8,642 research outputs found

    Dynamics and Stability of Low-Reynolds-Number Swimming Near a Wall

    Get PDF
    The locomotion of microorganisms and tiny artificial swimmers is governed by low-Reynolds-number hydrodynamics, where viscous effects dominate and inertial effects are negligible. While the theory of low-Reynolds-number locomotion is well studied for unbounded fluid domains, the presence of a boundary has a significant influence on the swimmer’s trajectories and poses problems of dynamic stability of its motion. In this paper we consider a simple theoretical model of a microswimmer near a wall, study its dynamics, and analyze the stability of its motion. We highlight the underlying geometric structure of the dynamics, and establish a relation between the reversing symmetry of the system and existence and stability of periodic and steady solutions of motion near the wall. The results are demonstrated by numerical simulations and validated by motion experiments with macroscale robotic swimmer prototypes

    On Norm-Based Estimations for Domains of Attraction in Nonlinear Time-Delay Systems

    Get PDF
    For nonlinear time-delay systems, domains of attraction are rarely studied despite their importance for technological applications. The present paper provides methodological hints for the determination of an upper bound on the radius of attraction by numerical means. Thereby, the respective Banach space for initial functions has to be selected and primary initial functions have to be chosen. The latter are used in time-forward simulations to determine a first upper bound on the radius of attraction. Thereafter, this upper bound is refined by secondary initial functions, which result a posteriori from the preceding simulations. Additionally, a bifurcation analysis should be undertaken. This analysis results in a possible improvement of the previous estimation. An example of a time-delayed swing equation demonstrates the various aspects.Comment: 33 pages, 8 figures, "This is a pre-print of an article published in 'Nonlinear Dynamics'. The final authenticated version is available online at https://doi.org/10.1007/s11071-020-05620-8

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Computation in Economics

    Get PDF
    This is an attempt at a succinct survey, from methodological and epistemological perspectives, of the burgeoning, apparently unstructured, field of what is often – misleadingly – referred to as computational economics. We identify and characterise four frontier research fields, encompassing both micro and macro aspects of economic theory, where machine computation play crucial roles in formal modelling exercises: algorithmic behavioural economics, computable general equilibrium theory, agent based computational economics and computable economics. In some senses these four research frontiers raise, without resolving, many interesting methodological and epistemological issues in economic theorising in (alternative) mathematical modesClassical Behavioural Economics, Computable General Equilibrium theory, Agent Based Economics, Computable Economics, Computability, Constructivity, Numerical Analysis

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc
    corecore