and A. G. M. Strollo, “High-performance
direct digital frequency synthesizers using
piecewise-polynomial approximation,” IEEE
Transactions on Circuits and Systems I, vol. 52, no. 2,
pp. 324–337, 2005.

[17] V. Y. Pan, “Methods of computing values of
polynomials,” Russ. Math. Surv, vol. 21, p. 105, 1966.

[18] S. Winograd, “On the number of multiplications
required to compute certain functions,” Proceedings of
the National Academy of Sciences of the United States
of America, vol. 58, no. 5, pp. 1840–1842, 1967.

[19] W. S. Dorn, “Generalizations of Horner’s rule for
polynomial evaluation,” IBM J. Res. Dev., vol. 6,
no. 2, pp. 239–245, 1962.

[20] K. Maruyama, “On the parallel evaluation of
polynomials,” IEEE Transactions on Computers,
vol. 22, no. 1, pp. 2–5, 1973.

[21] I. Munro and M. Paterson, “Optimal algorithms for
parallel polynomial evaluation,” J. Comput. Syst. Sci.,
vol. 7, no. 2, pp. 189–198, 1973.

[22] Y. Muraoka, “Parallelism exposure and exploitation in
programs,” Ph.D. dissertation, 1971.

[23] M. Abbas and O. Gustafsson, “Computational and
implementation complexity of polynomial evaluation
schemes,” in Proceedings of NORCHIP, 2011.

[24] M. Bodrato and A. Zanoni, “Long integers and
polynomial evaluation with Estrin’s scheme,” in
Proceedings of International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing,
2011, pp. 39–46.

[25] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “idea: A
dsp block based fpga soft processor,” in Proceedings of
the International Conference on Field Programmable
Technology (FPT), Dec. 2012, pp. 151–158.

[26] F. Brosser, H. Y. Cheah, and S. A. Fahmy, “Iterative
floating point computation using FPGA DSP blocks,”
in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2013.

[27] B. Ronak and S. Fahmy, “Evaluating the efficiency of
DSP block synthesis inference from flow graphs,” in
Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2012,
pp. 727–730.

[28] S. Xu, S. A. Fahmy, and I. V. Mcloughlin, “Efficient
large integer squarers on FPGA,” in Proceedings of the
IEEE International Symposium on Field
Programmable Custom Computing Machines (FCCM),
2013, pp. 198–201.

[29] F. de Dinechin and B. Pasca, “Large multipliers with
fewer DSP blocks,” in Proceedings of Interenational
Conference on Field Programmable Logic and
Applications (FPL), Sep. 2009, pp. 250–255.

[30] G. Melquiond. (2013) Gappa. [Online]. Available:
http://gappa.gforge.inria.fr/

[31] Xilinx Inc, “Virtex-6 FPGA Data Sheet: DC and
Switching Characteristics,” Xilinx Inc, 2012.

108

