
Graphical Processing Unit (GPU) Acceleration for Numerical Solution of
Population Balance Models Using High Resolution Finite Volume Algorithm

Botond Szilágyi1, Zoltán K. Nagy2,3,*

1Department of Chemical Engineering, “Babes-Bolyai” University, Arany Janos Street 1,

Cluj Napoca 400028, Romania,

2Department of Chemical Engineering, Loughborough University, Leichestershire,

Loughborough Le11 3TU, United Kingdom,

3School of Chemical Engineering, Purdue University, West Lafayette 47907-2100, USA

*zknagy@purdue.edu, z.k.nagy@lboro.ac.uk

Abstract

Population balance modeling is a widely used approach to describe crystallization processes.

It can be extended to multivariate cases where more internal coordinates i.e. particle properties

such as multiple characteristic sizes, composition, purity, etc. can be used. The current study

presents highly efficient fully discretized parallel implementation of the high resolution finite

volume technique implemented on graphical processing units (GPUs) for the solution of single-

and multi-dimensional population balance models (PBMs). The proposed GPU-PBM is

implemented using CUDA C++ code for GPU calculations and provides a generic Matlab

interface for easy application for scientific computing. The case studies demonstrate that the

code running on the GPU is between 2…40 times faster than the compiled C++ code and

50…250 times faster than the standard MatLab implementation. This significant improvement

in computational time enables the application of model-based control approaches in real time

even in case of multidimensional population balance models.

Keywords: population balance modelling, finite volume algorithm, GPU, crystallization

modelling

Highlights:

High resolution finite volume method solution of population balances using GPU

acceleration

Significant speed improvement achieved with the used low - cost GPUs

Development of a computationally highly efficient generic crystallization simulation tool

1. Introduction

The population balance (PB) modelling framework was introduced by Hulburt and Katz (1964)

to describe the population dynamics and thence it have been used in numerous fields of science

including meteorology, biology, physics, chemistry as well as in different aspects of

engineering. In crystallization science and technology it is the trivial modelling approach

enabling the description of particulate properties such as particle size, shape, age, composition

etc. A huge variety of experimental and theoretical works appeared discussing its different

aspects.

From mathematical point of view, the PB equation (PBE) is a partial differential equation

which may involve integral terms if secondary processes like breakage and agglomeration are

included. A variety of solution methods were proposed, each having their advantages and

disadvantages. The method of moments was introduced by Randolph and Larson (1971) and it

is based on reduction of the original PBE. The closure problem of the generated moment

equation system significantly reduces its practical applicability. However some closure

techniques exist like the cumulant neglect method (Lakatos, 2008) or the interpolative closure

(Frenklach, 2002), the generic solution is the quadrature method of moments (McGraw, 1997).

The quadrature based moment methods are computationally effective, accurate and can be

applied even on the most complicated PBE-s but, it computes only averaged particulate

properties.

As the modern measuring devices have become able to record on-line distributional data (Nagy

et al, 2013), a high demand appeared to develop new solution methods to compute the particle

size distribution (PSD) instead of some statistics based averages. Numerous methods exists to

restore the PSD from the moments, including the approximated density functions with moment

dependent parameters (Randolph and Larson, 1988) or linear and nonlinear inversions (Aamir,

2010) and were successfully applied in various studies (Szilágyi et al, 2015), although

mathematically none of those is exact. The combined quadrature method of moments – method

of characteristics was a successful technique to solve full 1D PBE-s with nucleation and growth

only (Aamir et al, 2009, Aamir et al, 2010). The Monte Carlo simulations were successfully

applied to solve PBE-s as well (Bárkányi et al., 2013; Irizarry, 2008; Smith and Matsoukas,

1988) but the computational costs are far too increased to be applicable in the majority of

engineering problems. The method of classes is based on the discretization of internal variables

but for the more complicated PBEs a large number of classes is required to maintain the

accuracy (Valentas and Amundson, 1966). The method of weighted residual/orthogonal

collocation with finite element discretization was also successfully applied to solve PBE-s and

seems to be an attractive alternative (Ulbert and Lakatos, 2007), however the finite volume

based methods presents increased accuracy especially near to sharp variations.

The high resolution finite volume method (HR-FVM) was developed to solve the hyperbolic

partial differential equation (LeVeque, 2002) and was adapted for the solution of PBEs by

Gunawan et al. (2004). The HR-FVM is able to solve numerically the PBEs even with

agglomeration and breakage, moreover, computes the PSD without significant numerical

diffusion and dispersion. The FVM solution is based on the discretization of the PSD, presented

in Figure 1a and Figure 1b. For more for details about these methods, see the work of Qamar

et al. (2006).

Unfortunately the computational costs of the HR-FVM may become large compared to the

moment based methods especially when using finer meshes. Basically, in order to allow on-

line process optimization and control, it is crucial to have an adequate model, which is solved

accurately with orders of magnitude faster than the real process time. Controlling the

particulate properties like particle size distribution (PSD) and particle shape is essential as it

can affect significantly the product quality (specific surface, porosity, dissolution rate etc.) and

downstream operations (filtration, granulation, milling etc.). Thus there is strong need to

accelerate FVM based PBE solution for process optimization and real-time model based

control.

A several attempts were made to improve the computational efficiency of the HR-FVM. Qamar

et al. (2007) presented an adaptive mesh strategy making possible to reduce the mesh size

maintaining the accuracy. Gunawan et al. (2008) proposed parallelized solution using a

master/slave structured CPU cluster. Majumder et al. (2010) developed the Fast HR-FVM

method which uses a coordinate transformation to speed up the simulation by maintaining its

accuracy. Prakash et al. (2013) exploited the Matlab Parallel Computing Toolbox and

Distributed Computing Server capabilities to parallelize the HR-FVM codes on CPUs. In the

above presented methods significant speed up was achieved but the increased price of the used

supercomputers, from industrial point of view, limit the applicability of these approaches. Also

in the case of real time control in an industrial setup, would be difficult to set up a control

system that implements real time model solution on remote supercomputers.

Due to their massively parallel hardware architecture, GPUs have been used for accelerating

scientific calculations (Shane Cook, 2012). In the field of crystallization several works were

published discussing mainly the GPU acceleration of Monte-Carlo methods. Wei and Kruis

(2013) presented a Monte Carlo simulation for particle coagulation problem using an

acceptance-rejection method. Wei (2014) published a parallel Monte Carlo method using a

bookkeeping strategy and Xu et al. (2015) applied Markov jump model to simulate the

coagulation dynamics. Out of the Monte Carlo methods, Santos et al. (2013) presented the GPU

accelerated dual quadrature method of generalized moments to solve PBEs.

Despite of its advantages, GPUs were not used yet in HR-FVM. The aim of this work is to

apply GPU acceleration for HR-FVM PBE solution using a low-cost device as well as to

analyze the performance of codes in order to find reasonable trade-off between the accuracy

and computational costs, to provide a framework for the solution of single or multidimensional

PBEs suitable for model-based optimization and real time control.

2. Population balance models and the HR-FVM algorithm

In this section a brief overview of the HR-FVM is provided that was implemented on the

parallel GPU system. Figure 1a. presents the finite volume discretization of a continuous 1D

size density function and Figure 1b. the analogue 2D case. Note that the main contribution of

this work is the very efficient solution of multidimensional PBEs, which are computationally

much more demanding than 1D PBEs, so we will focus on presentation of the 2D HR-FVM. A

detailed description of the 1D HR-FVM was provide by Gunawan et al. (2004).

Let us denote with h the size interval and with k the time interval. Then 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 is an

approximation of the average population density:

𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 ≈
1
ℎ2

� � 𝑛𝑛(𝑙𝑙,𝑤𝑤,𝑚𝑚 𝑘𝑘)
𝑤𝑤 ℎ

 (𝑤𝑤−1)ℎ

𝑙𝑙 ℎ

(𝑙𝑙−1)ℎ

𝑑𝑑𝑤𝑤𝑑𝑑𝑙𝑙 (1)

Where m, l and w are integers such that 𝑚𝑚 ≥ 0 and 𝑁𝑁 ≥ l, w ≥ 1. N denotes the mesh size (i.e.

the number of discretization points) along an internal coordinate. In the equation, 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 gives

the number of crystals being in the (l-1).h,l.h and (w-1).h,w.h discrete size domain – or in (l,w)

grid cell in mth discrete time moment.

The general 2D population balance equation with nucleation and growth take the form:

𝜕𝜕𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺1(𝐿𝐿1)𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)

𝜕𝜕𝐿𝐿1
+
𝜕𝜕𝐺𝐺2(𝐿𝐿2)𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)

𝜕𝜕𝐿𝐿2
= 𝐵𝐵𝐵𝐵(𝐿𝐿1 − 𝐿𝐿1𝑛𝑛)(𝐿𝐿2 − 𝐿𝐿2𝑛𝑛) (2)

with the initial condition:

𝑛𝑛(𝐿𝐿1, 𝐿𝐿2, 0) = 𝑛𝑛0(𝐿𝐿1, 𝐿𝐿2) (3)

B is the nucleation rate while 𝐺𝐺1(𝐿𝐿1) and 𝐺𝐺2(𝐿𝐿2) stands for the growth rates along the axes and

𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)denotes the bivariate size density function in t time moment. LeVeque (2002) presented

a high resolution method for such hyperbolic system, where the growth rates are evaluated at

the endpoints of each grid cell. This is a formal second-order accurate method. According to

the algorithm, the 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚+1 is computed as:

𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚+1 = 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 + 𝐋𝐋 + 𝐖𝐖 + (𝑙𝑙 − 1)0(𝑤𝑤 − 1)0
𝑘𝑘
ℎ2
𝐵𝐵 (4)

L and W are the operators governing the number variation caused by length and width growths

but the last term is the nucleation which exist if and only if l = w = 0. So it influences the

number of smallest crystals. The L and W operators are of the forms:

𝐋𝐋 = −
𝑘𝑘
ℎ
�𝐺𝐺1,𝑙𝑙𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 –𝐺𝐺1,𝑙𝑙−1𝑛𝑛 𝑙𝑙−1,𝑤𝑤

𝑚𝑚 �– �
𝑘𝑘𝐺𝐺1,𝑙𝑙

2ℎ
�1 −

𝑘𝑘𝐺𝐺1,𝑙𝑙

ℎ
� �𝑛𝑛 𝑙𝑙+1,𝑤𝑤

𝑚𝑚 –𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 �𝜙𝜙1,𝑙𝑙

−
𝑘𝑘𝐺𝐺1,𝑙𝑙−1

2ℎ
�1 −

𝑘𝑘𝐺𝐺1,𝑙𝑙−1

ℎ
� �𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 –𝑛𝑛 𝑙𝑙−1,𝑤𝑤

𝑚𝑚 �𝜙𝜙1,𝑙𝑙−1�
(4a)

𝐖𝐖 = −
𝑘𝑘
ℎ
�𝐺𝐺2,𝑤𝑤𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 –𝐺𝐺2,𝑤𝑤−1𝑛𝑛 𝑙𝑙,𝑤𝑤−1𝑚𝑚 �– �

𝑘𝑘𝐺𝐺2,𝑤𝑤

2ℎ
�1 −

𝑘𝑘𝐺𝐺2,𝑤𝑤

ℎ
� �𝑛𝑛 𝑙𝑙,𝑤𝑤+1𝑚𝑚 –𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 �𝜙𝜙2,𝑤𝑤

−
𝑘𝑘𝐺𝐺2,𝑤𝑤−1

2ℎ
�1 −

𝑘𝑘𝐺𝐺2,𝑤𝑤−1

ℎ
� �𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 –𝑛𝑛 𝑙𝑙,𝑤𝑤−1𝑚𝑚 �𝜙𝜙2,𝑤𝑤−1�

Where l and w corresponds to the mesh element thus the calculations are repeated for each

mesh size in every time moment.

The physical meaning of Eq.(4) is the follows. In Figure 1c the (l,w) cell is highlighted. The

number of crystals being within this cell in the mth time moment is 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 . For the next time

moment, assuming crystal growth, a certain number of crystals are “coming” to this cell from

(l-1,w) as a result of length growth of crystals whose width is w but are shorter with one discrete

size bin. The number in (l,w) cell increases from (l,w-1) neighborhood cell as the result of width

growth of crystals whose width is l but are narrower with one discrete size bin. Naturally, due

to the same crystal growth process, some crystals “grow out” from this cell by length growth

to (l+1,w) and width growth to the (l,w+1).

In Eq.(4a) 𝜙𝜙1,𝑙𝑙 = 𝑓𝑓�𝜃𝜃1,𝑙𝑙� and 𝜙𝜙2,𝑤𝑤 = 𝑓𝑓�𝜃𝜃2,𝑤𝑤� denotes the flux limiter functions which depends

on the degree of smoothness of the distribution which is expressed as a ratio of two consecutive

gradients:

𝜃𝜃1,𝑙𝑙 =
𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 − 𝑛𝑛 𝑙𝑙−1,𝑤𝑤

𝑚𝑚

𝑛𝑛 𝑙𝑙+1,𝑤𝑤
𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚

𝜃𝜃2,𝑤𝑤 =
𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤−1𝑚𝑚

𝑛𝑛 𝑙𝑙,𝑤𝑤+1𝑚𝑚 − 𝑛𝑛 𝑙𝑙,𝑤𝑤𝑚𝑚
(5)

In the smooth regions the following conditions ensure the second order accuracy:

1. 𝜙𝜙 is Lipshitz continuous at 𝜃𝜃 = 1 and 𝜙𝜙(𝜃𝜃) is bounded with 𝜙𝜙(𝜃𝜃) = 1

2. 0 ≤ 𝜙𝜙(𝜃𝜃𝑙𝑙)
𝜃𝜃𝑙𝑙

≤ 2

3. 0 ≤ 𝜙𝜙(𝜃𝜃𝑙𝑙) ≤ 2

(6)

A huge variety of flux limiter functions have been proposed and each of them leads to different

high resolution method. The Van Leer flux limiter has been successfully applied in the

simulation of population balance equations and provides full second order accuracy. This flux

limiter function has the general form

𝜙𝜙(𝜃𝜃) =
|𝜃𝜃| + 𝜃𝜃
1 + |𝜃𝜃|

(7)

Note that Eqs.(4)-(7) presents the two dimensional formulation of the HR-FVM. Multiple

dimensional cases can be simulated by the means of dimension splitting too which is a

straightforward and simple extension of 1D HR-FVM to multiple dimenisons (LeVeque 2002).

To close the model – so compute the, usually, concentration dependent nucleation and growth

rates the macroscopic mass balance equation is required.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐 �� � 𝐺𝐺1(𝐿𝐿1)𝐿𝐿22𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)𝑑𝑑𝐿𝐿1𝑑𝑑𝐿𝐿2 + 2� � 𝐺𝐺2(𝐿𝐿2)𝐿𝐿1𝐿𝐿2𝑛𝑛(𝐿𝐿1,𝐿𝐿2, 𝑡𝑡)𝑑𝑑𝐿𝐿1𝑑𝑑𝐿𝐿2

∞

0

∞

0

∞

0

∞

0

� (8)

with the c(0) = 𝑑𝑑0 initial condition. 𝑘𝑘𝑉𝑉 denotes the volume shape factor and 𝜌𝜌𝑐𝑐 stands for the

crystal density. The mass balance also should be discretized in time and solved simultaneously

with Eq.(4) system:

𝑑𝑑𝑚𝑚+1 = 𝑑𝑑𝑚𝑚 − 𝑘𝑘𝑣𝑣𝜌𝜌𝐶𝐶ℎ2 ��� 𝐺𝐺1,𝑙𝑙𝑙𝑙2𝑛𝑛𝑙𝑙,𝑤𝑤𝑚𝑚
𝑁𝑁

𝑤𝑤=1

𝑁𝑁

𝑙𝑙=1

+ 2��𝐺𝐺2,𝑤𝑤𝑤𝑤2𝑛𝑛𝑙𝑙,𝑤𝑤
𝑚𝑚

𝑁𝑁

𝑤𝑤=1

𝑁𝑁

𝑙𝑙=1

� (9)

Note that this is a fully discretized HR-FVM algorithm, which means that both the spatial

coordinates and the time are discretized. The applied time step either is fixed or is adaptively

recalculated in every iteration. Nevertheless, an algebraic equation system (AES) Eq.(4) and

Eq.(9) is solved which is used to reconstruct the original PSD. Semi-discrete formulations of

the HR-FVM have also been proposed. These methods adopt the discretization of particle size

and for each resulted size bin a differential equation is formulated. Consequently the semi-

discrete solution implies the solution of an ordinary differential equation (ODE) system which

is convenient to solve, for instance, with the MatLab’s ODE solvers. In contrast, in custom

codes the fully discretized algorithm may be more advantageous due to the it’s simpler

implementation.

The upper mentioned algorithm is used in simulations in three compute implementations:

a) in the form of Matlab function,

b) C++ code as compiled .mex function called from the Matlab running on the CPU; and

c) parallel CUDA C++ code in form of compiled .mex function called from Matlab,

running on GPU and CPU.

It should be noted that when developing the programs, the capability of the tool to be embedded

in Matlab was a key factor as it is the generally used environment by the process engineering

community. The most important properties of the computers are listed in Table 1. Low cost

devices are used with optimizing compilers which boosts up the performance of compiled

codes. In the following parts, these implementation strategies will be discussed briefly.

2.1. Implementation as Matlab function

Matlab provides flexible engineering tools with a series of additional toolboxes and is widely

used in engineering practice. However, the computational performance compared to the high

level programming languages is reduced even if the codes are optimized (variable pre-

allocation, vectorization, optimal entering sequence of the matrix elements – column-wise/row-

wise) which makes it a less efficient environment for running codes involving increased

computational demand. In this study, the optimized Matlab implementation is the basis to

which the other implementations are compared.

2.2.Implementation in C++ code

C++ is known as a very fast high level programming language thus it may be a good

environment to implement the HR-FVM. In order to simultaneously profit from the flexibility

of Matlab and improved speed of C++, the HR-FVM algorithm is written in C++ code and

compiled to .mex function. The .mex file, in essence, is a special .dll which can be called

directly from Matlab. The Gateway function of the .mex makes the connection between the

Matlab and the crude C++ code (see Figure 2). In this case the memory management is handled

by the programmer providing extra flexibility when optimizing the code. The operations are

still executed serially, which, especially for finer meshes, can significantly slow down the

solution. Parallelizing the code can improve the speed but it may overload the CPU thus is not

applied in this work.

2.3. Implementation in CUDA C++ code

More recently there has been an increased interest to apply parallel computing and

computations using GPUs, which typically has a hardware architecture consisting of multiple

parallel computing units. The HR-FVM algorithm presents high potential for parallelization

according to Eqs.(4) which shows that the in each time step similar calculations are required

for every grid cell. Based on the algorithm description the calculation of (t+k) time moment

depend only on the data at time t thus these equations can be solved in parallel. In this point

the natural questions rises if the GPU could accelerate the simulation.

The Matlab’s Parallel Computing Toolbox (PCT) offers three implementation ways to run code

on GPU: (i) run built-in Matlab function, (ii) run element-wise Matlab code and (iii) run .ptx

code as parallel CUDA Kernel object. The .ptx code offers the highest flexibility and

computing performance, which enables for the programmer maximal control of data flow in

the CUDA cores. The memory management in all cases is handled by Matlab, which reduces

the code-optimization possibilities. In addition, these implementations require the PCT,

resulting additional cost requirements.

Another way to apply GPU calculations in Matlab is via CUDA containing .mex function. This

has a structure of a conventional .mex function, in the sense that it has a gateway function,

which may call not only the serial functions (running on the CPU) but also the parallel routines

(running on GPU). The CUDA code of the parallel .mex function is exactly what is required by

the PCT CUDA Kernel object. As long as the parallel .mex function may contain CUDA C++

and C++ parts also, its compilation requires both the parallel and serial compilers. These

compilers work according to the simplified scheme in Figure 3; first the parallel (GPU -

“Device”) code is compiled using the nVidia CUDA compiler, which is passed to the C++

compiler (in this case MS Visual Studio 2010 C++ compiler) creating, together with the serial

parts of the code the final .mex file.

In order to maximally explore the capacities of the CPU and GPU, a hybrid calculation strategy

is applied in which only the parallel parts of the code are executed on the GPU. In the HR-

FVM the flux-limiter function, size dependent growth rate, HR-FVM algorithm and the integral

calculations are parallelizable. The serial calculations, in which the considerably slower GPU

cores present poor performance, are executed on the CPU. These include the mass balance,

temperature, supersaturation, growth and nucleation rate calculation as well as the adaptive

time stepping. As long as the GPU device has separate memory unit, the necessary data have

to be repeatedly copied from the GPU to the main memory before the parallel calculations and

back to the GPU memory after them. Naturally, this memory copy process also has a time

requirement. The flow-sheet of the GPU assisted .mex function is presented in Figure 4.

The main limitations of the proposed method are the follows:

• Due to the repeated memory copy operation from and to the on-board GPU memory

and to the fact that the benefits of GPU calculations is known to decrease with the

volume of parallel operations, for crude meshes especially in one dimension (depending

on the CPU configuration but generality if N < 1000) the serial implementation might

be more beneficial. This will be analyzed later in this article.

• The fact that we use CUDA C++ language, which is an extension of C++ ensures a

straightforward .mex file creation but this technique excludes all of non-CUDA capable

GPU’s. Moreover, as double precision operations are carried out which are supported

starting from the ”computing capability” of 1.3 CUDA enabled cards it further limits

the list of accepted GPU’s.

3. Results and discussions

The aforementioned three implementations are applied to solve three benchmark cases. Note

that in this study all of the presented timings are the averages of three consecutive runs.

3.1. Mono dimensional pure growth PBE

For the first benchmark case let us consider a mono dimensional PBE written in volume form

with growth only:

𝜕𝜕𝑛𝑛(𝑣𝑣, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺(𝑣𝑣)𝑛𝑛(𝑣𝑣, 𝑡𝑡)

𝜕𝜕𝑣𝑣
= 0 (10)

The initial distribution is expressed as:

𝑛𝑛(𝑣𝑣, 0) =
𝑁𝑁0
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑣𝑣
𝑣𝑣0
� (11)

The growth rate is linearly size dependent given by the following function:

𝐺𝐺(𝑣𝑣) = 𝐺𝐺0𝑣𝑣 (12)

In these conditions an analytical solution of the PBE can be found:

𝑛𝑛(𝑣𝑣, 𝑡𝑡) =
𝑁𝑁0
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑣𝑣
𝑣𝑣0
𝑒𝑒𝑒𝑒𝑒𝑒(−𝐺𝐺0𝑡𝑡) − 𝐺𝐺0𝑡𝑡� (13)

Here the kinetic parameters given by Gunawan et al. (2004) are used which are listed in Table

2. Note that the implemented AES is the one dimensional analogue of Eq.(4) which, for space

constraints, is not detailed here.

In the first investigation the PSD’s calculated by the HR-FVM implementations are compared

to the analytical solution after, presented in Figure 5. The numerical solutions practically are

identical so only one is represented, which apparently overlaps with the analytical solution.

Based on the error curve the deviation from the analytical solution is smaller than 0.03 % at

each size. It seems that the .mex function is an order of magnitude faster than the Matlab

function but still 6.3 times slower than the CUDA .mex. This can be explained with the fact

that here all operations are parallelizable, which favors the use of the GPU.

The mesh size is known to significantly affect the HR-FVM solution: applying a finer mesh is

expected to increase the accuracy but in the same time the computational costs are also rising.

In order to quantify the error committed by the numerical solutions, we use a sum square error

based criteria defined as:

𝑆𝑆𝑆𝑆𝑆𝑆 =
1

(𝑁𝑁 − 1)
�

1
𝑛𝑛𝑎𝑎(𝑖𝑖 ∙ ℎ)

𝑁𝑁−1

𝑖𝑖=1

�(𝑛𝑛𝑎𝑎(𝑖𝑖 ∙ ℎ) − 𝑛𝑛𝑐𝑐(𝑖𝑖 ∙ ℎ))2 (14)

where na denotes the analytically calculated number density, nc is the numerically

approximated number density at a given size.

In Figure 6 it can be seen that the committed error is the same for all implementations and it

monotonically decreases with the mesh size. It is interesting that the .mex function/Matlab

function speed up shows only weak dependence on the mesh size and generally is between 8

and 9. However, the CUDA .mex/.mex speed up is significantly increasing with the mesh size

(for N = 2,000 the speed up is 2 but for the N = 17,000 it raises to 7). This suggests that the

advantage of GPU is more significant when higher discretization is needed but for crude

meshes the pure serial .mex implementation might become the most beneficial.

Due to the special hardware architecture of the GPUs, in contrast with the CPUs, not a single

value is passed for computations at a time but a vector of variables. This vector of variables is

handled by the streaming multiprocessors and finally each element of the vector is passed to a

GPU core (for the nVidia cards the so-called CUDA core). In this way, the original data vector

is divided to shorter vectors. The length of these shorter vectors is called the thread dimension

and its maximal value is given by the GPU type. The number of these smaller vectors is called

as block dimension. It is obvious that the smaller thread dimension results in bigger block

dimension and reverse. Despite of the fact that finally elements of the input vector are

processed, it seems that this division also affects the calculation speed.

The Figure 7 presents the effects of thread dimension on the GPU run time, using the same

numerical configuration as in the case of Figure 5. It is observed that under the thread

dimension of 64 the run time is considerably longer – so the GPU is heavily under-utilized.

Between 64 and 416 a minimum point in run time exists at thread dimension of 256. Above the

thread dimension value of 416 the run times seems to vary chaotically reaching a minimal value

at 512 which is very similar to the run time obtained with 256 thread dimension. This means

that, in order to maximize the performance, either 256 or 512 thread dimension should be

applied. Note than in previous runs we used a 256 thread dimension. This thread dimension is

used in the rest of the simulations presented in this article.

3.2. Mono-dimensional PBE with secondary nucleation and size dependent growth

In this part of the study, a batch cooling crystallization is considered with secondary nucleation,

size dependent growth, linear cooling profile and mass balance. If the particles are

characterized with a linear particle size, the corresponding PBE takes the form:

𝜕𝜕𝑛𝑛(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐺𝐺(𝜎𝜎, 𝐿𝐿)𝑛𝑛(𝐿𝐿, 𝑡𝑡)

𝜕𝜕𝐿𝐿
= 𝐵𝐵(𝜎𝜎)𝐵𝐵(𝐿𝐿 − 𝐿𝐿𝑛𝑛) (15)

With the initial condition:

𝑛𝑛(𝐿𝐿, 0) = 𝑛𝑛0(𝐿𝐿) (16)

The nucleation rate is expressed as:

𝐵𝐵(𝜎𝜎) = 𝑘𝑘𝑏𝑏𝑉𝑉𝐶𝐶𝜎𝜎𝑏𝑏 (17)

Here, the VC denotes the total volume of existing crystals, σ stands for the relative

supersaturation, σ = S – 1 = c/cs - 1. For the expression of growth rate, the widely used relation

is applied expressing size dependent growth that linearly depends on size:

𝐺𝐺(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑔𝑔𝜎𝜎𝑔𝑔(1 + 𝛾𝛾𝐿𝐿) (18)

where L is the particle size. In these experiments a linear cooling profile is assumed:

𝑇𝑇 = 𝑇𝑇0 − 𝑑𝑑𝑟𝑟𝑡𝑡 ↔
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −𝑑𝑑𝑟𝑟 , 𝑇𝑇(0) = 𝑇𝑇0 (19)

In Eq.(19) cr denotes the cooling rate. The mass balance for the solute concentration takes the

form:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −3𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐 � 𝐿𝐿2
∞

0

𝐺𝐺(𝜎𝜎, 𝐿𝐿)𝑛𝑛(𝐿𝐿, 𝑡𝑡)𝑑𝑑𝐿𝐿, 𝑑𝑑(0) = 𝑑𝑑0 (20)

In Eq.(20) kV is the volume shape factor. The solubility is considered temperature dependent

and is described by the power law relation:

𝑑𝑑𝑠𝑠(𝑇𝑇) = 𝑎𝑎0+𝑎𝑎1𝑇𝑇+𝑎𝑎2𝑇𝑇2 (21)

The time step used is however constantly recalculated using an adaptive time-stepping

approach using the Courant-Friedrichs-Lewy (CFL) criterion. In order to stabilize the

numerical solution of an explicit method (like the HR-FVM), the CFL criterion should be less

or equal than 1:

𝐶𝐶𝐶𝐶𝐿𝐿 = max �𝐺𝐺
𝑘𝑘
ℎ
� (22)

In this study the CFL number is fixed and the time step is recalculated in each iteration

according to the Eq.(22). This gives an adaptive time stepping feature for the simulation. The

process and kinetic parameters for this test case used in the simulations are listed in Table 3.

The kinetic parameters were chosen based on literature data (Ma, Tafti, and Braatz 2002),

originally valid for the crystallization of potassium nitrate (KNO3). Nevertheless, the objective

of this work is not the analysis of a particular chemical system but the PBE solution method,

thus the kinetic parameters in some batches were modified and a different size dependent

growth rate equation is defined, which fits better the original purpose of the given work.

Note that the PBE Eq.(15) and mass balance Eq.(20) are discretized as it was presented in the

second section of this paper and the resulted AES is solved. For space constrains the 1D HR-

FVM is not presented.

The initial (seed) distribution is expressed as:

𝑛𝑛0(𝐿𝐿) = �−3.48 10−4 𝐿𝐿2 + 0.136𝐿𝐿 − 13.2 𝑖𝑖𝑓𝑓 180.5 ≤ 𝐿𝐿 ≤ 210.5
0 𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 (23)

In the first investigation, the PSD’s are simulated using the three different implementations.

For the PBE shown in Eq.(15) there is no analytical solution thus the numerical distributions

are compared to each other. In Figure 8, the particle size distributions are plotted in some

representative moments. It seems that after 200 s the nucleation becomes significant but the

crystal growth is also significant (observe that a semi-logarithmical representation is applied).

As long as the numerical results are practically identical, only one of them is represented to

avoid the figure overloading. The corresponding timings are presented in Table 4. After 50

seconds simulation, the CUDA .mex code is 2.46 times faster than the .mex code and almost

19 times than the Matlab function. It is interesting to observe that the advantage of GPU

accelerated solution is increasing with the simulation time. After 450 second simulated time

the CUDA .mex function is almost 18.2 times faster than the .mex function and almost 39 times

faster than the Matlab function. A reason for this may be that, due to the nucleation, in the

number density vector the number of non-zero elements increases with the time. As double

precision floating point operations are involved, handling these non-zero elements is

significantly slower, which emphasize the advantage of GPU – where these operations are

running in parallel.

Since there is no exact analytical solution for the Eq. (15), the accuracy of numerical solutions

is verified by comparing the moments of the distributions calculated using the HR-FVM with

the methods obtained from the method of moments approach. The method of moments is a

widely used approach to solve the PBEs enabling the calculation of mean particulate quantities

based on the moments of the distribution (Randolph and Larson, 1971). In this study we apply

the moment transformation on the PBE and solve the generated moment equation system using

the ode15s solver of the Matlab which uses back-differentiation formulas, with increased

relative and absolute error tolerances (10-12 for both). Despite these moments are calculated

numerically, due to the increased accuracy criteria used, we consider these moments as an

“accurate” solution. Here we use the third moment of distribution (denoted as µ3), a quantity

which is proportional to the volume of particles, for comparison purposes.

Figure 9 a) illustrates the percentage error of the µ3 of numerically calculated distributions as

well as the speed up of .mex and CUDA .mex codes as a function of mesh size. It seems that,

similarly to the pure growth case, the .mex : MatLab speed up shows weak dependency on the

mesh size but the CUDA .mex : mex speed up increases significantly. The lowest speed up is

~1.7 for N = 2,000, and rises until ~15.5 for N = 40,000. It is observed that the .mex: MatLab

speed up is almost constant, around 2.5. In the case of cruder meshes (N < 5,000) the

committed error is higher, above 0.3 % and generally decreases with the mesh size, however,

not monotonically. The mesh size N = 17,000 seems to be a good trade-off between the

accuracy and computational costs. In this point, the CUDA .mex function is almost 10 times

faster than the serial .mex.

The CFL criterion is also an important parameter of HR-FVM solution. As the CFL increases,

the time step rises – so the run time decreases. Figure 9 b) presents the effects of CFL number

on accuracy of HR-FVM solutions as well as the speed ups. It is observed that the .mex:

MatLab speed up increases (from 4 to 9) and the CUDA .mex : .mex ratio decreases (from 6 to

2) with the CFL. At CFL = 0.55 there is a significant decrease in serial .mex run time, as it seen

on speed up ratios. It seems again that the advantage of GPU acceleration is more accentuated

for computationally expensive problems. The relative error in calculation of µ3 is exactly the

same for all implementations, which increases until the CFL = 0.7 above of which it presents

a chaotic variation. According to the results, the 0.85 CFL has similar error as the 0.35 but the

computational cost is less than half, which seems to be an excellent choice to use in simulations.

However, when using higher CFLs, the possibility of numerical oscillations in the system is

increasing thus the 0.85 CFL should be applied only after further investigations. Note that in

these simulations size independent growth (γ = 0) was applied in order to avoid the over-

stabilization of solution by applying the maximal growth rate which is defined by the maximal

size-bin.

As long as the maximum allowable time step depends on the maximal growth rate, the

computational time should depend on the crystallization kinetics. Figure 10 presents the effects

of nucleation and growth rate constant on the speed up. Note that the error surfaces are not

represented because, according to previous run, they are identical. The .mex : Matlab speed up

seems to decrease with the growth rate constant (from 7 to 2.3) and no significant dependence

can be observed with the nucleation rate. The CUDA .mex : .mex speed up is higher and

surprisingly it increases with the growth rate constant (from 2.5 to 12) but the nucleation rate

constant seems to not affect the speed up considerably. Note that the noise in the speed up

surfaces is a result of run time variations of the serial code as the CPU is also used by the

operating system. This noise is partially reduced by averaging three run times.

3.3 Two dimensional PBE with secondary nucleation and size dependent growths

More recently, there is an increased need to describe not only the size but the shape variations

of the particles during the crystallization. This is achieved by the so-called morphological

population balances which have at least two dimensions. Now let us consider a two dimensional

PBE, generally used to describe the crystallization of rod-like crystals (Borsos and Lakatos,

2013, Szilagyi et al, 2015) and plate like crystals (Szilagyi and Lakatos, 2015). The Eq.(2) is

the general two dimensional PBE taking into the consideration the growth along the length and

width coordinates as well as the nucleation. The mass balance, required to concentration and

supersaturation calculation is given by Eq.(8). The secondary nucleation rate Eq.(17) and the

growth rates Eq.(18) are used distinguishing the kinetic parameters for the growth rate of two

facets.

A linear cooling profile is applied Eq.(19). The solubility is described by a power-law equation

Eq.(21) and the adaptive time stepping Eq.(22) is applied. The parameters used in simulations

are listed in Table 5. The population balance model, the mass balance and the 2D HR-FVM

equations are described by Eqs.(1)-(9). The applied kinetic parameters are listed in Table 5

which are inspired based on literature data (Ma, Tafti, and Braatz 2002) and were slightly

modified to obtain a system behaviour, which fits better the goals of the current analysis.

Uncorrelated bivariate log-normal based seed distribution was considered with m1 = 50 and m2

= 6 μm means and, respectively, v1 = 6 and v2 = 4 μm dispersion along the length and width

axes:

𝑛𝑛0(𝐿𝐿1,𝐿𝐿2) = 108
1

√2𝜋𝜋𝐿𝐿1𝐿𝐿2 ∏ 𝜎𝜎𝑖𝑖2
𝑖𝑖=1

𝑒𝑒𝑒𝑒𝑒𝑒 �−�
[𝑙𝑙𝑛𝑛𝐿𝐿𝑖𝑖 − 𝜇𝜇𝑖𝑖]2

2𝜎𝜎𝑖𝑖

2

𝑖𝑖=1

� (24)

Where

𝜇𝜇𝑖𝑖 = 𝑙𝑙𝑛𝑛

⎝

⎛ 𝑚𝑚𝑖𝑖

�1 + 𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2⎠

⎞ , 𝑖𝑖 = 1,2

𝜎𝜎𝑖𝑖 = �𝑙𝑙𝑛𝑛 �1 +
𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2� , 𝑖𝑖 = 1,2

(24a)

Let us start the investigations with computing the PSD-s in some representative time moments.

As the graphical representation of a bivariate PSD is a surface in the plot shown in Figure 11

only the PSD’s calculated by the CUDA .mex are represented at different times during the

simulation. In the surface-series can be observed that the nucleation has visible significant

effects only after 1800 s, under that the growth is the dominant phenomena. A reason for this

may be that here a secondary nucleation is assumed, which has a rate that is proportional to the

total volume of existing particles. Moreover, the supersaturation exponent is higher than for

the growth rates thus the system presents an explosive nucleation at higher – but decreased

nucleation rate at lower supersaturations. Based on the run times, at the first look it seems that

the .mex function is with 1 order of magnitude faster than the MatLab but with 1 order of

magnitude slower than the CUDA .mex function. However, here the PSD computed by the

CUDA .mex is represented, according to the numerical results, the surfaces would practically

overlap as in the Figure 8.

Similarly as in the 1D PBE case with nucleation and growth, the method of moments is applied

to compute the mixed moments of the bivariate size distribution. The µ12 joint moment is then

used for comparison purposes, a quantity proportional to the specific volume of crystals. This,

as applied high accuracy tolerances, is considered as the “accurate solution”.

In Figure 12 a) the accuracy and the speed up is represented as a function of CFL criterion. The

.mex : MatLab speed up slightly increases (from 21 to 30) but the CUDA .mex : .mex decreases

with the CFL number (from 10 to 7). The CFL = 0.5 seems to be a threshold for the .mex

function where is getting significantly faster generating a step-like variation in both speed up

curves. The accuracy of all implementations is practically the same and is increasing with the

CFL until 0.45 above which presents chaotically variations. Note that in this investigation size

independent growths were applied to avoid the solution over-stabilization caused by the

reasons discussed earlier in this article. Thus, these significant variations in accuracy may be

explained with the possibly appearance of small numerical oscillations when running

simulations with higher CFL-s.

The Figure 12 b) presents the effects of mesh size (N) on accuracy and speed up. It seems that

for the cruder mesh (N = 300 or h = 2 µm discretization) the error is almost 1 % and it decreases

fast with the mesh size (at N = 600 or h = 1 µm discretization is around of 0.5 %) and for the

finest division (N = 3000 or h=0.2 µm) is only 0.25 %. Note that the N = 1,500 element number

(0.375 µm) presents a local minima in the error curve thus it may be a good choice to use in

simulation of this system from the point of view of accuracy. The CUDA .mex : .mex speed

up is monotonically increasing with the mesh size from 5 to 18 and the .mex : MatLab is

decreasing. Note that the MatLab simulations were not carried out for the finer meshes as the

computational demands are extremely high. According to the Figure 12 b), the run time, which

for a bivariate PBE is a quadratic function of mesh size, with N = 1,500 division required

~18,000 seconds (~5 hours). According to both investigations, the advantage of CUDA .mex

over the .mex function is higher for the heavier calculations.

The following investigation focuses on effects of growth rate constants on the CUDA .mex and

.mex code performances. Note that here the MatLab function is not used due to its increased

run time, which makes it practically unusable for simulation purposes compared with the other

two implementations. In Figure 13 a) seen that the advantage of GPU accelerated solution is

sensitive to the applied crystallization kinetics: for the lower growth rates the advantage is the

smallest, presenting a speed up of 6 and for the higher growth rates it increases almost to 9.

The actual CUDA .mex run time, illustrated on Figure 13 b) presents obvious trends: increasing

the growth rates the run time increases almost linearly: in these simulations it varies between

29 and 41 seconds. Taking into consideration that 2100 second process time is simulated, the

GPU accelerated solution seems to be fast enough, namely at least 41 times and up to 73 (which

may be slightly enhanced by optimizing the thread dimension and can be boosted further by

reducing the mesh size), to be applicable even in real time control systems. For the .mex

function, the run times varies between 183 and 358 seconds thus, it is also provides real time

simulation but, for instance in a model based control system, due to the reduced possibly

iteration number (the simulation is up to 11 times faster than the process) optimizer would

hardly found the optimal control signal.

To investigate how the performance of the GPU-PBM implementation depends on hardware

architecture, a comparison study running the same 2D simulation (t = 3600 s) on different

computers and GPUs is carried out. The kinetic and process parameters applied in the

comparison study are listed in Table 6. The first PC involved in these tests was used in previous

investigations presented so far in this article (~2012 technology); the second is a notebook

(~2014 technology); the thirth is a Dell Precision workstation (~2011 technology) equipped

with a compute nVidia Tesla GPU; the fourth is a mid-priced custom configuration workstation

destined to number crunching built from last generation components (by late 2015) while the

last is a Dell Precision workstation (~2015 technology) equipped with a high-end nVidia Tesla

K20X compute processor. The results are presented in Table 7. In the line of “Host”

specifications, the serial .mex function results are listed but in the row of “Device” properties

the CUDA C++ timings are presented (that implements the parallel GPU-PBM). It can be

observed that in each computer the CUDA C++ simulation over-performed the serial C++ code.

Surprisingly, the nVidia GeForce GTX 970 GPU over-performed both nVidia Tesla GPU’s,

which were developed for massive scientific calculations. The explanation might be that in this

GPU the memory and GPU clock is also considerably higher than in the Tesla cards. It is also

important that the CPU clock in this computer is almost the double of the Tesla workstation’s

CPU clock, which also has a significant effect on the speed of calculations. On the other hand,

the Tesla GPUs produced the highest speed-ups, which justify their application, as well as the

error-correcting memory. As it was expected the last generation 4GHz i7 processor equipped

with DDR4 memory gave far the best serial performance but surprisingly, the notebook i3

processor produced outstanding serial computation performance. This suggests that the

memory frequency is also a significant aspect in running these massive simulations.

4. The CrySiV tool, a MatLab based simulation software

The speed ups achieved with the .mex and CUDA .mex functions over the MatLab

implementations presented so far are attractive. The increase of 1-2 orders of magnitude in

computational time for the solutions of 2D-PBM can make the GPU-PBM solution framework

proposed in this paper a unique platform to bring real-time model-based control using full 2D-

PBM codes into the realm of possibility. To share with other users this highly efficient

numerical solution platform, we created a software, the Crystallization Simulation and

Visualization Tool, called CrySiV.

The main criteria in developing the tool were to provide a software package for dual use,

namely:

• Should have similar structure to the usual MatLab functions: the inputs (constants of

the kinetic equations) are given as row vectors, similarly the temperature profile data

and initial PSD. The specific solver options, as the mesh size, CFL number etc. should

be specified in a separate structure for options. This generic function is typically

designated for process optimization and control purposes and provides full flexibility

for a MatLab user to incorporate 1D or 2D PBM solutions in their custom Matlab codes.

• The program should also have a Graphical User Interface (GUI), which should enable

an interactive and clear visualization of the crystallization process. The GUI is

addressed for basic users and/or educational purposes.

In both implementations using the GPU acceleration via the CUDA C++ implementation is an

option, including automatic detection of the suitable GPU card in the computer.

Some of the extended features of software are:

• Include the primary nucleation rate:

𝐵𝐵(𝑆𝑆) = 𝑘𝑘𝑝𝑝𝜎𝜎𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑘𝑘𝑒𝑒

ln2(S)
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆𝑝𝑝
𝑅𝑅𝑇𝑇

� (24)

• Use a more general, temperature dependent secondary nucleation rate equation:

𝐵𝐵(𝑆𝑆) = 𝑘𝑘𝑏𝑏𝑉𝑉𝑐𝑐
𝑗𝑗𝜎𝜎𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆𝑏𝑏
𝑅𝑅𝑇𝑇

� (25)

• Use a more general, temperature and size dependent growth rate equation:

𝐺𝐺(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑔𝑔𝜎𝜎𝑔𝑔(𝛼𝛼 + 𝛾𝛾𝐿𝐿𝛽𝛽)𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆𝑔𝑔
𝑅𝑅𝑇𝑇

� (26)

• Include the dissolution rate into the model:

𝐷𝐷(𝜎𝜎, 𝐿𝐿) = 𝑘𝑘𝑑𝑑(1 − 𝜎𝜎)𝑑𝑑(𝛼𝛼𝑑𝑑 + 𝛾𝛾𝑑𝑑𝐿𝐿𝛽𝛽𝑑𝑑)𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆𝑑𝑑
𝑅𝑅𝑇𝑇

� (27)

• Extend the cooling equation (and, permit the use of custom temperature profile, given

as a vector of time and corresponding temperature values):

𝑇𝑇 = 𝑇𝑇0 + 𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡2 + 𝑑𝑑3exp (𝑑𝑑4𝑡𝑡) (28)

• Include both the power law solubility equation, as well as the Apelblat solubility

model:

𝑑𝑑𝑠𝑠(𝑇𝑇) = exp �𝑎𝑎0 +
𝑎𝑎1
𝑇𝑇

+ 𝑎𝑎3ln (𝑇𝑇)� (29)

Applying the extended kinetics and process Eqs. (24)-(29), a wide variety of cooling

crystallization problems can be easily simulated, from the size dependent growth to the Oswald

ripening using temperature cycling. Using the user-defined temperature profile and enabling

the dissolution, it makes possible the easy simulation of the cyclic temperature profile – and its

effects to the crystal shape, if applied to the two dimensional PBE. Using the GPU acceleration

the solution time can significantly be shortened especially for the more complex calculations,

as it was presented in the previous sections.

A generic MatLab function was created named as crysiv, which can be called form the MatLab

environment, and configured with the constants of the Eqs. (24)-(29) (the initial conditions,

process conditions and solver specifications as mesh size, minimal and maximal crystal size,

CFL number etc.). This function has a detailed input data verification, which ensures that the

compiled .mex files are called with correct inputs avoiding the fatal memory errors and helping

the users with the correct parameterization. The function returns the PSD, concentrations,

moments calculated based on the PSD and the quadrature method of moments based errors of

the FVM moments, in the specified sample times.

A user-friendly GUI was also created in MatLab, which aims to provide an interactive and

easy-to-use platform to simulate, analyse and visualize in 1D and 2D the crystallization

process. Figure 14 shows the main window of the CrySiV GUI. During the simulation, the

actual system states and the simulation results obtained from the beginning are presented and

dynamically updated on two plots. In both plots, a variety of quantities can be presented via

the selection from a pop up menu like the variation of concentration and temperatures, mean

crystal size(s), PSD in 2D and 3D representation and phase diagram. The GUI enables the

saving and loading the model parameterization and simulation data, too. The simulation results

can be loaded separately and can be compared to other simulations, as the CrySiV makes

possible the animation of simulations from the saved data. This tool is freely available for non-

profit use, by contacting the corresponding author and from the project website.

5. Conclusions

In the current work three different implementations of the high resolution finite volume method

(HR FVM), namely as a MatLab function, compiled C++ .mex file and compiled CUDA C++

.mex file, were studied and presented for solving mono and bivariate population balance

equations (PBE). Generally, the performance in different applications is strongly related to the

nature of problem: the advantage of compiled .mex file is the faster serial calculation but GPU

has a massive parallel architecture which makes it advantageous to perform parallel

calculations of higher computational demand. In order to simultaneously benefit from the

advantages CPU and GPU, in this study a hybrid algorithm was developed solving the parallel

operations on GPU and passing the serial calculations to the CPU exploring maximally the

computational power of the computer without overloading the CPU.

The effects of different aspects of the algorithm were studied on computational speed like the

mesh size or Courant-Friedrichs-Lewy (CFL) criterion as well as the parallel programming

specific properties like the thread dimension. It was found that all these setting affect the

computational performance and accuracy as well but not necessarily linearly thus attractive

numerical configurations can be found. According to the simulation results, in the case of mono

dimensional PBE with nucleation and growth the runs with CFL = 0.85 gave as accurate results

as the CFL = 0.35 compared to the method of moments solution, with less than half

computational cost. The advantage of GPU in all cases increased monotonically compared to

the pure CPU performance (both .mex and MatLab function). Moreover, it was found that the

GPU calculations do not introduce observable additional errors.

For the pure growth one dimensional population balance involving only parallelizable

calculations the GPU was up to 60 times faster than the MatLab function and up to 7 times

faster than the .mex code. In the case of one dimensional PBE with secondary nucleation and

size dependent growth speed up was more spectacular: here the MatLab : .mex : CUDA .mex

run time ratio is up to 38 : 18 : 1. In two dimensional PBE solutions the computational cost is

quadratic function of the mesh size. The MatLab implementation showed poor performance; it

was generally 20-50 times slower compared to the .mex implementation. The GPU acceleration

led to even 18 times speed up compared to the pure serial .mex function. In all cases (1D and

2D) it was observed that the improvement is more significant for the heavier calculations (finer

mesh, lower CFL, higher growth rate, longer simulated time etc.).

One of the key advantages of the GPU-PBM framework proposed here is the fact that in the

current study a low-cost GPU card is used, similar to what already exists in many PC’s, and

significant speed up is achieved, which makes the method more attractive in application of real

time model-based control approaches.

Based on the presented programs, a MatLab based simulator was created, named as CrySiV

(Crystallization Simulation and Visualization Tool), which uses extended crystallization

kinetics, including primary and secondary nucleation, growth and dissolution of crystals. The

software has similar structure to the built-in MatLab programs to ease its application for the

process engineers, whose this function was typically created. A graphical user interface was

created to the CrySiV which aims to make the simulation of crystallization process spectacular

and easy to use and the comparison of simulation results simple and fast. This is addressed for

the basic users and/or educational purposes.

Acknowledgments

Funding is acknowledged from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. [280106-

CrySys]. Financial support of the Sectorial Operational Programme for Human Resources

Development 2007-2013, co-financed by the European Social Fund, under the project

POSDRU/159/1.5/S/132400 – “Young successful researchers – professional development in

an international and interdisciplinary environment” is also acknowledged. The authors would

also like to acknowledgement prof. Zsolt Ulbert for running the simulations in the nVidia Tesla

machine.

References

Aamir E., 2010. Population balance model-based optimal control of batch crystallisation

processes for systematic crystal size distribution design. PhD thesis. Loughborough

University, Department of Chemical Engineering, UK.

Aamir E., Nagy Z.K., Rielly C.D., 2010. Optimal seed recipe design for crystal size distribution

control for batch cooling crystallization processes. Chemical Engineering Science 65, 11,

3602-3614.

Aamir E., Nagy Z.K., Rielly C.D., Kleinert T., Judat B., 2009. Combined quadrature method

of moments and method of characteristics approach for efficient solution of population

balance models for dynamic modeling and crystal size distribution control of crystallization

processes. Industrial and Engineering Chemistry 48, 18, 8575 – 8584.

Bárkányi, Á.,Németh, S., Lakatos, B.G., 2013. Modelling and simulation of suspension poly-

merization of vinyl chloride via population balance model. Computers and Chemical

Engineering 59, 211-218.

Borsos, Á., Lakatos, B.G., 2013. Investigation and simulation of crystallization of high aspect

ratio crystals with fragmentation. Chemical Engineering Research and Design 92/6, 1133-

1141

CookS., 2012, CUDA Programming, Morgan Kaufman, USA

Frenklach M., 2002. Method of moments with interpolative closure. Chemical Engineering

Science 57, 12, 2229-2239

Gunawan R., Fusman I., Braatz R.D., 2004. High Resolution Algorithms for Multidimensional

Population Balance Equations, AIChE Journal 50-14, 2738 – 2749

Gunawan R., Fusman I., Braatz R.D., 2008. Parallel High Resolution Simulation of Particulate

Processes, AIChE Journal, DOI: 10.1002/aic.11484

Hulburt H.M., Katz S., 1964, Some Problems in Particle Technology. A statistical Mechanical

Formulation, Chemical Engineering Science 19, 555-574

Irizarry, R., 2008. Fast Monte Carlo methodology for multivariate particulate systems—I: Point

ensemble Monte Carlo. Chemical Engineering Science 63, 1, 95-110

http://www.sciencedirect.com/science/article/pii/S000925090700718X
http://www.sciencedirect.com/science/article/pii/S000925090700718X

Lakatos G. B., 2008. Population balance model for mixing in continuous flow systems.

Chemical Engineering Science 63, 2, 404-423.

LeVeque R.J., 1992. Numerical methods for conservation laws. Birkhauser Verlag, Basel,

Germany.

LeVeque R.J., 2002. Finite volume methods for hyperbolic problems. Cambridge University

Press, Cambridge, UK.

Ma D.L., Tafti D.K., Braatz, R.D, 2002. “High-Resolution Simulation of Multidimensional

Crystal Growth. Industrial & Engineering Chemistry Research 41,25, 6217–23

Majumder A., KariwalaV., AnsumaliS., RajendranA., 2010, Fast High-Resolution Method for

Solving Multidimensional Population Balances in Crystallization, Industrial & Engineering

Chemistry Research 49, 3862-3872

McGraw, R., 1997. Description of aerosol dynamics by the quadrature method of moments.

Aerosol Science and Technology 27, 255-265.

Nagy Z.K, Fevotte G., Kramer H., Simon L.L., 2013. Recent advances in the monitoring,

modelling and control of crystallization systems. Chemical Engineering Research and

Design 91, 10, 1903-1922.

Prakash A.V., ChaudhuryA., BarrassoD., RamachandranR., 2013, Simulation of Population

Balance Model Based Particulate Processes via Parallel and Distributed Computing,

Chemical Engineering Research and Design 91-7, 2159-1271

Qamar S., Ashfaq A., Warnecke G., Angelov I., Elsner M.P., Seider-MorgesternA., 2007,

Adaptive High-Resolution Schemes for Multidimensional Population Balances in

Crystallization Processes, Computers & Chemical Engineering 31-10, 1296-1311

QamarS., Elsner M.P., Angelov I., WarneckeG., Seider-MorgesternA., 2006, A Comparative

Study of High Resolution Schemes for Solving Population Balances in Crystallization,

Computers & Chemical Engineering 30-6/7, 1119-1131

Randolph A., Larson M., 1971.Theory of particulate processes. Academic Press, New York

Randolph A., Larson M., 1988. Theory of particulate processes: analysis and techniques of

continuous crystallization. Academic Press, Salt Lake City

Santos F.P., Senocak I., Favero J.L., Lage P.L.C., 2013. Solution of the population balance

equation using parallel adaptive cubature on GPUs. Computers & Chemical Engineering

55, 8, 61-70.

Smith M., Matsoukas T., 1988. Constant-number Monte Carlo simulation of population

balances. Chemical Engineering Science 53, 9, 1777-1786

Szilágyi B, Muntean N, Barabás R, Oana P, Lakatos G.B, 2015. Reaction precipitation of

amorphous calcium phosphate: Population balance modeling and kinetics, Chemical

Engineering Research and Design, 93, 278 – 286.

Szilágyi B., Agachi P.S., Lakatos B.G., 2015. Numerical investigation of crystallization of high

aspect ratio crystals with breakage. Powder Technology, 283, 152-162.

Szilágyi B., Lakatos B.G., 2015.Batch cooling crystallization of plate-like crystals: a

simulation study. Periodica Polytechnica Chemical Engineering, DOI: 10.3311/PPch.7581

Ulbert Zs, Lakatos G.B., 2007. Dynamic simulation of crystallization processes: Adaptive

finite element collocation method. AlChE Journal 53, 12, 3089-3107.

Valentas J.V., Amundson N.R., 1966. Breakage and coalescence in dispersed phase systems.

Industrial & Engineering Chemistry Fundamentals 5, 4, 533-542.

Wei J., 2014. A parallel Monte Carlo method for population balance modeling of particulate

processes using bookkeeping strategy. Physics A: Statistical Mechanics and its Applications

402, 186-197.

Wei J., Kruis F.E., 2013. GPU-accelerated Monte Carlo simulation of particle coagulation

based on the inverse method. Journal of Computational Physics 249, 67-79.

Xu Z., Zhao H., Zheng C., 2015. Accelerating population balance-Monte Carlo simulation for

coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel

computing. Journal of Computational Physics 281, 844-863.

List of notations

ak - coefficients of the characteristic solubility expression, -

b - exponent nucleation rate, -

B - nucleation rate # µm-3s-1

c - concentration of solute, kg m-3

ci - coefficient of temperature profile equation, i = 1,2,…,5

cr - cooling rate, oC s-1

cs - solubility concentration, kg m-3

E - activation energy, kJ kmol-1 K-1

G - crystal growth rate, m s-1

g - exponent of crystal growth rate

kb - rate coefficient of nucleation, # µm -3s-1

ke - parameter of primary nucleation, -

kg - rate coefficient of crystal growth, µm s-1

kV - volume shape factor , -

L - linear size of crystals, m

N - mesh size, #

n - population density function, # m-5

R - gas constant, 8.31 kJ kmol-1

S - supersaturation ratio, -

T - temperature, oC

VC - volume fraction of crystal population, m3m-3

Greek letters

ρ - density, kgm-3

σ - relative supersaturation, -

µk,m - (k,m)th order mixed moment

α - coefficient of growth rate function

β - exponent of growth rate function

δ - Dirac delta function

γ - coefficient of growth rate function, µm-1

Subscripts

0 - initial value

1,2 - characteristic crystal facet, 1…3

b - secondary nucleation

d - dissolution

n - nuclei

p - primary nucleation

Abbreviations

AES - Algebraic Equation System

CFL - Courant Friedrichs Lewy criterion

CPU - Central Processing Unit

CUDA - Compute Unified Device Architecture

FVM - Finite Volume Method

GPU - Graphical Processing Unit

GUI - Graphical User Interface

HR - High Resolution

PB - Population Balance

PBE - Population Balance Equation

PCT - Parallel Computing Toolbox (MatLab)

PSD - Particle Size Distribution

ODE - Ordinary Differential Equation

List of Tables

Table 1. Machine specifications

Table 2. The process and kinetic parameters used in the solution of mono-dimensional

population balance with constant growth only

Table 3. The process and kinetic parameters used in the solution of mono-dimensional

population balance equation with nucleation and growth

Table 4. The corresponding computational times obtained for the simulations presented

in Figure 8.

Table 5. The process and kinetic parameters used in the solution of two dimensional

population balance equation with nucleation and growth

Table 6. Kinetic and process parameters used in comparison studies

Table 7. Computational performance on different machines. The simulated (process)

time is 3600 s

List of Figures

Figure 1. Representation of the finite volume discretization of a) one dimensional PSD

b) two dimensional PSD and c) uniform 2D grid

Figure 2. The anatomy of a .mex function: the Gateway function makes the connection

between the MatLab and the crude C++ code

Figure 3.Compilation process of the CUDA code containing .mex file: the role of nVidia

CUDA – and Visual Studio C++ compilers

Figure 4.The flow-sheet of the GPU acceleration: the parallel calculations are performed

on the GPU but the CPU runs the serial computations

Figure 5.Comparison of the analytical solution with the three HR-FVM implementation

results and the percentage errors committed by the numerical solutions of a mono

dimensional pure-growth PBE

Figure 6.The dependence of acceleration ratio and accuracy on the mesh size (N) in

solution of a mono dimensional pure-growth PBE

Figure 7. Effects of thread dimension on GPU accelerated solution time of a mono

dimensional pure growth PBE

Figure 8.The calculated PSD’s after a) 50, b) 100, c) 200, d) 300, e) 400, f) 450 seconds

for a mono-dimensional PBE with nucleation and size dependent growth

Figure 9.a) The dependence of acceleration ratio and accuracy on the mesh size (N) in

solution of a mono dimensional PBE with nucleation and size dependent growth (tmax =

400 s, CFL = 0.5)

b) The dependence of acceleration ratio and accuracy on the CFL criterion for size-

independent growth and (tmax = 1500 s, N = 18000)

Figure 10.a) The dependence of .mex : MatLab acceleration ratio and b) CUDA .mex :

.mex acceleration ratio on the nucleation rate constant kb and growth rate constant kg, N

= 18000, tmax = 300 s.

Figure 11. The calculated bivariate PSD’s after a) 600, b) 1200, c) 1800 and d) 2100

seconds

Figure 12. Dependence of acceleration ratio and accuracy on the a) CFL criterion with

size independent growth and b) division number in one direction (N) with size

dependent growth in solution of a two dimensional PBE.

Figure 13. a) Dependence of acceleration ratio and b) CUDA .mex function run time on

growth rate constants (kg1 and kg2) compared to the .mex code

Figure 14. The interface of the CrySiV program, a MatLab based simulator for cooling

batch crystallization processes

Table 1. Machine specifications

Property “Host” – CPU “Device” – GPU
Type AMD Phenom II X4 965 Gigabyte nVidia GT 640

No. of proc. / freq. 4; 3400 MHz 384; 1046 MHz
Memory specifications 16GB DDR3;1333 MHz 1GB GDDR5; 5000 MHz

Price ~ 100 USD ~ 100 USD
Compiler Visual Studio 2010 Prof. nVidia CUDA Toolkit 6.5

Table 2. The process and kinetic parameters used in the solution of mono-dimensional population
balance with constant growth only

k = 10-5 [s] v0 = 10-2 [µm3] N0 = 1 [#/µm3]
tmax = 7 s G0 = 0.1 [µm/s] N = 10000 [#]

Table 3. The process and kinetic parameters used in the solution of mono-dimensional population
balance equation with nucleation and growth

kb = 4.48 10-7 [#µm-3s-1] kg = 116 [µm s-1] g = 1.32 [-]
b = 1.78 [-] cr =0.0167 [oC s-1] γ = 0.1 [µm-1]
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.1286 [kg m-3]

a1 = -5.88 10-3 [kg m-3 oC-1] a2 = 1.72 10-4 [kg m-3 oC-2] N = 32000 [#]
h = 0.05 [µm] CFL = 0.5 [-] kV = π/6 [-]
tmax = 450 [s] ρc = 2110 [kg m-3]

Table 4. The corresponding computational times obtained for the simulations presented in
Figure 8.

Simulated time
[s]

CUDA .mex run
time [s]

CUDA .mex :
.mex speed up

CUDA .mex :
MatLab speed up

50 0.2222 2.46 18.88
100 0.9250 2.67 22.11
200 4.4490 3.35 23.87
300 11.7358 5.98 26.72
400 22.5248 13.24 36.19
450 32.6778 18.24 38.68

Table 5. The process and kinetic parameters used in the solution of two dimensional population
balance equation with nucleation and growth

kb = 7.49.10-8[#µm-3s-1] kg1 = 5.75 [µm s-1] kg2 = 4.21 [µm s-1]
g1 = 1.34 [-] g2 = 1.38 [-] γ1 = 1.5.10-3 [µm-1]

γ2 = 1.8.10-3 [µm-1] b = 2.04 [-] cr = 0.0167 [oC s-1]
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.2087 [kg m-3]

a1 = -9.76.10-5[kg m-3 oC-1] a2 = 9.3.10-5 [kg m-3 oC-2] N = 1200 [#]
h = 0.5 [µm] CFL = 0.5 [-] kV = 1 [-]

tmax = 3600 [s] ρc = 2338 [kg m-3]

Table 6. Kinetic and process parameters used in comparison studies

kb = 0 [#µm-3s-1] kg1 = 110 [µm s-1] kg2 = 60 [µm s-1]
g1 = 1.44 [-] g2 = 1.24 [-] γ1 = 6.10-4 [µm-1]

γ2 = 2.10-4 [µm-1] b = 0 [-] cr = 0.0033 [oC s-1]
T0 = 32 [oC] c0 = cs(T0) [kg m-3] a0 = 0.2087 [kg m-3]

a1 = -9.76.10-5[kg m-3 oC-1] a2 = 9.3.10-5 [kg m-3 oC-2] CFL = 0.5 [-]
kV = 1 [-] tmax = 3600 [s] ρc = 2338 [kg m-3]

m1 = 110 [μm] m2 = 100 [μm] v1 = 150 [μm]
v2 = 70 [μm]

Table 7. Computational performance on different machines. The simulated (process) time is 3600 s

Machine Timings (Mesh size) [s]
no. Machine specifications 1000 2000 3000

1
(PC)

Host: AMD Phenom 2 X4 3.4 GHz CPU,
1333 MHz memory 359 2510 6780

Device: nVidia GT 640 GPU, 384 cores,
5000 MHz memory 40.3 161 368

Speedup 8.9 15.6 18.24

2
 (notebook)

Host: Intel Core i3 4000M 2.4 GHz CPU,
1600 MHz memory 248 2265 4750

Device: nVidia GT 720M GPU, 96 cores,
5000 MHz memory 56 X* X*

Speedup 4.42 - -

3
(Workstation)

Host: Intel Xeon E5500, 2.3 GHz CPU,
1066 MHz memory 515 4232 11556

Device: nVidia Tesla C2075 GPU, 448 cores,
3000 MHz memory 10.2 39 95.9

Speedup 50.4 108.5 120.5

4
(Workstation)

Host: Intel i7 6700K, 4 GHz CPU, 2133
MHz memory 102 778 1977

Device: nVidia GeForce GTX 970 GPU,
1664 cores, 7000 MHz memory 8.46 31 73.5

Speedup 12.0 25.1 26.6

5
(Workstation)

Host: Intel Xeon E5-2620, 2.4 GHz CPU,
2133 MHz memory 252 1761 4379

Device: nVidia Tesla K20X GPU, 2688
cores, 5200 MHz memory 9.00 35.1 85.5

Speedup 28 50.1 51.1

* out of GPU memory

a)

b)

c)

Figure 1. Representation of the finite volume discretization of a) one dimensional PSD b) two dimensional

PSD and c) uniform 2D grid

Figure 2. The anatomy of a .mex function: the Gateway function makes the connection between the

MatLab and the crude C++ code

Figure 3. Schematic representation of compilation process of the CUDA code containing .mex file: the

role of nVidia CUDA – and Visual Studio C++ compilers

Figure 4. The flow-sheet of the GPU acceleration: the parallel calculations are performed on the GPU but

the CPU runs the serial computations

Figure 5. Comparison of the analytical solution with the three HR-FVM implementation results and the

percentage errors committed by the numerical solutions of a mono dimensional pure-growth PBE

Figure 6. The dependence of acceleration ratio and accuracy on the mesh size (N) in solution of a mono

dimensional pure-growth PBE

Figure 7. Effects of thread dimension on GPU accelerated solution time of a mono dimensional pure

growth PBE

e)

Figure 8. The calculated PSD’s after 50, 100, 200, 300, 400, 450 seconds for a mono-dimensional PBE with

nucleation and size dependent growth

a)

b)

Figure 9. a) The dependence of acceleration ratio and accuracy on the mesh size (N) in solution of a mono

dimensional PBE with nucleation and size dependent growth (tmax = 400 s, CFL = 0.5)

b) The dependence of acceleration ratio and accuracy on the CFL criterion for size-independent growth

and (tmax = 1,500 s, N = 18,000)

a)

b)

Figure 10. a) The dependence of .mex : MatLab acceleration ratio and b) CUDA .mex : .mex acceleration

ratio on the nucleation rate constant kb and growth rate constant kg, N = 18000, tmax = 300 s.

 a) b)

 c) d)

Figure 11. The calculated bivariate PSD’s after a) 600, b) 1200, c) 1800 and d) 2100 seconds

a)

b)

Figure 12. Dependence of acceleration ratio and accuracy on the a) CFL criterion with size independent

growth and b) division number in one direction (N) with size dependent growth in solution of a two

dimensional PBE

a)

b)

Figure 13. a) Dependence of acceleration ratio and b) CUDA .mex function run time on growth rate

constants (kg1 and kg2) compared to the .mex code

Figure 14. The interface of the CrySiV program, a MatLab based simulator for cooling batch

crystallization processes

	McGraw, R., 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology 27, 255-265.
	Randolph A., Larson M., 1988. Theory of particulate processes: analysis and techniques of continuous crystallization. Academic Press, Salt Lake City

