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This paper examines the most efficient known serial and parallel algorithms for multiplying 
and powering polynomials. For sparse polynomials the Simp algorithm multiplies using a 
simple divide and conquer approach, and the NOMC algorithm computes powers using a 
multinomial expansion. For dense polynomials the FFT multiplies and powers by evaluating 
polynomials at a set of points, perform ing pointwise multiplication or powering, and interpolat- 
ing a polynomial through the results. Practical issues of applying these algorithms in algebraic 
manipulation systems are discussed. 

1. Introduction 

Polynomials  represent an important  class of  expressions in algebraic manipulation.  
Efficient operations on polynomials  are requisite for  an efficient algebraic manipulat ion 
system. In designing a parallel system for algebraic manipulation, using parallel ism in 
per forming  polynomial  operations is one of  the more attractive techniques to keep 
processors comput ing productively during substantial amounts of computation.  

Efficient serial algorithms exist for multiplying and powering sparse polynomials.  The 
F F T  algorithm for multiplying and powering dense polynomials  is the most  efficient 
known,  demonstrat ing superiority to other algorithms (such as Eval (Fateman:, 1974a; 
Knuth ,  1969) and Karatsuba (Alagar & Probst, 1987; Fateman, 1974a; Knuth, 1969) both 
in asymptotic analysis and (except for very small cases) empirical evaluation. It has been 
conjectured to be asymptot ical ly optimal. 

It  is the purpose o f  this paper  to explore the potential of  these algorithms for parallel 
execution. We assume a model  of parallel execution based on low overhead shared- 
m e m o r y  multiprocessing. Some simple empirical studies for up to four processors suggest 
these methods work. The data structures used to represent polynomials have some effect 
o n  the efficiency of  the algorithms. 

2. Characteristics of Polynomials 

We will refer to the number  o f  non-zero monomial  terms in a polynomial p as size(p).  
W e  compute degree(p)  (the total degree of p) by summing the exponents in each monomial ,  
and  taking the max imum of these sums. This definition o f  total degree is used in papers  
o n  Gr6bner-basis reduction (Buchberger, 1985). 

Alagar & Probst (1987) define the term uniformly dense to describe a multivariate 
po lynomia l  whose size is nearly maximal for  the given total degree. An example is the 
expansion ( x + y +  1)" which has the form 

l + nx + ny+�89 �9 �9 
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and includes all products of powers of x and y up to total degree n. The complementary  
term non-uniformly dense is used to describe a polynomial such that each variable appears  
raised to nearly every degree, but the number of terms is not maximal. An example is 
the convolut ion 

x d y  ~ "t" X d-l  y I "-b �9 �9 �9 -b x~ y a 
where only terms o f  total degree d are present, though the degrees of x and y range f rom 
0 to d. A polynomial  is sparse if it has few terms relative to the maximum possible for  
the given total degree. The convolution is an example o f  a polynomial which is sparse 
and non-uniformly dense at the same time. A polynomial cannot be both sparse and 
uniformly dense. Obviously, dense and sparse are qualitative terms. Some algorithms are 
very efficient for dense polynomials but highly inefficient for sparse polynomials. 

The following relations show how degree and size are bounded: 

degree(pip2) = degree(p0  + degree(p2) (1) 

size(pip2) <- size(pl) �9 size(p2) (2) 

degree(p k) = k" degree(p) (3) 

size(pk)<-(size(P~ k - l ) .  (4) 

The maximum size of a polynomial for a given total degree is given by the relation 

s i z e ( p ) _  < ~, (v)(degree(p)~ (5) 
i=o\i/\ i / '  

where v is the number o f  variables. For  univariate polynomials v = 1 so this reduces to 

size(p) <_ degree(p)  + 1. (6) 

For  v variables where exponents run from 0 to n in each variable, 

size(p) = (n + 1) v. (7) 

Over a domain with zero-divisors, relation (1) is adjusted to 

degree(ptp2) -< degree(p0  + degree(p2). ( la)  

Relation (4) is derived as follows (Fateman, 1974b): letp = A +  B, where B is a monomial  
and A contains all remaining terms. Then 

P k = ( A + B ) k =  ~ ( ~ )  

I f  no collapsing occurs, as happens for suitably sparse p, each AiB k-i pair will contribute 
exactly size(A t) = size(p) - 1  terms. If  A is a monomial  this degenerates to one term per  
pair, or  k+  1 terms. Otherwise we have a total number of  terms 

= ~ (size(P)i+i-2)= ~ {size(p)+i-2~ 
J=o i=0\ s i z e ( p ) - 2  ] 

= ( s i z e ( p ) +  k -  1) 
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using the identity 

i~=o(r;i)=(r+klc+l) .  

The size for sparse polynomials will grow at most quadratically as multiplications are 
performed. The degree will grow at most linearly under both multiplication and powering. 
Since size is ultimately bounded by degree, quadratic growth cannot be sustained under 
repeated multiplications as polynomials "fill in". As the "density" of the results increases, 
relatively fewer distinct terms will be generated by multiplication. For completely dense 
univariate polynomials, the size and degree grow linearly under multiplication and 
powering. The fastest the size of  pk can grow is approximated by 

(size(P)k+ k - l )  size(p)kq_ o(Size(p)k-"~ 
k~-T-- \ ~ i /  

for large k and increasing size(p). 

3. Complexities of Multiplication and Powering 

The complexity measures we concern ourselves with are the number of coefficient 
additions and multiplications, and the number of exponent comparison steps required 
to order the result. We will consider any of these to be "scalar" although coefficient 
operations may be floating point or arbitrary precision, and hence are potentially more 
expensive than exponent comparisons. We are also concerned with the maximum number 
of processors that can be kept busy with useful work in parallel algorithms. The parallel 
complexity is the maximum number of scalar operations used by any parallel branch of 
the computation. The algorithms we present are "balanced" in the sense that we attempt 
to "farm out" all parallel computations to processors in equal "chunks". The maximum 
and average number of scalar operations required per processor are close. For an ideal 
algorithm, the processor-time product, a good measure of parallel efficiency, is the same 
as the serial complexity. 

Coefficient multiplication is probably the most expensive of the scalar operations as 
used in the Macsyma rational function package (Fateman, 1979). For sparse polynomials 
the parallelized algorithms we look at tend to parallelize efficiently the multiplication 
operations, but require serialized exponent addition or comparison to combine separate 
subresults. The exponent operation count does not dominate serial computation for 
reasonable-size input, and we conjecture that exponent operations will become only 
slightly more important in parallel. 

We begin by showing that the number of scalar multiplications required for polynomial 
multiplication or powering depends strongly upon the size of the result. 

LEMMA 1. At least size(pip2)- size(pa) -size(p2) multiplications are required in the worst 
ease to compute PlP2. 

PROOF. Let A, B, and C be the sets of coefficients in Pl, P2, and PlP2, respectively. If 
the elements of A and B are algebraically independent, the elements of C will be (at 
least) linearly independent. Given that we have generated C with h multiplications, let 
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E = {el, �9 �9  eh} be the set of products produced by the multiplications. C must be formed 
by linear combinations of A, B, and E: 

h nl 112 

ci = y~ xi3e~ + ~ y~,~ai + ~ zi3b~ 
i=1 i = 1  i=1 

1 ~j -<  size(ptp2). 

Since the elements of C are linearly independent, it must be the case that size(p~p2)----- 
h + size(p~) + size(p2), or h ~ size(pip2) -size(p~) - size(p2). 

As a simple corollary, for p~ and P2 "sufficiently sparse", size(pip2) = size(p1) ' size(p2), 
so roughly s ize(p0 '  size(p2) scalar multiplications are required. The Simp algorithm 
operates in exactly this bound. For "sufficiently dense" polynomials, size(pip2) = 
size(p0+size(p2) so the lower bound on multiplications is linear. The best known 
algorithm in this range of densities is the F F T  algorithm, which uses O((degree(pl)+ 
degree(p2)), log(degree(p~)+degree(p2))) scalar multiplications and is conjectured to 
be optimal in this regard. For powering, we have the similar result (Fateman, 1974b): 

LEMMA 2. At least size(p k)-size(p)  scalar multiplications are required to compute pk. 

PROOF. AS before, the coefficient set C is linearly independent so the number h of 
intermediate products must satisfy the inequality size(pk)<-h+size(p),  or h ~  
size(p k) -size(p).  

We know from relation (4) how the size of  pk c a n  grow for sparse polynomials. The 
algorithm N O M C  operates asymptotically with this. For dense univariate polynomials 
the growth is bounded more strictly by relations (3) and (5), giving a lower bound of 
k .s ize(p) .  Again, the best known algorithm for this case is the FFT using 
O(k. size(p), log(k, size(p))) scalar multiplications and is likewise conjectured to be 
optimal in this regard. 

For sparse polynomials, comparison operations are required to order the results. The 
problem of ordering the monomials of the product Pl " P2 is equivalent to the "Sorting 
X + Y "  problem (discussed by Harper et al., 1975) of ordering all pairwise sums of the 
(ordered) elements of two vectors. For size(p~)=size(p2)= n, the lower bound on the 
number of comparisons is [l(n Ig n). A solution by Jean Vuillemin (pers. comm.) uses 
O(n 2) comparisons, i.e. proportional to the largest possible size of the result. Ordering 
the monomials of pk is equivalent to sorting all distinct k-wise sums of elements of the 
vector X. Vuillemin's result is extended by recursively sorting the sets of [k/2]-  and 
[k/2]-wise sums and sorting the pairwise sums of these two sets as before. The work to 
sort the final set will dominate the lower-order sets (see the analysis of N O M C  in section 
(5.2)), so the total number of comparisons used is proportional to the largest possible 
size of  the result 

( s ize(p)+ k -  1) .  

Terms are combined by the addition operations, once comparisons have established 
that they are additive. Thus a lower bound on the number of coefficient additions required 
is 

size(p1) ' size(p2) - size(p~p2) 
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o r  

(s ize(p)+ k - 1 ) -  size(pk), 

which is the number of terms possible under relations (2) or (4), minus the actual size 
of  the result. In the worst case p =pt  = P2 and are completely dense. Under relations (1), 
(3), and (6) the number of coefficient additions required are 

size(p) 2 - 2 .  size(p) 

o r  

size(p k -  1 - k .  size(p) k! k. size(p) 

for multiplication and powering, respectively. Assuming that the results are ordered, the 
coefficient additions amortize into the exponent comparisons. The addition operations 
involved in generating new exponents amortize into the coefficient multiplications. 

It is not obvious how to parallelize the addition or comparison operations in either 
the Simp or N O M C  algorithms. In each case terms generated by different processes may 
add together (or even cancel). In both the Simp and NOMC algorithms we will use a 
parallel mergesort (Aho et aL, 1974) (just parallelize the recursive calls), which requires 

comparisons to sort x items with y processors, y ranging from 1 to x. For fixed y and 
increasing x it approaches a speedup linear in y, though this is not a linear speed-up 
over Vuillemin's result. A reasonably efficient parallel mergesort has been developed by 
Cole (1986), which takes | x) operations to sort x items with x processors. Parallelism 
is applied to operations on individual elements, a very fine level of granularity. This 
process still appears inefficient and unnecessarily complicated for (small) fixed numbers 
of processors and large inputs, particularly if there is a significant overhead to inter- 
processor communication or shared memory access. 

A hash table of monomials can be used as an unordered representation of polynomials 
(Goto & Kanada, 1976). A hash table can be updated in parallel, or used in serial to 
reduce the number of comparisons required to combine terms. The integrity of a hash 
table is difficult to maintain under parallel updates. If this were not an issue, the operations 
involved with combining terms would parallelize perfectly. The details involved with 
locking the hash buckets are complicated enough to possibly negate any advantages. 
Additional overheads such as computing the hash function are also significant. 

4. Operations on Dense Polynomials 

The FFT algorithm (Aho et al., 1974; Bonneau, 1974; Moenck, 1976; Winograd, 1978) 
is useful for multiplying and powering dense polynomials with coefficients from the field 
of complex numbers or a finite computation structure (Bonneau, 1974) (typically the 
integers modulo a prime). The precision or size of the modulus must be decided a priori, 
to be at least as large as the precision of the result. This is an inconvenience in algebraic 
manipulation systems where the magnitude of integer coefficients can grow arbitrarily 
large. 
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The FFT works by computing the discrete Fourier transform of the univariate polynomial 
p(x), which is the vector [p(w~ . . .  ,p(to,~-l)] where d is the degree of p(x),  the size of 
the transform s - d  + 1, and to is some principal sth root of  unity. The inverse of  the 
transform is computed in a nearly identical way; effectively the transform vector can be 
regarded as the coefficients of the polynomial p'(y)=~p(to~)y~ and the vector of 
coefficients of p(x) is [p ' ( to-~ ,p'(to-'~+l)/n]. By evaluating two polynomials at 
to~ w "~-~, multiplying the corresponding values together, and converting the result 
back, the product polynomial is produced. Likewise, powering is performed by evaluating 
the polynomial, powering each resulting value, and converting back to get the powered 
polynomial. 

The (Cooley-Tukey) Fast Fourier Transform (FFT) (Aho et aL, 1974; Bonneau, 1974) 
is the basic algorithm for computing the discrete Fourier transform in time O(d log d). 
It works as follows: 

Let s be a power of 2, s___d+l 
Let A = [ a o  . . . .  , a,_~] be the coefficients of p(x)  (padded with zeros if necessary) in 

some computation structure C. 
Let A '=  [ a ~ , . . . ,  a ' - l ]  be the coefficients in the transformed polynomial p'(y). 
Let to be a primitive sth root of unity in C. 
A' = FFT(A, s, to). 

Recursive FFT(A, s, to): 
[1] if s = 1, return ao. 
[2] split coefficients by index into even-indexed sequence B and odd-indexed 

sequence C. 
[33 B' ,- FFr(  B, s/2, to2), C' ,- FFT(C, s /2 ,  ,02). 
[4] for i ~ 0 t o  s / 2 - 1  do 

al <--bl +oJ ~c~. 

[5] return A'. 

Some multiplication and addition operations are hidden in the powering and the manipula- 
tion of the indices. Asymptotically, | log d) additions and multiplications are perfor- 
med since each step of the recursion works on subproblems of exactly half  the size. d 
must be rounded up to a power of two. Numerous tricks can be used to trim the number 
of operations (Aho et aL, 1974) by a constant factor, specifically by "unravelling" the 
recursion and using bit-operations to permute the coefficients as necessary. An iterative 
form of the FFT can be stated as follows: 

Iterative FFT(A, s, to): 
[1] 
[2] 
[3] 

[4] 
[5] 

for l ~ 0  to lg(s) do 
for i ~ 0  to s - 1  do ti~a~+l. 
for i~-0 to s - 1  do 
rl ~-- ti^(_2U~ O-t)+ t o  ( s / 2 r + l ) ' b l t r e v e r s e ( I )  �9 tiv(2[Ig i]-t). 

for l ~ 0 until s - 1 do a~it . . . . . . .  C tl "" rt. 
return A'. 

where [lg x] is the greatest integer no larger than the log base-2 of x, bitreverse(x) is the 
reversal of the bits in x (within the fixed word length), and ^ and v are bitwise and and 
or, respectively. 
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The Good-Winograd  algorithm (Bonneau, 1974; Winograd, 1978) provides another 
decomposition for cases where s is not a power of 2, but is a product of two relatively 
prime integers of roughly equal size. The Good-Winograd algorithm factors the degree 
into two relatively-prime numbers and treats the polynomial as if it were bivariate (the 
multidimensional algorithm is described in section (4.1)). Powers of x are implicitly 
replaced by power-products of the two new variables. Either the Good-Winograd or the 
Cooley-Tukey algorithms can be applied to the subproblems, depending upon their size. 
The complexity of the Good-Winograd algorithm is the same as the Cooley-Tukey 
algorithm. 

If  we consider the finite-field FFT in terms of bit operations, rather than integer 
operations (Aho et al., 1974), the complexity reads somewhat higher. Letting b be the 
number of bits required to hold the final answer (i.e. b -< [2 lg(x) lg(s)] for multiplication, 
where x is the number of bits required to hold the largest of the coefficients of the 
operands, or b ~ k lg x lg s for raising the polynomial to power k), and s be a power of 
2, we can operate in the ring of integers modulo m = tos/:+ 1 >- b, where the principle sth 
root of unity to is a power of 2. Fixing to as 28 t~g xj satisfies this formula (for multiplication); 
then the modulus m gives us a bit field of length b' ~ O(s lg x). The cost of b'-bit addition, 
then, is O(b'); b'-bit multiplication by to (a power of 2) can also be performed in O(b') 
bit operations. Thus the bit-complexity of the FFT and inverse FFT is O(s 2 lg(s) lg(x)). 

Since the DFT is a linear transformation of coefficient vectors to "value" vectors, 
addition can be performed in either domain. Compound expressions of addition, multipli. 
cation, and powering operations on polynomials can be performed efficiently by transform- 
ing the initial polynomials into their corresponding DFTs and using pointwise addition, 
multiplication, and powering operations. The necessary number of evaluation points and 
precision must be computed ahead of time, as there is no known way to increase the size 
of the transform that is better than converting to coefficient form and computing the 
larger size transform. In fact increasing the number of evaluation points cannot be 
significantly easier than computing the DFT, since we could otherwise derive a faster 
D F T  algorithm by evaluating the polynomial at one point and "filling in" points until 
the s-point DFT is formed. 

Differentiation and integration of polynomials in D F T  form are apparently most easily 
done by conversion back to coefficient form, performing the operation, and converting 
to D F T  form again. In fact, a few inexpensive "standard" operations appear to be harder 
in the D F T  form, such as identifying a zero polynomial, and computing the value of the 
leading coefficient. Identifying a zero polynomial takes time linear in s, since each 
evaluation point must be zero. Finding the sign of the leading coefficient requires finding 
the non-zero coefficient of highest degree, which requires looking at (and generating) all 
the coefficients in the worst case. 

4.1. THE MULTIVARIATE FFT 

The multivariate D F T  of a v-variate polynomial p(xt  . . . .  , xo) is the v-dimensional 
vector [P(toJl',. �9  to~)], where ik ranges from 0 to dk. dk is the highest degree to which 
the kth variable occurs in p (padded out as necessary), tok is a principal dkth root of 
unity in the computation structure. 

The multivariate DFT is computed by repeatedly applying the FFT to each variable 
in turn. Initially p is a v-dimensional coefficient vector [Pt,.. .j; in the kth iteration the 
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partially transformed vector 

j~ =0 

is mapped into 

d k - I  . , r, i k _ l J k _ t l  
Z Piv'.tv(Dtl tJ . . . .  ~ k - I  J 

�9 "" E p,,...,o,,, ', '~ . . . .  ~ J ~  �9 
j 0 Jk =0  

The kth mapping amounts to 1]~,k df FFTs of size dk+ 1, adding up to a total amount 
of work proportional to 

~. dg log dk I-[ dl, 
k~l i~k 

which for uniform d~ = d reduces to | ~ log d~ 

4.2. P A R A L L E L  I M P L E M E N T A T I O N  O F  T H E  F F T  

Both the Cooley-Tukey and the Good-Winograd algorithms parallelize effectively. 
Step 3 of the recursive algorithm can be parallelized to give a parallel running time of 
@(d + d / k  log d/k) for k processors, adding up to time @(d) for k~ O(d) processors. 
This decomposition is suitable for message-passing multiprocessors, where each process 
subdivides the problem and initiates a new process for each subproblem. The more 
intelligent approach would be to have one process divide the coefficient array k ways in 
step 2 and apply the serial iterative algorithm to the subprocesses. The combining step 
4 can be performed recursively in parallel as before. The asymptotic complexity remains 
the same but data traffic between processes is reduced, resulting in a lower constant 
overhead. For a fixed number of processors and "sufficiently large" input, the d / k  log d / k  
term dominates so the speed-up is asymptotically linear in k. 

On a shared-memory multiprocessor, the more efficient iterative algorithm can be 
parallelized in (looping) steps 2, 3, and 4, giving a running time | d) for |  
processors. The appendix gives a Lisp program implementing this version of the parallel 
FFT. 

Shared memory is not absolutely necessary for an efficient parallel FFT. The iterative 
algorithm only requires certain combinations of values at each step; specific permutation 
networks with nearest-neighbor shared memory are sufficient. An example of such a 
processor is the BBN Butterfly (BBN Labs, Cambridge, Mass.). 

Kung (1981) suggested using special-purpose VLSI hardware for computing the FFT 
and other functions. Such circuits (Bonneau, 1974) can be very fast, but are only good 
for fixed-sized input and finite computation structures with bounded modulus. Such 
hardware would be useful for raising the bottom level of the FFT recursion from size 1 
to the size s handled by the FFT hardware, with a resulting time complexity of 
O(n log n/s+ n/s log s) for | log s) hardware. The speed-up is less than linear in s for 
increasingly large inputs. It is unlikely that special hardware would be cost-effective, and 
would certainly be used only with great inconvenience. 

4.3. R E P R E S E N T A T I O N A L  ISSUES 

Using linked lists of monomials to represent input polynomials (as is done in the 
Macsyma general representation (Fateman, 1979) would restrict parallelism the same as 



Parallel Multiplication 315 

the lack of shared memory, since the list must be traversed in serial to separate the even- 
and odd-indexed coefficients on each level of the recursion. 

Converting from linked list form to array form takes linear time and cannot be 
parallelized in any reasonable way. Conversion from array form to linked lists can be 
done in parallel by forming sublists from contiguous sections of the array and splicing 
them together. 

For dense polynomials, linked list representations not only waste time and interfere 
with parallelism, but waste space as well. Since most systems assume sparseness by default, 
a conversion to and from the dense representation should be fast, and a suite of operations 
entirely using dense DFT representations and dense coefficient operations should be 
considered. 

5. Operations on Sparse Polynomials 

In this section we present algorithms for multiplying and powering sparse polynomials 
in parallel, which are asymptotically optimal with regard to scalar multiplication 
operations. 

5.1. THE S I M P  ALGORITHM FOR MULTIPLICATION 

A simple way to multiply polynomials p~ and P2 is as follows (Fateman, 1974a): 

Given polynomials Pl, P2, return pl - P2. 
[1] Ifpt is a monomial, multiply each term of p2 by p~ and return result. Otherwise, 
[2] Split Pt into A and B, and recursively form the products A. P2 and B. P2. 
[3] Merge the two partial products (ordered by exponent), adding coefficients with 

the same exponent. Return result. 

Hence we call it the Simp algorithm. This effectively decomposes polynomial Pl into 
size(p1) monomials, forms the product of each monomial with P2, and successively merges 
the results. The parallelized form is to perform the recursive calls in step 2 in parallel. 

The number of coefficient multiplications required is size(p~) size(p2). The merge step 
amounts to a recursive balanced merge, requiring O(size(p0 size(pa).log(size(p~) 
size(p2))) comparisons. There are size(p~)size(p2)-size(plp2) additions. 

In parallel, k-< size(p1) processors can be used. The recursive step 2 is better replaced 
by splitting p~ k-ways and having each processor perform the multiplication as before. 
Step 3 reduces to performing a parallel mergesort (section 3) on the partial products. 
The number of parallel multiplications is 1/k size(p~) size(p2), since multiplications are 
performed on the bottom level of the decomposition. 

The parallel mergesort uses a parallel measure of comparisons O(size(p~p2)+ 
( s i z e ( P t P 2 ) / k )  log(size(PtP2)/k)), which is asymptotically O(size(plp2)) as k approaches 
size(p1). Replacing the parallel merges with a (serial) k-way balanced merge gives a 
parallel measure of comparisons 

O(size( p~p,) . log ( k ) + (size( ptp2) / k ) log(size( p~p2) / k ) ). 

For message-passing multiprocessors with a high communication cost, this decomposition 
is probably superior. 

Thus, given sufficient processors, the best time for the multiplications is O(size(p~)) 
and for additions and comparisons is O(size(ptp2)). For size(p1)=size(p2)= n, this 
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amounts  to a reduction by O(n) in the time to perform multiplications and O(lg(n)) in 
the time to perform comparisons. In the worst case the number of  additions is reduced 
at most by  a constant  factor, since O(n 2) terms can combine in the final merge. 

5.2. THE N O M C  A L G O R I T H M  FOR P O W E R I N G  

The N O M C  algorithm ( fu l l  mul t inomia l  expans ion  with d y n a m i c  p r o g r a m m i n g )  is one 
of  many asymptotically efficient algorithms for powering sparse polynomials. Several 
alternatives are mentioned in section (5.3). The algorithm is expressed as follows: 

Given a polynomial p = (al +" �9 �9 + a,) and a power k to be computed, return pk. 
[1] if  p is a monomial,  power it and return the result 

(e.g. p = CX~l t �9 " " x ~ ' ,  where c is a coefficient, 
return p = c kxi? +k . . , X~'+k). 

[2] Tabulate products of powers of each a, of total degree [k/2~], [ k / 2  i] for 
i = 0 , . . . ,  log(k) using the relation 
af,  a~:. . . at, , = ( a ~ m ~ , .  . . a[,) . ( a ~ , a ~ ' .  . . arK,), I , = Z . +  K, ,  

I x + ' "  " + L = m ,  .11+'" "+J~= [m/2] ,  K ~ + . .  ' + K t  = Ira/2] .  

( k ) , ,~ 
[3] Return ~ 1112 " It a l 'a2 "" " a[,. 

l l + ,  " , + l ~ = k  " " 

For k a power of 2, the number of monomials tabulated is 

,o~(k) ( s i z e ( p ) + k / , ' - l )  { s i z e ( p ) + k - 1 )  k/2 ( s i z e ( p ) + i - l ' ~  

i~t \ s i z e ( p ) - I  < \  s i z e ( p ) - i  + i = ~ \  s i z e ( p ) - I  / 

( s i z e ( p ) + k - l ~  . f s i z e ( p ) + k / 2 " ~  ( s i z e ( p ) + k - 1 )  

= \  s i z e ( p ) - I  ] •  s i z e ( p ) - I  ) ~ \  s i z e ( p ) - I  " 

Since each rnonomial is formed by multiplying two monomials from the table (using one 
coefficient multiply and v exponent additions), the number of coefficient multiplications 
is asymptotically the same as the number of monomials in the result. The higher-order 
term continues to dominate for k not a power of 2. Each successive multinomial coefficient 
is generated from a previous one using one integer multiply and up to one integer divide. 

For a parallel implementation, the result monomials are broken into groups. Each 
processor fills in what is needed in the monomial table to compute its group of monomials. 
The coefficient multiplications are parallelized perfectly for up to 

size(p) + k -  1) 

size(p) - 1 
0 ( s i z e ( p ) + k / 2 ~  

size(p) - 1 ] 

processors, since the overhead of constructing the lower-order monomials is dominated 
by the cost of generating the k-order monomials. For large k and increasing size(p), this 
bound  approaches 

y/" = size(P) k/2 

k. ( k - l ) - . .  (k/2) 

processors. Beyond this, the second-order term 

size(p) + k / 2 ~  

s i ze (p ) -  1 / 
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becomes significant and restricts the asymptotic speed-up. Therefore the best time for the 
multiplications is 

size(p)+ k/2~ 
s ize(p) -  1 /"  

For Y~" processors the parallel mergesort requires a number of comparisons asymptoti- 
cally proportional to 

( size(p)+ k -  1~ size(p) k 

size(p) - 1 / k[ 

for large k and increasing size(p). Therefore the best time for the additions and com- 
parisons is 

o(size(p)k~ 

6. Some Other Algorithms 

As mentioned earlier, the FFT  algorithm is the most efficient way known to multiply 
and power dense polynomials in serial. Several other algorithms were developed prior to 
the FFT, including Karatsuba (Fateman, 1974a; Alagar & Probst, 1987), which works 
by divide-and-conquer: splitting the two polynomials into equal-sized parts, and adding 
their partial products. Careful arrangement of additions and subtractions eliminates the 
need to compute one partial product for half-splitting, so O(n ~~ multiples are performed 
(in the dense case). Partitioning into quarters gives an algorithm requiring O(n j~ 
multiples, etc. Another is the Eval algorithm (Fateman, 1974a, Knuth, 1969), a conceptual 
predecessor of the/ :FT.  Karatsuba appears reasonable for sparse polynomials, in serial 
or in parallel, though it will degenerate to performing the same operations as Simp for 
sufficiently sparse cases. 

A recent paper by Ben-Or & Tiwari (1988) describes an algorithm for sparse interpolation 
taking O(t 2 log2(t)+log(nd)) operations, where t is the number of non-zero terms in the 
result, n is the number of  variables, and d is the maximum degree to which any variable 
occurs. A sparse analog to FFT  multiplication or powering can be constructed which 
takes operations dependent on the number of non-zero terms. However, the Simp and 
NOMC algorithms are more efficient, taking a number of operations proportional to the 
number of terms in the result. (Furthermore, the sparse interpolation algorithm requires 
the use of sequences of  prime numbers, which are not particularly cheap to compute). 

So far we have made no distinction between univariate and multivariate polynomials. 
The Simp and NOMC algorithms depend on the input being uniformly sparse; a multivari- 
ate polynomial may be separated into sparse and dense components, and operated on 
more efficiently by a combination of algorithms favouring sparsity and density. If  a 
polynomial non-uniformly dense in x is written as univariate in x with polynomial 
coefficients, a density-favouring algorithm can be used on the "backbone" of the poly- 
nomial, while a sparsity-favouring algorithm can be used to operate on the polynomial 
coefficients. 

A recent paper by Alagar & Probst (1987) used a combination of Simp, Karatsuba, and 
FFT  for multiplying multivariate polynomials. They found that Simp tended to outperform 
Karatsuba by about 40% for univariate cases. It is reasonable to believe that Simp should 
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perform even better for sparse polynomials. Alagar & Probst's polyalgorithm should be 
quite efficient for multiplying polynomials of arbitrary densities, since Simp, Karatsuba, 
and FUr" are each most efficient for different cases. Such a polyalgorithm should adapt 
well to parallelism since the Simp, Karatsuba and FFT can be parallelized individually. 
Alternately, a general library for polynomial manipulation might include a parallel 
subroutine for each algorithm so the user can decide based on information about the 
nature of the polynomial data. The presence of parallelism will probably shift the "cut-off" 
points which determine which algorithm will be most efficient, depending upon how well 
the multiplication, addition, and comparison operations parallelize with respect to each 
other. 

For sparse powering, several algorithms are presented in Fateman (1974b), (1974a) 
and Probst & Alagar (1979). NOMC is an efficient variation of the NOMA and NOMB 
algorithms (Fateman (1974b)). The references focus on the asymptotically-efficient BINB, 
for binomial expansion with half-splitting. This is a divide-and-conquer algorithm partition- 
ing the polynomial into the sum of two polynomials, and using the binomial expansion 
to form the result. Computing A m by multiplying A n/2. A ''/2 is more expensive than by 
computing A "-~ �9 A. Performing polynomial multiplications simultaneously will not bal- 
ance the workload among the processors, since the binomial expansion contains power- 
products where the exponents are balanced all different ways. Parallelism can be used 
in performing each particular polynomial multiplication, but this would be applying 
parallelism to large numbers of small subproblems, accumulating process-spawning 
overhead. NOMC was formulated as an alternative, spawning processes at the top-level 
to divide the problem into equal-sized subproblems, one per processor. 

7. Empirical Results 

An experiment was run to compare parallelized versions of  the Simp and Karatsuba 
algorithms, on a 4-processor Alliant running Qlisp. These were implemented as recursive 
algorithms with the Sirnp algorithm generating 2 processes per level of recursion and the 
Karatsuba algorithm generating 3. Each program we tested uses the parallelized algorithm 
up to a fixed number of processes, and the serial algorithm afterward. Table 1 shows the 
result in milliseconds, garbage-collection time excluded. The codes are presented in the 
appendices. 

The Karatsuba algorithm achieved almost perfect linear speed-up to the number of 
actual processors available. The Simp algorithm did not quite, but still ran strictly faster 
as processors were added, for this input. The cut-off point for Karatsuba to outrun Simp 

Table 1. Time to expand (x~3+xt2+ .. " ' t - x n t -  1 )  7 

with 4 processors 

Number of processes Simp Karatsuba 

1 3537 7589  

2 1864 - -  

3 - -  2375  

4 1067 - -  

8 1100 - -  

9 - -  1875 
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was between (x6~ " + X ' + ' I )  7 and (xS~ ..  "-t-X-]-I) 7 (a well-coded FFT  
should outrun both for as low as (xS+x4+ �9 ..-t-x-l-- 1)3); unfortunately the Qlisp system 
broke for problems that large. 

A serial version of the powering problem ran in 1283 ms on a VAX 11/785 with (Franz 
Inc.) Common Lisp and 3537 ms on the Alliant with one-processor Qlisp; the fact that 
the Alliant is in other respects generally faster than the VAX suggests that Qlisp is poorly 
implemented. 

8. Conclusions 

The parallel Simp and N O M C  algorithms are efficient with regard to the coefficient 
multiplication operations, yielding a reduction in parallel multiplications which is linear 
in the number of processors. Since coefficient multiplication is by far the most expensive 
of the scalar operations, for sparse polynomials of reasonable size we expect a nearly 
linear speed-up corresponding to the reduction in parallel multiplication operations. 
Provided "large" polynomials contain "large" coefficients, the time spent performing 
scalar multiplications should continue to dominate the cost of the remaining operations. 

The parallel mergesorts used to combine terms are not asymptotically optimal with 
regard to the total number of comparisons performed, nor is the reduction in parallel 
comparisons linear with the number of added processors. For large numbers of processors, 
the number of coefficient multiplications required to multiply polynomials of size n is 
reduced by a factor of roughly n, while the comparisons are reduced by a factor of only 
log(n). For sufficiently "large" polynomials containing "small" coefficients and for large 
numbers of processors, the comparisons and additions begin to dominate the cost, since 
they are not so completely parallelized. 

For a fixed number of processors and "sufficiently large" inputs, Simp and N O M C  
approach a linear reduction in all operations. Since parallelism is useful only for relatively 
large inputs--only then is the overhead of process subdivision and scheduling dominated 
by the parallel components of the computation--it appears that these two algorithms 
should be of practical value and attain a nearly linear speed-up as processors are increased 
in number, up to a threshold increasing in the size of the input. 

The FFT is asymptotically the most efficient algorithm known for multiplication and 
powering of dense polynomials, in serial and in parallel. Its serial effectiveness has been 
tested in Fateman (1974a), Bonneau (1974) and Alagar & Probst (1987), and has been 
used in conjunction with other algorithms for sparse polynomials (Alagar & Probst, 1987) 
for a general polynomial multiplication algorithm. A simple modification of" the serial 
approach is suitable for parallelism. 

An algebraic manipulation system for solving large problems should include FFT-based 
routines for multiplying and powering large dense polynomials. Likewise, an algebraic 
manipulation system using multiple processors should utilize the parallel FFT as well. 
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comments, and Herv6 J. Touati for suggestions in the analysis of NOMC. 

This work was supported in part by the Army Research Office, grant DAAG29-85-K-O070, through 
the Center for Pure and Applied Mathematics, University of California, Berkeley, and the Defense 
Advanced Research Projects Agency (DoD) ARPA order #4871, monitored by Space & Naval 
Warfare Systems Command under contract N00039-84-C-0089, through the Electronics Research 
Laboratory, University of California, Berkeley. 



320 C.G.  Ponder 

References 

Aho, A. V., Hopcroft, J. E., Ullman, J. D. (1974). The Design and Analysis of Computer Algorithms, Addison- 
Wesley, Reading, Mass. 

Alagar, V. S., Probst, D. K. (1987). A fast, low-space algorithm for multiplying dense multivariate polynomials. 
A C M  TOMS 13(1), 35-57. 

Ben-Or, M., Tiwari, P. (1988). A deterministic algorithm for sparse multivariate polynomial interpolation. STOC 
88, 301-309. 

Bonneau, R. J. (1974). Polynomial Operations using the Fast Fourier Transform. Ph.D. thesis, Dept. of Mathe- 
matics, Mass. Inst. of Tech., Cambridge, Mass. 

Buehberger, B. (1985). Grifbner bases: an algorithmic method in polynomial ideal theory, ln: Multidimensiona~ 
Systems Theory, (Bose, N. K., ed.) D. l~eidel Publishing Co., 184-232. 

Cole, R. (1986). Parallel Merge Sort. FOCS 86, IEEE, 511-516. 
Fateman, R. J. (1974a). Polynomial multiplication, powers and asymptotic analysis: some comments. SIAM J. 

Comput. 3(3), 196-213. 
Fateman, R. J. (1974b). On the computation of powers of sparse polynomials. Studies in Applied Mathematie~ 

LIII(2), 145-155. 
Fateman, R. J. (1979). Macsyma's general simplifier: philosophy and operation. In: Proe. 1979 Maesyma User~ 

Conference (Lewis, V. E., ed.) 563-582. 
Goto, E., Kanada, Y. (1976). Hashing lemmas on time complexities with applications to formula manipulation. 

S Y M S A C  76, ACM, New York, 154-158. 
Harper, L. H., Payne, T. H., Savage, J. E., Strauss, E. (1975). Sorting X+Y. CACM 18(6), 347-349. 
Knuth, D. E. (1969). The Art of  Computer Programming, VoL 2: Semi-Numerical Algorithms (1st ed.). Addison- 

Wesley, Reading, Mass. 
Kung, H. T. (1981). Use of VLSI in algebraic computation: some suggestions. SYMSAC 81, 218-222. 
Moenck, R. T. (1976). Practical fast polynomial multiplication. SYMSAC 76, 136-148. 
Probst, D. K., Alagar, V. S. (1979). A family of algorithms for powering sparse polynomials. SIAM J. oj 

Computing 8(4), 626-644. 
Winograd, S. (1978). On computing the fast Fourier transform. Math. Comput. 32(141), 175-199. 


