414,330 research outputs found

    Optical lithography

    Get PDF
    Optical lithography is a photon-based technique comprised of projecting an image into a photosensitive emulsion (photoresist) coated onto a substrate such as a silicon wafer. It is the most widely used lithography process in the high volume manufacturing of nano-electronics by the semiconductor industry. Optical lithography’s ubiquitous use is a direct result of its highly parallel nature allowing vast amounts of information to be transferred very rapidly. For example, a modern leading edge lithography tool produces 150-300-mm patterned wafers per hour with 40-nm two-dimensional pattern resolution, yielding a pixel throughput of approximately 1.8T pixels/s. Continual advances in optical lithography capabilities have enabled the computing revolution over the past 50 years

    An adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries

    Get PDF
    We review a scalable two- and three-dimensional computer code for low-temperature plasma simulations in multi-material complex geometries. Our approach is based on embedded boundary (EB) finite volume discretizations of the minimal fluid-plasma model on adaptive Cartesian grids, extended to also account for charging of insulating surfaces. We discuss the spatial and temporal discretization methods, and show that the resulting overall method is second order convergent, monotone, and conservative (for smooth solutions). Weak scalability with parallel efficiencies over 70\% are demonstrated up to 8192 cores and more than one billion cells. We then demonstrate the use of adaptive mesh refinement in multiple two- and three-dimensional simulation examples at modest cores counts. The examples include two-dimensional simulations of surface streamers along insulators with surface roughness; fully three-dimensional simulations of filaments in experimentally realizable pin-plane geometries, and three-dimensional simulations of positive plasma discharges in multi-material complex geometries. The largest computational example uses up to 800800 million mesh cells with billions of unknowns on 40964096 computing cores. Our use of computer-aided design (CAD) and constructive solid geometry (CSG) combined with capabilities for parallel computing offers possibilities for performing three-dimensional transient plasma-fluid simulations, also in multi-material complex geometries at moderate pressures and comparatively large scale.Comment: 40 pages, 21 figure

    Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm

    Get PDF
    © 2016 Elsevier LtdPopulation balance modeling is a widely used approach to describe crystallization processes. It can be extended to multivariate cases where more internal coordinates i.e., particle properties such as multiple characteristic sizes, composition, purity, etc. can be used. The current study presents highly efficient fully discretized parallel implementation of the high resolution finite volume technique implemented on graphical processing units (GPUs) for the solution of single- and multi-dimensional population balance models (PBMs). The proposed GPU-PBM is implemented using CUDA C++ code for GPU calculations and provides a generic Matlab interface for easy application for scientific computing. The case studies demonstrate that the code running on the GPU is between 2–40 times faster than the compiled C++ code and 50–250 times faster than the standard MatLab implementation. This significant improvement in computational time enables the application of model-based control approaches in real time even in case of multidimensional population balance models

    Dynamic Smagorinsky Modeled Large-Eddy Simulations of Turbulence Using Tetrahedral Meshes

    Get PDF
    Eddy-resolving numerical computations of turbulent flows are emerging as viable alternatives to Reynolds Averaged Navier-Stokes (RANS) calculations for flows with an intrinsically steady mean state due to the advances in large-scale parallel computing. In these computations, medium to large turbulent eddies are resolved by the numerics while the smaller or subgrid scales are either modeled or taken care of by the inherent numerical dissipation. To advance the state of the art of unstructured-mesh turbulence simulation capabilities, large eddy simulations (LES) using the dynamic Smagorinsky model (DSM) on tetrahedral meshes are carried out with the space-time conservation element, solution element (CESE) method. In contrast to what has been reported in the literature, the present implementation of dynamic models allows for active backscattering without any ad-hoc limiting of the eddy viscosity calculated from the subgrid-scale model. For the benchmark problems involving compressible isotropic turbulence decay as well as the shock/turbulent boundary layer interaction benchmark problems, no numerical instability associated with kinetic energy growth is observed and the volume percentage of the backscattering portion accounts for about 38-40% of the simulation domain. A slip-wall model in conjunction with the implemented DSM is used to simulate a relatively high Reynolds number Mach 2.85 turbulent boundary layer over a 30 ramp with several tetrahedral meshes and a wall-normal spacing of either & = 10 or & = 20. The computed mean wall pressure distribution, separation region size, mean velocity profiles, and Reynolds stress agree reasonably well with experimental data
    • …
    corecore