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Abstract 

Population balance modeling is a widely used approach to describe crystallization processes.  

It can be extended to multivariate cases where more internal coordinates i.e. particle properties 

such as multiple characteristic sizes, composition, purity, etc. can be used. The current study 

presents highly efficient fully discretized parallel implementation of the high resolution finite 

volume technique implemented on graphical processing units (GPUs) for the solution of single- 

and multi-dimensional population balance models (PBMs). The proposed GPU-PBM is 

implemented using CUDA C++ code for GPU calculations and provides a generic Matlab 

interface for easy application for scientific computing. The case studies demonstrate that the 

code running on the GPU is between 2…40 times faster than the compiled C++ code and 

50…250 times faster than the standard MatLab implementation. This significant improvement 

in computational time enables the application of model-based control approaches in real time 

even in case of multidimensional population balance models. 
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Highlights: 

High resolution finite volume method solution of population balances using GPU 

acceleration  

Significant speed improvement achieved with the used low - cost GPUs  

Development of a computationally highly efficient generic crystallization simulation tool 

 

1. Introduction 

The population balance (PB) modelling framework was introduced by Hulburt and Katz (1964) 

to describe the population dynamics and thence it have been used in numerous fields of science 

including meteorology, biology, physics, chemistry as well as in different aspects of 

engineering. In crystallization science and technology it is the trivial modelling approach 

enabling the description of particulate properties such as particle size, shape, age, composition 

etc. A huge variety of experimental and theoretical works appeared discussing its different 

aspects.  

From mathematical point of view, the PB equation (PBE) is a partial differential equation 

which may involve integral terms if secondary processes like breakage and agglomeration are 

included. A variety of solution methods were proposed, each having their advantages and 

disadvantages. The method of moments was introduced by Randolph and Larson (1971) and it 

is based on reduction of the original PBE. The closure problem of the generated moment 

equation system significantly reduces its practical applicability. However some closure 

techniques exist like the cumulant neglect method (Lakatos, 2008) or the interpolative closure 

(Frenklach, 2002), the generic solution is the quadrature method of moments (McGraw, 1997). 



The quadrature based moment methods are computationally effective, accurate and can be 

applied even on the most complicated PBE-s but, it computes only averaged particulate 

properties. 

As the modern measuring devices have become able to record on-line distributional data (Nagy 

et al, 2013), a high demand appeared to develop new solution methods to compute the particle 

size distribution (PSD) instead of some statistics based averages. Numerous methods exists to 

restore the PSD from the moments, including the approximated density functions with moment 

dependent parameters (Randolph and Larson, 1988) or linear and nonlinear inversions (Aamir, 

2010) and were successfully applied in various studies (Szilágyi et al, 2015), although 

mathematically none of those is exact. The combined quadrature method of moments – method 

of characteristics was a successful technique to solve full 1D PBE-s with nucleation and growth 

only (Aamir et al, 2009, Aamir et al, 2010). The Monte Carlo simulations were successfully 

applied to solve PBE-s as well (Bárkányi et al., 2013; Irizarry, 2008; Smith and Matsoukas, 

1988) but the computational costs are far too increased to be applicable in the majority of 

engineering problems. The method of classes is based on the discretization of internal variables 

but for the more complicated PBEs a large number of classes is required to maintain the 

accuracy (Valentas and Amundson, 1966). The method of weighted residual/orthogonal 

collocation with finite element discretization was also successfully applied to solve PBE-s and 

seems to be an attractive alternative (Ulbert and Lakatos, 2007), however the finite volume 

based methods presents increased accuracy especially near to sharp variations. 

The high resolution finite volume method (HR-FVM) was developed to solve the hyperbolic 

partial differential equation (LeVeque, 2002) and was adapted for the solution of PBEs by 

Gunawan et al. (2004). The HR-FVM is able to solve numerically the PBEs even with 

agglomeration and breakage, moreover, computes the PSD without significant numerical 



diffusion and dispersion. The FVM solution is based on the discretization of the PSD, presented 

in Figure 1a and Figure 1b. For more for details about these methods, see the work of Qamar 

et al. (2006). 

Unfortunately the computational costs of the HR-FVM may become large compared to the 

moment based methods especially when using finer meshes. Basically, in order to allow on-

line process optimization and control, it is crucial to have an adequate model, which is solved 

accurately with orders of magnitude faster than the real process time. Controlling the 

particulate properties like particle size distribution (PSD) and particle shape is essential as it 

can affect significantly the product quality (specific surface, porosity, dissolution rate etc.) and 

downstream operations (filtration, granulation, milling etc.). Thus there is strong need to 

accelerate FVM based PBE solution for process optimization and real-time model based 

control. 

A several attempts were made to improve the computational efficiency of the HR-FVM. Qamar 

et al. (2007) presented an adaptive mesh strategy making possible to reduce the mesh size 

maintaining the accuracy. Gunawan et al. (2008) proposed parallelized solution using a 

master/slave structured CPU cluster. Majumder et al. (2010) developed the Fast HR-FVM 

method which uses a coordinate transformation to speed up the simulation by maintaining its 

accuracy. Prakash et al. (2013) exploited the Matlab Parallel Computing Toolbox and 

Distributed Computing Server capabilities to parallelize the HR-FVM codes on CPUs. In the 

above presented methods significant speed up was achieved but the increased price of the used 

supercomputers, from industrial point of view, limit the applicability of these approaches. Also 

in the case of real time control in an industrial setup, would be difficult to set up a control 

system that implements real time model solution on remote supercomputers. 



Due to their massively parallel hardware architecture, GPUs have been used for accelerating 

scientific calculations (Shane Cook, 2012). In the field of crystallization several works were 

published discussing mainly the GPU acceleration of Monte-Carlo methods. Wei and Kruis 

(2013) presented a Monte Carlo simulation for particle coagulation problem using an 

acceptance-rejection method. Wei (2014) published a parallel Monte Carlo method using a 

bookkeeping strategy and Xu et al. (2015) applied Markov jump model to simulate the 

coagulation dynamics. Out of the Monte Carlo methods, Santos et al. (2013) presented the GPU 

accelerated dual quadrature method of generalized moments to solve PBEs. 

Despite of its advantages, GPUs were not used yet in HR-FVM. The aim of this work is to 

apply GPU acceleration for HR-FVM PBE solution using a low-cost device as well as to 

analyze the performance of codes in order to find reasonable trade-off between the accuracy 

and computational costs, to provide a framework for the solution of single or multidimensional 

PBEs suitable for model-based optimization and real time control. 

 

2. Population balance models and the HR-FVM algorithm 

In this section a brief overview of the HR-FVM is provided that was implemented on the 

parallel GPU system. Figure 1a. presents the finite volume discretization of a continuous 1D 

size density function and Figure 1b. the analogue 2D case. Note that the main contribution of 

this work is the very efficient solution of multidimensional PBEs, which are computationally 

much more demanding than 1D PBEs, so we will focus on presentation of the 2D HR-FVM. A 

detailed description of the 1D HR-FVM was provide by Gunawan et al. (2004). 

Let us denote with h the size interval and with k the time interval.  Then 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚  is an 

approximation of the average population density: 



𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 ≈
1
ℎ2

� � 𝑛𝑛(𝑙𝑙,𝑤𝑤,𝑚𝑚 𝑘𝑘)
𝑤𝑤 ℎ

  (𝑤𝑤−1)ℎ

𝑙𝑙 ℎ

(𝑙𝑙−1)ℎ

𝑑𝑑𝑤𝑤𝑑𝑑𝑙𝑙 (1) 

Where m, l and w are integers such that 𝑚𝑚 ≥ 0 and 𝑁𝑁 ≥ l, w ≥ 1. N denotes the mesh size (i.e. 

the number of discretization points) along an internal coordinate. In the equation, 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚  gives 

the number of crystals being in the (l-1).h,l.h and (w-1).h,w.h discrete size domain – or in (l,w) 

grid cell in mth discrete time moment. 

The general 2D population balance equation with nucleation and growth take the form: 

𝜕𝜕𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺1(𝐿𝐿1)𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)

𝜕𝜕𝐿𝐿1
+
𝜕𝜕𝐺𝐺2(𝐿𝐿2)𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)

𝜕𝜕𝐿𝐿2
= 𝐵𝐵𝐵𝐵(𝐿𝐿1 − 𝐿𝐿1𝑛𝑛)(𝐿𝐿2 − 𝐿𝐿2𝑛𝑛) (2) 

with the initial condition: 

𝑛𝑛(𝐿𝐿1, 𝐿𝐿2, 0) =  𝑛𝑛0(𝐿𝐿1, 𝐿𝐿2 ) (3) 

B is the nucleation rate while 𝐺𝐺1(𝐿𝐿1) and 𝐺𝐺2(𝐿𝐿2) stands for the growth rates along the axes and 

𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)denotes the bivariate size density function in t time moment. LeVeque (2002) presented 

a high resolution method for such hyperbolic system, where the growth rates are evaluated at 

the endpoints of each grid cell. This is a formal second-order accurate method. According to 

the algorithm, the 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚+1  is computed as: 

𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚+1 = 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 + 𝐋𝐋 + 𝐖𝐖 + (𝑙𝑙 − 1)0(𝑤𝑤 − 1)0
𝑘𝑘
ℎ2
𝐵𝐵 (4) 

L and W are the operators governing the number variation caused by length and width growths 

but the last term is the nucleation which exist if and only if l = w = 0. So it influences the 

number of smallest crystals. The L and W operators are of the forms: 

𝐋𝐋 = −
𝑘𝑘
ℎ
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𝑚𝑚 �𝜙𝜙1,𝑙𝑙−1� 
(4a) 



𝐖𝐖 = −
𝑘𝑘
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Where l and w corresponds to the mesh element thus the calculations are repeated for each 

mesh size in every time moment.   

The physical meaning of Eq.(4) is the follows. In Figure 1c the (l,w) cell is highlighted.  The 

number of crystals being within this cell in the mth time moment is 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 . For the next time 

moment, assuming crystal growth, a certain number of crystals are “coming” to this cell from 

(l-1,w) as a result of length growth of crystals whose width is w but are shorter with one discrete 

size bin. The number in (l,w) cell increases from (l,w-1) neighborhood cell as the result of width 

growth of crystals whose width is l but are narrower with one discrete size bin. Naturally, due 

to the same crystal growth process, some crystals “grow out” from this cell by length growth 

to (l+1,w) and width growth to the (l,w+1).  

In Eq.(4a) 𝜙𝜙1,𝑙𝑙 = 𝑓𝑓�𝜃𝜃1,𝑙𝑙� and 𝜙𝜙2,𝑤𝑤 = 𝑓𝑓�𝜃𝜃2,𝑤𝑤� denotes the flux limiter functions which depends 

on the degree of smoothness of the distribution which is expressed as a ratio of two consecutive 

gradients: 

𝜃𝜃1,𝑙𝑙 =
𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 − 𝑛𝑛 𝑙𝑙−1,𝑤𝑤

𝑚𝑚 

𝑛𝑛 𝑙𝑙+1,𝑤𝑤
𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚  

𝜃𝜃2,𝑤𝑤 =
𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤−1𝑚𝑚 

𝑛𝑛 𝑙𝑙,𝑤𝑤+1𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚  
(5) 

In the smooth regions the following conditions ensure the second order accuracy: 

1. 𝜙𝜙 is Lipshitz continuous at 𝜃𝜃 = 1 and 𝜙𝜙(𝜃𝜃) is bounded with 𝜙𝜙(𝜃𝜃) = 1 

2. 0 ≤ 𝜙𝜙(𝜃𝜃𝑙𝑙)
𝜃𝜃𝑙𝑙

≤ 2 

3. 0 ≤ 𝜙𝜙(𝜃𝜃𝑙𝑙) ≤ 2 

 

(6) 



A huge variety of flux limiter functions have been proposed and each of them leads to different 

high resolution method. The Van Leer flux limiter has been successfully applied in the 

simulation of population balance equations and provides full second order accuracy.  This flux 

limiter function has the general form 

𝜙𝜙(𝜃𝜃) =
|𝜃𝜃| + 𝜃𝜃
1 + |𝜃𝜃| 

(7) 

Note that Eqs.(4)-(7) presents the two dimensional formulation of the HR-FVM. Multiple 

dimensional cases can be simulated by the means of dimension splitting too which is a 

straightforward and simple extension of 1D HR-FVM to multiple dimenisons (LeVeque 2002). 

To close the model – so compute the, usually,  concentration dependent nucleation and growth 

rates the macroscopic mass balance equation is required. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐 �� � 𝐺𝐺1(𝐿𝐿1)𝐿𝐿22𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)𝑑𝑑𝐿𝐿1𝑑𝑑𝐿𝐿2 + 2� � 𝐺𝐺2(𝐿𝐿2)𝐿𝐿1𝐿𝐿2𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)𝑑𝑑𝐿𝐿1𝑑𝑑𝐿𝐿2

∞

0

∞

0

∞

0

∞

0

� (8) 

with the c(0) = 𝑑𝑑0 initial condition. 𝑘𝑘𝑉𝑉 denotes the volume shape factor and 𝜌𝜌𝑐𝑐 stands for the 

crystal density. The mass balance also should be discretized in time and solved simultaneously 

with Eq.(4) system: 

𝑑𝑑𝑚𝑚+1 = 𝑑𝑑𝑚𝑚 − 𝑘𝑘𝑣𝑣𝜌𝜌𝐶𝐶ℎ2 ��� 𝐺𝐺1,𝑙𝑙𝑙𝑙2𝑛𝑛𝑙𝑙,𝑤𝑤𝑚𝑚
𝑁𝑁

𝑤𝑤=1

𝑁𝑁

𝑙𝑙=1

+ 2��𝐺𝐺2,𝑤𝑤𝑤𝑤2𝑛𝑛𝑙𝑙,𝑤𝑤
𝑚𝑚

𝑁𝑁

𝑤𝑤=1

𝑁𝑁

𝑙𝑙=1

� (9) 

Note that this is a fully discretized HR-FVM algorithm, which means that both the spatial 

coordinates and the time are discretized. The applied time step either is fixed or is adaptively 

recalculated in every iteration. Nevertheless, an algebraic equation system (AES) Eq.(4) and 

Eq.(9) is solved which is used to reconstruct the original PSD. Semi-discrete formulations of 

the HR-FVM have also been proposed. These methods adopt the discretization of particle size 

and for each resulted size bin a differential equation is formulated. Consequently the semi-

discrete solution implies the solution of an ordinary differential equation (ODE) system which 



is convenient to solve, for instance, with the MatLab’s ODE solvers. In contrast, in custom 

codes the fully discretized algorithm may be more advantageous due to the it’s simpler 

implementation. 

The upper mentioned algorithm is used in simulations in three compute implementations: 

a) in the form of Matlab function, 

b) C++ code as compiled .mex function called from the Matlab running on the CPU; and  

c) parallel CUDA C++ code in form of compiled .mex function called from Matlab, 

running on GPU and CPU. 

It should be noted that when developing the programs, the capability of the tool to be embedded 

in Matlab was a key factor as it is the generally used environment by the process engineering 

community. The most important properties of the computers are listed in Table 1. Low cost 

devices are used with optimizing compilers which boosts up the performance of compiled 

codes. In the following parts, these implementation strategies will be discussed briefly. 

2.1. Implementation as Matlab function 

Matlab provides flexible engineering tools with a series of additional toolboxes and is widely 

used in engineering practice. However, the computational performance compared to the high 

level programming languages is reduced even if the codes are optimized (variable pre-

allocation, vectorization, optimal entering sequence of the matrix elements – column-wise/row-

wise) which makes it a less efficient environment for running codes involving increased 

computational demand. In this study, the optimized Matlab implementation is the basis to 

which the other implementations are compared. 



2.2.Implementation in C++ code 

C++ is known as a very fast high level programming language thus it may be a good 

environment to implement the HR-FVM. In order to simultaneously profit from the flexibility 

of Matlab and improved speed of C++, the HR-FVM algorithm is written in C++ code and 

compiled to .mex function. The .mex file, in essence, is a special .dll which can be called 

directly from Matlab. The Gateway function of the .mex makes the connection between the 

Matlab and the crude C++ code (see Figure 2). In this case the memory management is handled 

by the programmer providing extra flexibility when optimizing the code. The operations are 

still executed serially, which, especially for finer meshes, can significantly slow down the 

solution. Parallelizing the code can improve the speed but it may overload the CPU thus is not 

applied in this work.  

2.3. Implementation in CUDA C++ code 

More recently there has been an increased interest to apply parallel computing and 

computations using GPUs, which typically has a hardware architecture consisting of multiple 

parallel computing units. The HR-FVM algorithm presents high potential for parallelization 

according to Eqs.(4) which shows that the in each time step similar calculations are required 

for every grid cell. Based on the algorithm description the calculation of (t+k) time moment 

depend only on the data at time t thus these equations can be solved in parallel. In this point 

the natural questions rises if the GPU could accelerate the simulation. 

The Matlab’s Parallel Computing Toolbox (PCT) offers three implementation ways to run code 

on GPU: (i) run built-in Matlab function, (ii) run element-wise Matlab code and (iii) run .ptx 

code as parallel CUDA Kernel object. The .ptx code offers the highest flexibility and 

computing performance, which enables for the programmer maximal control of data flow in 

the CUDA cores. The memory management in all cases is handled by Matlab, which reduces 



the code-optimization possibilities. In addition, these implementations require the PCT, 

resulting additional cost requirements. 

Another way to apply GPU calculations in Matlab is via CUDA containing .mex function. This 

has a structure of a conventional .mex function, in the sense that it has a gateway function, 

which may call not only the serial functions (running on the CPU) but also the parallel routines 

(running on GPU). The CUDA code of the parallel .mex function is exactly what is required by 

the PCT CUDA Kernel object. As long as the parallel .mex function may contain CUDA C++ 

and C++ parts also, its compilation requires both the parallel and serial compilers. These 

compilers work according to the simplified scheme in Figure 3; first the parallel (GPU -  

“Device”) code is compiled using the nVidia CUDA compiler, which is passed to the C++ 

compiler (in this case MS Visual Studio 2010 C++ compiler) creating, together with the serial 

parts of the code the final .mex file. 

In order to maximally explore the capacities of the CPU and GPU, a hybrid calculation strategy 

is applied in which only the parallel parts of the code are executed on the GPU. In the HR-

FVM the flux-limiter function, size dependent growth rate, HR-FVM algorithm and the integral 

calculations are parallelizable. The serial calculations, in which the considerably slower GPU 

cores present poor performance, are executed on the CPU. These include the mass balance, 

temperature, supersaturation, growth and nucleation rate calculation as well as the adaptive 

time stepping. As long as the GPU device has separate memory unit, the necessary data have 

to be repeatedly copied from the GPU to the main memory before the parallel calculations and 

back to the GPU memory after them. Naturally, this memory copy process also has a time 

requirement. The flow-sheet of the GPU assisted .mex function is presented in Figure 4. 

The main limitations of the proposed method are the follows: 



• Due to the repeated memory copy operation from and to the on-board GPU memory 

and to the fact that the benefits of GPU calculations is known to decrease with the 

volume of parallel operations, for crude meshes especially in one dimension (depending 

on the CPU configuration but generality if N < 1000) the serial implementation might 

be more beneficial. This will be analyzed later in this article. 

• The fact that we use CUDA C++ language, which is an extension of C++ ensures a 

straightforward .mex file creation but this technique excludes all of non-CUDA capable 

GPU’s. Moreover, as double precision operations are carried out which are supported 

starting from the ”computing capability” of 1.3 CUDA enabled cards it further limits 

the list of accepted GPU’s.  

 

3. Results and discussions 

The aforementioned three implementations are applied to solve three benchmark cases. Note 

that in this study all of the presented timings are the averages of three consecutive runs. 

3.1. Mono dimensional pure growth PBE 

For the first benchmark case let us consider a mono dimensional PBE written in volume form 

with growth only: 

𝜕𝜕𝑛𝑛(𝑣𝑣, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺(𝑣𝑣)𝑛𝑛(𝑣𝑣, 𝑡𝑡)

𝜕𝜕𝑣𝑣
= 0 (10) 

The initial distribution is expressed as: 

𝑛𝑛(𝑣𝑣, 0) =  
𝑁𝑁0
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑣𝑣
𝑣𝑣0
� (11) 

The growth rate is linearly size dependent given by the following function: 

𝐺𝐺(𝑣𝑣) =  𝐺𝐺0𝑣𝑣 (12) 



In these conditions an analytical solution of the PBE can be found: 

𝑛𝑛(𝑣𝑣, 𝑡𝑡) =  
𝑁𝑁0
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑣𝑣
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒(−𝐺𝐺0𝑡𝑡) − 𝐺𝐺0𝑡𝑡� (13) 

Here the kinetic parameters given by Gunawan et al. (2004) are used which are listed in Table 

2. Note that the implemented AES is the one dimensional analogue of Eq.(4) which, for space 

constraints, is not detailed here. 

In the first investigation the PSD’s calculated by the HR-FVM implementations are compared 

to the analytical solution after, presented in Figure 5. The numerical solutions practically are 

identical so only one is represented, which apparently overlaps with the analytical solution. 

Based on the error curve the deviation from the analytical solution is smaller than 0.03 % at 

each size. It seems that the .mex function is an order of magnitude faster than the Matlab 

function but still 6.3 times slower than the CUDA .mex. This can be explained with the fact 

that here all operations are parallelizable, which favors the use of the GPU. 

The mesh size is known to significantly affect the HR-FVM solution: applying a finer mesh is 

expected to increase the accuracy but in the same time the computational costs are also rising.  

In order to quantify the error committed by the numerical solutions, we use a sum square error 

based criteria defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆 =  
1

(𝑁𝑁 − 1)
�

1
𝑛𝑛𝑎𝑎(𝑖𝑖 ∙ ℎ)

𝑁𝑁−1

𝑖𝑖=1

�(𝑛𝑛𝑎𝑎(𝑖𝑖 ∙ ℎ) − 𝑛𝑛𝑐𝑐(𝑖𝑖 ∙ ℎ))2 (14) 

where na denotes the analytically calculated number density, nc is the numerically 

approximated number density at a given size. 

In Figure 6 it can be seen that the committed error is the same for all implementations and it 

monotonically decreases with the mesh size. It is interesting that the .mex function/Matlab 

function speed up shows only weak dependence on the mesh size and generally is between 8 



and 9. However, the CUDA .mex/.mex speed up is significantly increasing with the mesh size 

(for N = 2,000 the speed up is 2 but for the N = 17,000 it raises to 7). This suggests that the 

advantage of GPU is more significant when higher discretization is needed but for crude 

meshes the pure serial .mex implementation might become the most beneficial.  

Due to the special hardware architecture of the GPUs, in contrast with the CPUs, not a single 

value is passed for computations at a time but a vector of variables. This vector of variables is 

handled by the streaming multiprocessors and finally each element of the vector is passed to a 

GPU core (for the nVidia cards the so-called CUDA core). In this way, the original data vector 

is divided to shorter vectors. The length of these shorter vectors is called the thread dimension 

and its maximal value is given by the GPU type. The number of these smaller vectors is called 

as block dimension. It is obvious that the smaller thread dimension results in bigger block 

dimension and reverse. Despite of the fact that finally elements of the input vector are 

processed, it seems that this division also affects the calculation speed. 

The Figure 7 presents the effects of thread dimension on the GPU run time, using the same 

numerical configuration as in the case of Figure 5. It is observed that under the thread 

dimension of 64 the run time is considerably longer – so the GPU is heavily under-utilized. 

Between 64 and 416 a minimum point in run time exists at thread dimension of 256. Above the 

thread dimension value of 416 the run times seems to vary chaotically reaching a minimal value 

at 512 which is very similar to the run time obtained with 256 thread dimension. This means 

that, in order to maximize the performance, either 256 or 512 thread dimension should be 

applied. Note than in previous runs we used a 256 thread dimension. This thread dimension is 

used in the rest of the simulations presented in this article. 



3.2. Mono-dimensional PBE with secondary nucleation and size dependent growth 

In this part of the study, a batch cooling crystallization is considered with secondary nucleation, 

size dependent growth, linear cooling profile and mass balance. If the particles are 

characterized with a linear particle size, the corresponding PBE takes the form: 

𝜕𝜕𝑛𝑛(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺(𝜎𝜎, 𝐿𝐿)𝑛𝑛(𝐿𝐿, 𝑡𝑡)

𝜕𝜕𝐿𝐿
= 𝐵𝐵(𝜎𝜎)𝐵𝐵(𝐿𝐿 − 𝐿𝐿𝑛𝑛) (15) 

With the initial condition: 

𝑛𝑛(𝐿𝐿, 0) =  𝑛𝑛0(𝐿𝐿) (16) 

The nucleation rate is expressed as: 

𝐵𝐵(𝜎𝜎) = 𝑘𝑘𝑏𝑏𝑉𝑉𝐶𝐶𝜎𝜎𝑏𝑏 (17) 

Here, the VC denotes the total volume of existing crystals, σ stands for the relative 

supersaturation, σ = S – 1 = c/cs - 1. For the expression of growth rate, the widely used relation 

is applied expressing size dependent growth that linearly depends on size: 

𝐺𝐺(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑔𝑔𝜎𝜎𝑔𝑔(1 + 𝛾𝛾𝐿𝐿) (18) 

where L is the particle size. In these experiments a linear cooling profile is assumed: 

𝑇𝑇 = 𝑇𝑇0 − 𝑑𝑑𝑟𝑟𝑡𝑡 ↔
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑟𝑟 , 𝑇𝑇(0) = 𝑇𝑇0 (19) 

In Eq.(19) cr denotes the cooling rate. The mass balance for the solute concentration takes the 

form: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −3𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐 � 𝐿𝐿2
∞

0

𝐺𝐺(𝜎𝜎, 𝐿𝐿)𝑛𝑛(𝐿𝐿, 𝑡𝑡)𝑑𝑑𝐿𝐿,   𝑑𝑑(0) = 𝑑𝑑0 (20) 

In Eq.(20) kV is the volume shape factor. The solubility is considered temperature dependent 

and is described by the power law relation: 



𝑑𝑑𝑠𝑠(𝑇𝑇) = 𝑎𝑎0+𝑎𝑎1𝑇𝑇+𝑎𝑎2𝑇𝑇2 (21) 

The time step used is however constantly recalculated using an adaptive time-stepping 

approach using the Courant-Friedrichs-Lewy (CFL) criterion. In order to stabilize the 

numerical solution of an explicit method (like the HR-FVM), the CFL criterion should be less 

or equal than 1: 

𝐶𝐶𝐶𝐶𝐿𝐿 = max �𝐺𝐺
𝑘𝑘
ℎ
� (22) 

In this study the CFL number is fixed and the time step is recalculated in each iteration 

according to the Eq.(22). This gives an adaptive time stepping feature for the simulation. The 

process and kinetic parameters for this test case used in the simulations are listed in Table 3. 

The kinetic parameters were chosen based on literature data  (Ma, Tafti, and Braatz 2002), 

originally valid for the crystallization of potassium nitrate (KNO3). Nevertheless, the objective 

of this work is not the analysis of a particular chemical system but the PBE solution method, 

thus the kinetic parameters in some batches were modified and a different size dependent 

growth rate equation is defined, which fits better the original purpose of the given work.  

Note that the PBE Eq.(15) and mass balance Eq.(20) are discretized as it was presented in the 

second section of this paper and the resulted AES is solved. For space constrains the 1D HR-

FVM is not presented. 

The initial (seed) distribution is expressed as: 

𝑛𝑛0(𝐿𝐿) = �−3.48 10−4 𝐿𝐿2 + 0.136𝐿𝐿 − 13.2 𝑖𝑖𝑓𝑓 180.5 ≤ 𝐿𝐿 ≤ 210.5
0 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒

  (23) 

In the first investigation, the PSD’s are simulated using the three different implementations. 

For the PBE shown in Eq.(15) there is no analytical solution thus the numerical distributions 

are compared to each other. In Figure 8, the particle size distributions are plotted in some 



representative moments. It seems that after 200 s the nucleation becomes significant but the 

crystal growth is also significant (observe that a semi-logarithmical representation is applied). 

As long as the numerical results are practically identical, only one of them is represented to 

avoid the figure overloading. The corresponding timings are presented in Table 4. After 50 

seconds simulation, the CUDA .mex code is 2.46 times faster than the .mex code and almost 

19 times than the Matlab function. It is interesting to observe that the advantage of GPU 

accelerated solution is increasing with the simulation time. After 450 second simulated time 

the CUDA .mex function is almost 18.2 times faster than the .mex function and almost 39 times 

faster than the Matlab function. A reason for this may be that, due to the nucleation, in the 

number density vector the number of non-zero elements increases with the time. As double 

precision floating point operations are involved, handling these non-zero elements is 

significantly slower, which emphasize the advantage of GPU – where these operations are 

running in parallel.  

Since there is no exact analytical solution for the Eq. (15), the accuracy of numerical solutions 

is verified by comparing the moments of the distributions calculated using the HR-FVM with 

the methods obtained from the method of moments approach. The method of moments is a 

widely used approach to solve the PBEs enabling the calculation of mean particulate quantities 

based on the moments of the distribution (Randolph and Larson, 1971). In this study we apply 

the moment transformation on the PBE and solve the generated moment equation system using 

the ode15s solver of the Matlab which uses back-differentiation formulas, with increased 

relative and absolute error tolerances (10-12 for both). Despite these moments are calculated 

numerically, due to the increased accuracy criteria used, we consider these moments as an 

“accurate” solution. Here we use the third moment of distribution (denoted as µ3), a quantity 

which is proportional to the volume of particles, for comparison purposes. 



Figure 9 a) illustrates the percentage error of the µ3 of numerically calculated distributions as 

well as the speed up of .mex and CUDA .mex codes as a function of mesh size. It seems that, 

similarly to the pure growth case, the .mex : MatLab speed up shows weak dependency on the 

mesh size but the CUDA .mex : mex speed up increases significantly. The lowest speed up is 

~1.7 for N = 2,000, and rises until ~15.5 for N = 40,000. It is observed that the .mex: MatLab 

speed up is almost constant, around 2.5.  In the case of cruder meshes (N < 5,000) the 

committed error is higher, above 0.3 % and generally decreases with the mesh size, however, 

not monotonically. The mesh size N = 17,000 seems to be a good trade-off between the 

accuracy and computational costs. In this point, the CUDA .mex function is almost 10 times 

faster than the serial .mex. 

The CFL criterion is also an important parameter of HR-FVM solution. As the CFL increases, 

the time step rises – so the run time decreases. Figure 9 b) presents the effects of CFL number 

on accuracy of HR-FVM solutions as well as the speed ups. It is observed that the .mex: 

MatLab speed up increases (from 4 to 9) and the CUDA .mex : .mex ratio decreases (from 6 to 

2) with the CFL. At CFL = 0.55 there is a significant decrease in serial .mex run time, as it seen 

on speed up ratios. It seems again that the advantage of GPU acceleration is more accentuated 

for computationally expensive problems. The relative error in calculation of µ3 is exactly the 

same for all implementations, which increases until the CFL = 0.7 above of which it presents 

a chaotic variation. According to the results, the 0.85 CFL has similar error as the 0.35 but the 

computational cost is less than half, which seems to be an excellent choice to use in simulations. 

However, when using higher CFLs, the possibility of numerical oscillations in the system is 

increasing thus the 0.85 CFL should be applied only after further investigations. Note that in 

these simulations size independent growth (γ = 0) was applied in order to avoid the over-

stabilization of solution by applying the maximal growth rate which is defined by the maximal 

size-bin.  



As long as the maximum allowable time step depends on the maximal growth rate, the 

computational time should depend on the crystallization kinetics. Figure 10 presents the effects 

of nucleation and growth rate constant on the speed up. Note that the error surfaces are not 

represented because, according to previous run, they are identical. The .mex : Matlab speed up 

seems to decrease with the growth rate constant (from 7 to 2.3) and no significant dependence 

can be observed with the nucleation rate. The CUDA .mex : .mex speed up is higher and 

surprisingly it increases with the growth rate constant (from 2.5 to 12) but the nucleation rate 

constant seems to not affect the speed up considerably. Note that the noise in the speed up 

surfaces is a result of run time variations of the serial code as the CPU is also used by the 

operating system. This noise is partially reduced by averaging three run times. 

3.3 Two dimensional PBE with secondary nucleation and size dependent growths 

More recently, there is an increased need to describe not only the size but the shape variations 

of the particles during the crystallization. This is achieved by the so-called morphological 

population balances which have at least two dimensions. Now let us consider a two dimensional 

PBE, generally used to describe the crystallization of rod-like crystals (Borsos and Lakatos, 

2013, Szilagyi et al, 2015) and plate like crystals (Szilagyi and Lakatos, 2015). The Eq.(2) is 

the general two dimensional PBE taking into the consideration the growth along the length and 

width coordinates as well as the nucleation. The mass balance, required to concentration and 

supersaturation calculation is given by Eq.(8). The secondary nucleation rate Eq.(17) and the 

growth rates Eq.(18) are used distinguishing the kinetic parameters for the growth rate of two 

facets. 

A linear cooling profile is applied Eq.(19). The solubility is described by a power-law equation 

Eq.(21) and the adaptive time stepping Eq.(22) is applied. The parameters used in simulations 

are listed in Table 5. The population balance model, the mass balance and the 2D HR-FVM 

equations are described by Eqs.(1)-(9). The applied kinetic parameters are listed in Table 5 



which are inspired based on literature data (Ma, Tafti, and Braatz 2002) and were slightly 

modified to obtain a system behaviour, which fits better the goals of the current analysis. 

Uncorrelated bivariate log-normal based seed distribution was considered with m1 = 50 and m2 

= 6 μm means and, respectively, v1 = 6 and v2 = 4 μm dispersion along the length and width 

axes:  

𝑛𝑛0(𝐿𝐿1,𝐿𝐿2) = 108
1

√2𝜋𝜋𝐿𝐿1𝐿𝐿2 ∏ 𝜎𝜎𝑖𝑖2
𝑖𝑖=1

𝑒𝑒𝑒𝑒𝑒𝑒 �−�
[𝑙𝑙𝑛𝑛𝐿𝐿𝑖𝑖 − 𝜇𝜇𝑖𝑖]2

2𝜎𝜎𝑖𝑖

2

𝑖𝑖=1

� (24) 

Where  

𝜇𝜇𝑖𝑖 =  𝑙𝑙𝑛𝑛

⎝

⎛ 𝑚𝑚𝑖𝑖

�1 + 𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2⎠

⎞ , 𝑖𝑖 = 1,2 

𝜎𝜎𝑖𝑖 = �𝑙𝑙𝑛𝑛 �1 +
𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2� , 𝑖𝑖 = 1,2 

(24a) 

Let us start the investigations with computing the PSD-s in some representative time moments. 

As the graphical representation of a bivariate PSD is a surface in the plot shown in Figure 11 

only the PSD’s calculated by the CUDA .mex are represented at different times during the 

simulation. In the surface-series can be observed that the nucleation has visible significant 

effects only after 1800 s, under that the growth is the dominant phenomena. A reason for this 

may be that here a secondary nucleation is assumed, which has a rate that is proportional to the 

total volume of existing particles. Moreover, the supersaturation exponent is higher than for 

the growth rates thus the system presents an explosive nucleation at higher – but decreased 

nucleation rate at lower supersaturations. Based on the run times, at the first look it seems that 

the .mex function is with 1 order of magnitude faster than the MatLab but with 1 order of 

magnitude slower than the CUDA .mex function. However, here the PSD computed by the 



CUDA .mex is represented, according to the numerical results, the surfaces would practically 

overlap as in the Figure 8. 

Similarly as in the 1D PBE case with nucleation and growth, the method of moments is applied 

to compute the mixed moments of the bivariate size distribution. The µ12 joint moment is then 

used for comparison purposes, a quantity proportional to the specific volume of crystals. This, 

as applied high accuracy tolerances, is considered as the “accurate solution”.  

In Figure 12 a) the accuracy and the speed up is represented as a function of CFL criterion. The 

.mex : MatLab speed up slightly increases (from 21 to 30) but the CUDA .mex : .mex decreases 

with the CFL number (from 10 to 7). The CFL = 0.5 seems to be a threshold for the .mex 

function where is getting significantly faster generating a step-like variation in both speed up 

curves. The accuracy of all implementations is practically the same and is increasing with the 

CFL until 0.45 above which presents chaotically variations. Note that in this investigation size 

independent growths were applied to avoid the solution over-stabilization caused by the 

reasons discussed earlier in this article. Thus, these significant variations in accuracy may be 

explained with the possibly appearance of small numerical oscillations when running 

simulations with higher CFL-s. 

The Figure 12 b) presents the effects of mesh size (N) on accuracy and speed up. It seems that 

for the cruder mesh (N = 300 or h = 2 µm discretization) the error is almost 1 % and it decreases 

fast with the mesh size (at N = 600 or h = 1 µm discretization is around of 0.5 %) and for the 

finest division (N = 3000 or h=0.2 µm) is only 0.25 %. Note that the N = 1,500 element number 

(0.375 µm) presents a local minima in the error curve thus it may be a good choice to use in 

simulation of this system from the point of view of accuracy. The CUDA .mex : .mex speed 

up is monotonically increasing with the mesh size from 5 to 18 and the .mex : MatLab is 

decreasing. Note that the MatLab simulations were not carried out for the finer meshes as the 



computational demands are extremely high. According to the Figure 12 b), the run time, which 

for a bivariate PBE is a quadratic function of mesh size, with N = 1,500 division required 

~18,000 seconds (~5 hours). According to both investigations, the advantage of CUDA .mex 

over the .mex function is higher for the heavier calculations. 

The following investigation focuses on effects of growth rate constants on the CUDA .mex and 

.mex code performances. Note that here the MatLab function is not used due to its increased 

run time, which makes it practically unusable for simulation purposes compared with the other 

two implementations. In Figure 13 a) seen that the advantage of GPU accelerated solution is 

sensitive to the applied crystallization kinetics: for the lower growth rates the advantage is the 

smallest, presenting a speed up of 6 and for the higher growth rates it increases almost to 9. 

The actual CUDA .mex run time, illustrated on Figure 13 b) presents obvious trends: increasing 

the growth rates the run time increases almost linearly: in these simulations it varies between 

29 and 41 seconds. Taking into consideration that 2100 second process time is simulated, the 

GPU accelerated solution seems to be fast enough, namely at least 41 times and up to 73 (which 

may be slightly enhanced by optimizing the thread dimension and can be boosted further by 

reducing the mesh size), to be applicable even in real time control systems. For the .mex 

function, the run times varies between 183 and 358 seconds thus, it is also provides real time 

simulation but, for instance in a model based control system, due to the reduced possibly 

iteration number (the simulation is up to 11 times faster than the process) optimizer would 

hardly found the optimal control signal. 

To investigate how the performance of the GPU-PBM implementation depends on hardware 

architecture, a comparison study running the same 2D simulation (t = 3600 s) on different 

computers and GPUs is carried out. The kinetic and process parameters applied in the 

comparison study are listed in Table 6. The first PC involved in these tests was used in previous 

investigations presented so far in this article (~2012 technology); the second is a notebook 



(~2014 technology); the thirth is a Dell Precision workstation (~2011 technology) equipped 

with a compute nVidia Tesla GPU; the fourth is a mid-priced custom configuration workstation 

destined to number crunching built from last generation components (by late 2015) while the 

last is a Dell Precision workstation (~2015 technology) equipped with a high-end nVidia Tesla 

K20X compute processor. The results are presented in Table 7. In the line of “Host” 

specifications, the serial .mex function results are listed but in the row of “Device” properties 

the CUDA C++ timings are presented (that implements the parallel GPU-PBM). It can be 

observed that in each computer the CUDA C++ simulation over-performed the serial C++ code. 

Surprisingly, the nVidia GeForce GTX 970 GPU over-performed both nVidia Tesla GPU’s, 

which were developed for massive scientific calculations. The explanation might be that in this 

GPU the memory and GPU clock is also considerably higher than in the Tesla cards. It is also 

important that the CPU clock in this computer is almost the double of the Tesla workstation’s 

CPU clock, which also has a significant effect on the speed of calculations. On the other hand, 

the Tesla GPUs produced the highest speed-ups, which justify their application, as well as the 

error-correcting memory. As it was expected the last generation 4GHz i7 processor equipped 

with DDR4 memory gave far the best serial performance but surprisingly, the notebook i3 

processor produced outstanding serial computation performance. This suggests that the 

memory frequency is also a significant aspect in running these massive simulations.  

4. The CrySiV tool, a MatLab based simulation software 

The speed ups achieved with the .mex and CUDA .mex functions over the MatLab 

implementations presented so far are attractive. The increase of 1-2 orders of magnitude in 

computational time for the solutions of 2D-PBM can make the GPU-PBM solution framework 

proposed in this paper a unique platform to bring real-time model-based control using full 2D-

PBM codes into the realm of possibility. To share with other users this highly efficient 



numerical solution platform, we created a software, the Crystallization Simulation and 

Visualization Tool, called CrySiV.  

The main criteria in developing the tool were to provide a software package for dual use, 

namely: 

• Should have similar structure to the usual MatLab functions: the inputs (constants of 

the kinetic equations) are given as row vectors, similarly the temperature profile data 

and initial PSD. The specific solver options, as the mesh size, CFL number etc. should 

be specified in a separate structure for options. This generic function is typically 

designated for process optimization and control purposes and provides full flexibility 

for a MatLab user to incorporate 1D or 2D PBM solutions in their custom Matlab codes. 

• The program should also have a Graphical User Interface (GUI), which should enable 

an interactive and clear visualization of the crystallization process. The GUI is 

addressed for basic users and/or educational purposes. 

In both implementations using the GPU acceleration via the CUDA C++ implementation is an 

option, including automatic detection of the suitable GPU card in the computer. 

Some of the extended features of software are: 

• Include the primary nucleation rate: 

𝐵𝐵(𝑆𝑆) = 𝑘𝑘𝑝𝑝𝜎𝜎𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑘𝑘𝑒𝑒

ln2(S) 
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆𝑝𝑝
𝑅𝑅𝑇𝑇

� (24) 

• Use a more general, temperature dependent secondary nucleation rate equation: 

𝐵𝐵(𝑆𝑆) = 𝑘𝑘𝑏𝑏𝑉𝑉𝑐𝑐
𝑗𝑗𝜎𝜎𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆𝑏𝑏
𝑅𝑅𝑇𝑇

� (25) 

• Use a more general, temperature and size dependent growth rate equation: 

𝐺𝐺(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑔𝑔𝜎𝜎𝑔𝑔(𝛼𝛼 + 𝛾𝛾𝐿𝐿𝛽𝛽)𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆𝑔𝑔
𝑅𝑅𝑇𝑇

� (26) 



• Include the dissolution rate into the model: 

𝐷𝐷(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑑𝑑(1 − 𝜎𝜎)𝑑𝑑(𝛼𝛼𝑑𝑑 + 𝛾𝛾𝑑𝑑𝐿𝐿𝛽𝛽𝑑𝑑)𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆𝑑𝑑
𝑅𝑅𝑇𝑇

� (27) 

• Extend the cooling equation (and, permit the use of custom temperature profile, given 

as a vector of time and corresponding temperature values): 

𝑇𝑇 = 𝑇𝑇0 + 𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡2 + 𝑑𝑑3exp (𝑑𝑑4𝑡𝑡) (28) 

• Include both the power law solubility equation, as well as the Apelblat solubility 

model: 

𝑑𝑑𝑠𝑠(𝑇𝑇) = exp �𝑎𝑎0 +
𝑎𝑎1
𝑇𝑇

+ 𝑎𝑎3ln (𝑇𝑇)� (29) 

Applying the extended kinetics and process Eqs. (24)-(29), a wide variety of cooling 

crystallization problems can be easily simulated, from the size dependent growth to the Oswald 

ripening using temperature cycling. Using the user-defined temperature profile and enabling 

the dissolution, it makes possible the easy simulation of the cyclic temperature profile – and its 

effects to the crystal shape, if applied to the two dimensional PBE. Using the GPU acceleration 

the solution time can significantly be shortened especially for the more complex calculations, 

as it was presented in the previous sections. 

A generic MatLab function was created named as crysiv, which can be called form the MatLab 

environment, and configured with the constants of the Eqs. (24)-(29) (the initial conditions, 

process conditions and solver specifications as mesh size, minimal and maximal crystal size, 

CFL number etc.). This function has a detailed input data verification, which ensures that the 

compiled .mex files are called with correct inputs avoiding the fatal memory errors and helping 

the users with the correct parameterization.  The function returns the PSD, concentrations, 

moments calculated based on the PSD and the quadrature method of moments based errors of 

the FVM moments, in the specified sample times. 



A user-friendly GUI was also created in MatLab, which aims to provide an interactive and 

easy-to-use platform to simulate, analyse and visualize in 1D and 2D the crystallization 

process. Figure 14 shows the main window of the CrySiV GUI. During the simulation, the 

actual system states and the simulation results obtained from the beginning are presented and 

dynamically updated on two plots. In both plots, a variety of quantities can be presented via 

the selection from a pop up menu like the variation of concentration and temperatures, mean 

crystal size(s), PSD in 2D and 3D representation and phase diagram. The GUI enables the 

saving and loading the model parameterization and simulation data, too. The simulation results 

can be loaded separately and can be compared to other simulations, as the CrySiV makes 

possible the animation of simulations from the saved data. This tool is freely available for non-

profit use, by contacting the corresponding author and from the project website. 

5. Conclusions 

In the current work three different implementations of the high resolution finite volume method 

(HR FVM), namely as a MatLab function, compiled C++ .mex file and compiled CUDA C++ 

.mex file, were studied and presented for solving mono and bivariate population balance 

equations (PBE). Generally, the performance in different applications is strongly related to the 

nature of problem: the advantage of compiled .mex file is the faster serial calculation but GPU 

has a massive parallel architecture which makes it advantageous to perform parallel 

calculations of higher computational demand. In order to simultaneously benefit from the 

advantages CPU and GPU, in this study a hybrid algorithm was developed solving the parallel 

operations on GPU and passing the serial calculations to the CPU exploring maximally the 

computational power of the computer without overloading the CPU.  

The effects of different aspects of the algorithm were studied on computational speed like the 

mesh size or Courant-Friedrichs-Lewy (CFL) criterion as well as the parallel programming 



specific properties like the thread dimension. It was found that all these setting affect the 

computational performance and accuracy as well but not necessarily linearly thus attractive 

numerical configurations can be found. According to the simulation results, in the case of mono 

dimensional PBE with nucleation and growth the runs with CFL = 0.85 gave as accurate results 

as the CFL = 0.35 compared to the method of moments solution, with less than half 

computational cost. The advantage of GPU in all cases increased monotonically compared to 

the pure CPU performance (both .mex and MatLab function). Moreover, it was found that the 

GPU calculations do not introduce observable additional errors. 

For the pure growth one dimensional population balance involving only parallelizable 

calculations the GPU was up to 60 times faster than the MatLab function and up to 7 times 

faster than the .mex code. In the case of one dimensional PBE with secondary nucleation and 

size dependent growth speed up was more spectacular: here the MatLab : .mex : CUDA .mex 

run time ratio is up to 38 : 18 : 1. In two dimensional PBE solutions the computational cost is 

quadratic function of the mesh size. The MatLab implementation showed poor performance; it 

was generally 20-50 times slower compared to the .mex implementation. The GPU acceleration 

led to even 18 times speed up compared to the pure serial .mex function. In all cases (1D and 

2D) it was observed that the improvement is more significant for the heavier calculations (finer 

mesh, lower CFL, higher growth rate, longer simulated time etc.).   

One of the key advantages of the GPU-PBM framework proposed here is the fact that in the 

current study a low-cost GPU card is used, similar to what already exists in many PC’s, and 

significant speed up is achieved, which makes the method more attractive in application of real 

time model-based control approaches. 

Based on the presented programs, a MatLab based simulator was created, named as CrySiV 

(Crystallization Simulation and Visualization Tool), which uses extended crystallization 



kinetics, including primary and secondary nucleation, growth and dissolution of crystals. The 

software has similar structure to the built-in MatLab programs to ease its application for the 

process engineers, whose this function was typically created. A graphical user interface was 

created to the CrySiV which aims to make the simulation of crystallization process spectacular 

and easy to use and the comparison of simulation results simple and fast. This is addressed for 

the basic users and/or educational purposes. 
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List of notations 

ak -  coefficients of the characteristic solubility expression, - 

b -  exponent nucleation rate, - 

B -  nucleation rate # µm-3s-1 

c -  concentration of solute, kg m-3 

ci -  coefficient of temperature profile equation, i = 1,2,…,5 

cr -  cooling rate, oC s-1 

cs -  solubility concentration, kg m-3 

E -  activation energy, kJ kmol-1 K-1 



G -  crystal growth rate, m s-1 

g -  exponent of crystal growth rate  

kb -  rate coefficient of nucleation, # µm -3s-1 

ke -  parameter of primary nucleation, - 

kg -  rate coefficient of crystal growth, µm s-1 

kV -  volume shape factor , - 

L -  linear size of crystals, m 

N -  mesh size, # 

n -  population density function, # m-5 

R -  gas constant, 8.31 kJ kmol-1 

S -  supersaturation ratio, - 

T -  temperature, oC 

VC -  volume fraction of crystal population, m3m-3 

 

Greek letters 

ρ -   density, kgm-3 

σ -   relative supersaturation, - 

µk,m -  (k,m)th order mixed moment  

α -  coefficient of growth rate function 

β -  exponent  of growth rate function 

δ -  Dirac delta function 

γ -  coefficient of growth rate function, µm-1 

Subscripts 



0 -  initial value  

1,2 -  characteristic crystal facet, 1…3 

b - secondary nucleation 

d - dissolution 

n -  nuclei 

p - primary nucleation 

Abbreviations 

AES   - Algebraic Equation System 

CFL -  Courant Friedrichs Lewy criterion  

CPU -  Central Processing Unit 

CUDA -  Compute Unified Device Architecture 

FVM -  Finite Volume Method 

GPU -  Graphical Processing Unit 

GUI - Graphical User Interface 

HR -  High Resolution 

PB -  Population Balance 

PBE -  Population Balance Equation 

PCT -  Parallel Computing Toolbox (MatLab) 

PSD   -  Particle Size Distribution  

ODE - Ordinary Differential Equation 
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Table 1. Machine specifications 

Property “Host” – CPU “Device” – GPU 
Type AMD Phenom II X4 965 Gigabyte nVidia GT 640 

No. of proc. / freq. 4; 3400 MHz 384; 1046 MHz 
Memory specifications 16GB DDR3;1333 MHz 1GB GDDR5; 5000 MHz 

Price ~ 100 USD ~ 100 USD 
Compiler Visual Studio 2010 Prof. nVidia CUDA Toolkit 6.5 

 

 

 

Table 2. The process and kinetic parameters used in the solution of mono-dimensional population 
balance with constant growth only 

k = 10-5 [s] v0 = 10-2 [µm3] N0 = 1 [#/µm3] 
tmax = 7 s G0 = 0.1 [µm/s] N = 10000 [#] 

 

 

Table 3. The process and kinetic parameters used in the solution of mono-dimensional population 
balance equation with nucleation and growth 

kb = 4.48 10-7 [#µm-3s-1] kg = 116 [µm s-1] g = 1.32 [-] 
b = 1.78 [-] cr =0.0167 [oC s-1] γ = 0.1 [µm-1] 
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.1286 [kg m-3] 

a1 = -5.88 10-3 [kg m-3 oC-1] a2 = 1.72 10-4 [kg m-3 oC-2] N  = 32000 [#] 
h = 0.05 [µm] CFL = 0.5 [-] kV = π/6 [-] 
tmax = 450 [s] ρc = 2110 [kg m-3]  

 

 

Table 4. The corresponding computational times obtained for the simulations presented in 
Figure 8. 

Simulated time 
[s] 

CUDA .mex run 
time [s] 

CUDA .mex : 
.mex speed up 

CUDA .mex : 
MatLab speed up 

50 0.2222 2.46 18.88 
100 0.9250 2.67 22.11 
200 4.4490 3.35 23.87 
300 11.7358 5.98 26.72 
400 22.5248 13.24 36.19 
450 32.6778 18.24 38.68 

 



 

Table 5. The process and kinetic parameters used in the solution of two dimensional population 
balance equation with nucleation and growth 

kb = 7.49.10-8[#µm-3s-1] kg1 = 5.75 [µm s-1] kg2 = 4.21 [µm s-1] 
g1 = 1.34 [-] g2 = 1.38 [-] γ1 = 1.5.10-3 [µm-1] 

γ2 = 1.8.10-3 [µm-1] b = 2.04 [-] cr = 0.0167 [oC s-1] 
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.2087 [kg m-3] 

a1 = -9.76.10-5[kg m-3 oC-1] a2 = 9.3.10-5 [kg m-3 oC-2] N  = 1200 [#] 
h = 0.5 [µm] CFL = 0.5 [-] kV = 1 [-] 

tmax = 3600 [s] ρc = 2338 [kg m-3]  
 

 

Table 6. Kinetic and process parameters used in comparison studies 

kb = 0 [#µm-3s-1] kg1 = 110 [µm s-1] kg2 = 60 [µm s-1] 
g1 = 1.44 [-] g2 = 1.24 [-] γ1 = 6.10-4 [µm-1] 

γ2 = 2.10-4 [µm-1] b = 0 [-] cr = 0.0033 [oC s-1] 
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.2087 [kg m-3] 

a1 = -9.76.10-5[kg m-3 oC-1] a2 = 9.3.10-5 [kg m-3 oC-2] CFL = 0.5 [-] 
kV = 1 [-] tmax = 3600 [s] ρc = 2338 [kg m-3] 

m1 = 110 [μm] m2 = 100 [μm] v1 = 150 [μm] 
v2 = 70 [μm]   

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 7. Computational performance on different machines. The simulated (process) time is 3600 s 
 

Machine Timings (Mesh size) [s] 
no. Machine specifications 1000 2000 3000 

1  
(PC) 

Host: AMD Phenom 2 X4 3.4 GHz CPU, 
1333 MHz memory 359 2510 6780 

Device: nVidia GT 640 GPU, 384 cores, 
5000 MHz memory  40.3 161 368 

Speedup 8.9 15.6 18.24 

2 
 (notebook) 

Host: Intel Core i3 4000M 2.4 GHz CPU, 
1600 MHz memory  248 2265 4750 

Device: nVidia GT 720M GPU, 96 cores, 
5000 MHz memory 56 X* X* 

Speedup 4.42 - - 

3 
(Workstation) 

Host: Intel Xeon E5500, 2.3 GHz CPU, 
1066 MHz memory 515 4232 11556 

Device: nVidia Tesla C2075 GPU, 448 cores, 
3000 MHz memory 10.2 39 95.9 

Speedup 50.4 108.5 120.5 

4 
(Workstation) 

Host: Intel i7 6700K, 4 GHz CPU, 2133 
MHz memory 102 778 1977 

Device: nVidia GeForce GTX 970 GPU, 
1664 cores, 7000 MHz memory 8.46 31 73.5 

Speedup 12.0 25.1 26.6 

5 
(Workstation) 

Host: Intel Xeon E5-2620, 2.4 GHz CPU, 
2133 MHz memory 252 1761 4379 

Device: nVidia Tesla K20X GPU, 2688 
cores, 5200 MHz memory 9.00 35.1 85.5 

Speedup 28 50.1 51.1 

 
* out of GPU memory 
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c) 

Figure 1. Representation of the finite volume discretization of a) one dimensional PSD b) two dimensional 

PSD and c) uniform 2D grid 

 



 

 

 

 
 

 
Figure 2. The anatomy of a .mex function: the Gateway function makes the connection between the 

MatLab and the crude C++ code 

  



 

 

Figure 3. Schematic representation of compilation process of the CUDA code containing .mex file: the 

role of nVidia CUDA – and Visual Studio C++ compilers 

 

 

 

  



 

 

 

Figure 4. The flow-sheet of the GPU acceleration: the parallel calculations are performed on the GPU but 

the CPU runs the serial computations  

  



 

 

Figure 5. Comparison of the analytical solution with the three HR-FVM implementation results and the 

percentage errors committed by the numerical solutions of a mono dimensional pure-growth PBE 

 

 

 

 

  



 

 

Figure 6. The dependence of acceleration ratio and accuracy on the mesh size (N) in solution of a mono 

dimensional pure-growth PBE 

 

  



 

 

Figure 7.  Effects of thread dimension on GPU accelerated solution time of a mono dimensional pure 

growth PBE 

 

 

 

  



 

 

e) 

Figure 8. The calculated PSD’s after 50, 100, 200, 300, 400, 450 seconds for a mono-dimensional PBE with 

nucleation and size dependent growth 

 

 

  



 

 

a) 

 

b) 

Figure 9. a) The dependence of acceleration ratio and accuracy on the mesh size (N) in solution of a mono 

dimensional PBE with nucleation and size dependent growth (tmax = 400 s, CFL = 0.5) 

b) The dependence of acceleration ratio and accuracy on the CFL criterion for size-independent growth 

and (tmax = 1,500 s, N = 18,000) 

 



 

a) 

 

 

b) 

Figure 10.  a) The dependence of .mex : MatLab acceleration ratio and b) CUDA .mex : .mex acceleration 

ratio on the nucleation rate constant kb and growth rate constant kg, N = 18000, tmax = 300 s. 



    

                        a)                                                                                  b) 

   

                                   c)                                                                                   d) 

Figure 11. The calculated bivariate PSD’s after a) 600, b) 1200, c) 1800 and d) 2100 seconds  

 



 

a) 

 

b) 

Figure 12. Dependence of acceleration ratio and accuracy on the a) CFL criterion with size independent 

growth and b) division number in one direction  (N) with size dependent growth in solution of a two 

dimensional PBE  



 

a) 

 

b) 

Figure 13. a) Dependence of acceleration ratio and b) CUDA .mex function run time on growth rate 

constants (kg1 and kg2) compared to the .mex code 



 

Figure 14. The interface of the CrySiV program, a MatLab based simulator for cooling batch 

crystallization processes 
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