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Abstract 
 
This is an attempt at a succinct survey, from methodological and epistemological 
perspectives, of the burgeoning, apparently unstructured, field of what is often – 
misleadingly – referred to as computational economics. We identify and characterise 
four frontier research fields, encompassing both micro and macro aspects of 
economic theory, where machine computation play crucial roles in formal modelling 
exercises: algorithmic behavioural economics, computable general equilibrium theory, agent 
based computational economics and computable economics. In some senses these four 
research frontiers raise, without resolving, many interesting methodological and 
epistemological issues in economic theorising in (alternative) mathematical modes.  
 
 
Keywords: Classical Behavioural Economics, Computable General Equilibrium theory, 
Agent Based Economics, Computable Economics, Computability, Constructivity, Numerical 
Analysis.  
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1. A Preamble 

"Computing is integral to science – not just as a tool for analyzing data, 
but as an agent of thought and discovery."  
[20], p. 369, italics added.   

 
No one economist – although he was more than just an economist – 

considered, modelled and implemented the idea of ‘computing ..... as an agent 

of thought and discovery’ better or more systematically, in human problem 

solving, organization theory, decision making in economics, models of 

discovery, evolutionary dynamics, and much else of core relevance to 

economic theory, than Herbert Simon 1. In these two senses computing is 

clearly an epistemic and epistemological agent. On the other hand, the 

computer is undoubtedly also a ‘tool for analyzing data’, an aspect precisely 

and perceptively characterised by Richard Stone and Alan Brown in their 

pioneering work on A Computable Model of Growth2:  

 
Our approach is quantitative because economic life is largely 
concerned with quantities. We use computers because they are the best 
means that exist for answering the questions we ask. It is our 
responsibility to formulate the questions and get together the data 
which the computer needs to answer them.  
[79], p.viii; italics in original.   
 

Remarkably – though not unexpectedly, at least to us3 – thirty four years later, 

                                                 
1When we refer to Classical Behavioural Economics, it is to the kind of computationally 
underpinned research program in these fields broached by Simon that will be meant (see [93] 
& [43], [47], [63], [65], [66], [67], [68], [69], [70], [71], [72], [73]). 
2It is little recognized by one wing of so-called computational economists (eg., [22]) that the 
research program of the Cambridge Growth Project under the direction of Richard Stone 
emerged independently of – even prior to – Johansen’s justly famous work on a 
computational Multi-Sectoral Growth Model (cf., [35]). 
3 ‘Not unexpectedly’ because newclassical scholarship on traditions and foundations – 
whether of the doctrine historical variety in economics or of knowledge of mathematical 
traditions – is both selectively doctrinaire and unusually narrow, bordering on being 
comprehensively ahistorical. 
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we find two of the undisputed pioneers of real business cycle (RBC) theory, 

the core constituent of the Stochastic Dynamic General Equilibrium4 (SDGE) 

model, considered one of the two dominant, frontier, ‘schools’ of 

macroeconomics, defining and asserting the meaning of a computational 

experiment in economics as follows ([40], p.67:  

 
"In a computational experiment, the researcher starts by posing a 
well-defined quantitative question. Then the researcher uses both theory 
and measurement to construct a model economy that is a computer 
representation of a national economy. ..... The researcher then calibrates 
the model economy so that it mimics the world along a carefully 
specified set of dimensions. Finally, the computer is used to run 
experiments that answer the question."   
 

Enormous developments in the theoretical and practical technology of the 

computer have made a tremendous impact on economic methodology in general, 

but also in economic theory in particular. It must be emphasised that these 

references are to the digital computer. There are also analog and hybrid 

computers5 that can be harnessed for service by the economist 6 – or any 

other analyst, in many other fields – to realise the intentions indicated by 

                                                                                                                                            
 
4We prefer what we think is the more descriptively correct Recursive Macroeconomics (see [45]) 
for this ‘school’ (in the sense of [52]) macroeconomics. The recursive in this description and 
encapsulation of Newclassical Macroeconomic methodology refers to the notion of recursion in the 
sense of intuitive iteration that underpins Filtering, Markov Decision Processes and Dynamic 
Programming associated with the names of Kalman, Wald and Bellman. The rational agent is, 
thus, formally equivalent to an optimal signal processor in Newclassical Macroeconomics. 
This should be contrasted with Simon’s computational behavioural agent as an Information 
Processing System (IPS) and the algorithmically rational agent (ARA) of computable and 
constructive economics. The latter two notions are grounded in formal recursion theory or 
constructive mathematics. The notions of recursive and iteration in Recursive 
Macroeconomics have nothing whatsoever to do with the rigorous notion of recursive, 
recursion and iteration in Recursion Theory, Constructive Mathematics. 
5Not to mention quantum, DNA and other physical and natural computers that are beginning 
to be realised at the frontiers of theoretical technology. 
6Charles Babbage, viewed in one of his many incarnations as an economist, can be considered 
the only one to have straddled both the digital and analog traditions. There is a story to be 
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Stone & Brown and Kydland & Prescott, as well as to act as ‘an agent of 

thought and discovery’. Indeed, in many ways, the analog computer should 

be more suitable for the purposes of the economic analysts simply because 

theorising in economics is in terms of real numbers and the underpinning 

mathematics is, almost without exception, in terms of real analysis7. The 

seemingly simple observations above capture one of a handful of insightful 

visions that the ubiquity of the computer has conferred upon the intellectual 

adventurer in economics – in particular the epistemically oriented economist. 

Stone & Brown and Kydland & Prescott seem to appeal to the raw quantitative 

economic analyst to respect the language and architecture of the computer in 

pursuing precise numerical investigations in economics.  

 

However, as noted above, economic theorists tend to ‘formulate the 

questions’ in the language of a mathematics that the digital computer does not 

understand - real analysis - but ’get together the data’ that it does, because the 

natural form in which economic data appears or is constructed is in terms of 

integer, natural or rational numbers. The transition between these two 

domains remains a proverbial black box, the interior of which is occasionally 

viewed, using the lenses of numerical analysis, recursion theory or constructive 

mathematics. With the possible exception of the core of economic theory, i.e., 

general equilibrium theory, in its incarnation as computable general equilibrium 

(CGE) theory, and the newer fields of computable and constructive economics, 

                                                                                                                                            
told here, but this is not the forum for it. We shall reserve the story for another occasion. 
7Real analysis, as used by the mathematical economist, in turn, founded on set theory plus the 
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there have been no systematic attempts to develop any aspect of economics in 

such a way as to be consistent with the use of the computer, respecting its 

mathematical, numerical and, hence, also its epistemological – ‘as an agent of 

thought and discovery’ – constraints.  

 

Somewhat surprisingly, the adherents and aficionados of Leif Johansen’s 

classic work on A Multi-Sectoral Study of Economic Growth ([35]) claim that 

this was ’the first CGE model’ ([22], p.6)8. Their rationale for this claim is the 

following (p. 6; last two italics, added):  

 
"[The Johansen model] was general in that it contained .. cost 
minimizing industries and utility-maximizing household sectors....His 
model employed market equilibrium assumptions in the determination 
of prices. Finally, it was computable (and applied). It produced a 
numerical, multi-sectoral description of growth in Norway using 
Norwegian input-output data and estimates of household price and 
income elasticities derived using Frisch’s ... additive utility method."   

 
This is an untenable claim9; but we will not attempt at a substantiation of our 

counter-claim in this paper, reserving it for a different, more focused, exercise. 

Here our aim is to structure and organise the computing tradition in 

economics in the age of the digital computer. For this reason, we accept, pro 

                                                                                                                                            
axiom of choice, whether explicitly acknowledged or not. 
8This claim is repeated in a curiously uninformed and seriously incomplete expository 
chapter on Computational Economics by Paul Humphreys in an otherwise prestigious recent 
‘Handbook’ ([34]). 
9 Our stance on this issue is reflected exactly by the view held by our friend, Lance Taylor. 
After attending the recent 50th anniversary celebrations of the Johansen Model, held in Oslo, 
Lance wrote as follows to the first author (E-mail, 27 August, 2010; italics added): 

" [Most participants at the] conference in honor of the 50th anniversary of Johansen’s 
MSG model [held in Oslo in May, were] thinking that Leif was taking off from 
Arrow-Debreu when in fact he was doing disaggregated macro planning, moving 
around the numbers in a set of accounts that they had been constructed to satisfy. 
There is certainly no mention of A-D in his book."  
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tempore, this claim by Dixon and Parmenter (and like-minded economists). Yet, 

we cannot refrain from raising at least half-an-eyebrow at the notion of 

equating the notion of computable with numerical. This was not the equivalence 

that underpinned the way the Arrow-Debreu General Equilibrium (ADGE) 

was turned into the formal, rigorous, CGE model of Scarf, which will be 

discussed below in section 4.   

 

In footnote 2, above, we claimed that the Computable10 Growth Model that was 

being developed at the Department of Applied Economics, at Cambridge, 

within the Cambridge Growth Project framework under the direction of Richard 

Stone, was one that was parallel in aims and structure to the Johansen 

exercise. Surely, then, this model has a claim to be a ‘joint first’ CGE exercise, 

with the Johansen MSG model (except for minor details on the way the ‘price 

and income elasticities’ were derived)? Unsurprisingly, this claim, too, has 

been asserted by no less an authority than Graham Pyatt ([54], p.246; italics 

added):  

 
"By the end of the [1950s], a new release of creative energies was 
evident with the launch of the Cambridge Growth Project .... The 
central idea was to synthesize demand analysis with input-output in 
an exercise which paralleled the work in Norway of Leif Johansen and 
can be seen in retrospect as an immediate precursor of applied or general 
equilibrium models."   

 
This claim – that the Cambridge Growth Project work ‘can be seen in 

retrospect as an immediate precursor of applied or general equilibrium 

                                                                                                                                            
 
10Computable, in this context, is simply numerical in the same sense in which it was referred to 
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models’ – is at least as untenable as the previous claim by [22]. Here too, we 

accept this (untenable) claim, pro tempore, for the specific purpose of the aims 

of this chapter. Here, too, what ‘emerged’ as the applied general equilibrium 

modelling tradition, directly down the ADGE and (Scarf) CGE line, had 

nothing whatsoever to do with the way the Cambridge Growth Project 

modelling exercise was implemented. In the Cambridge Growth Project 

tradition – as well as the Johansen MSG exercise – the starting points were the 

necessary balances intrinsic to Social Accounting Matrices (SAM). The 

numerical methods that were used to iterate towards the necessary balances 

in a SAM did not imply the computability of the model as a whole; nor did it 

have anything to do with the theoretical – economic and mathematical – 

underpinnings in an ADGE model.  

 

Suppose, now, we teach our students the rudiments of the mathematics of the 

digital computer - i.e., recursion theory and constructive mathematics - 

simultaneously with the mathematics of general equilibrium theory - i.e., real 

analysis. As a first, tentative, bridge between these three different kinds of 

mathematics, let us also add a small dose of lectures and tutorials on 

computable and constructive analysis, at least as a first exposure of the 

students to those results in these fields that have bearings at least on 

computable general equilibrium theory a la Scarf. Such a curriculum content 

will show that the claims and, in particular, the policy conclusions emanating 

from applied general equilibrium theory are based on untenable algorithmic 

                                                                                                                                            
in [22], above. 
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mathematical foundations. This is true in spite of the systematic and 

impressive work of Herbert Scarf, Rolf Mantel and others who have sought to 

develop some allegedly constructive11 and computable foundations in core 

areas of general equilibrium theory. In this precise mathematical sense, the 

epistemic and epistemological status of applied claims and assertions – for 

example, in policy domains, especially with anchorings in one or both of the 

fundamental theorems of welfare economics – are, to put it mildly, 

questionable. Some of these points are discussed in section 4, below.  

 

In this paper we have decided to eschew any description or discussion of the 

various uses of numerical methods in economic analysis. We have computable 

reasons for this decision. Most of the models of economic analysis – whether 

micro or macro, game theory of IO – are founded on real analysis 

underpinned by set theory plus the axiom of choice. Results obtained in this 

framework are seriously deficient in numerical content. To infuse numerical 

content via numerical methods do not make the theories computational in any 

rigorous sense. In fact, there is – provably – almost no meaningfully 

approximate connection between a ‘rigorously’ proved, say, equilibrium, and 

its numerically computed approximation – despite many claims to the 

contrary, even at the frontiers of economic analysis.  

 

                                                 
11 I should mention that Douglas Bridges, a mathematician with impeccable constructive 
credentials, made a couple of valiant attempts, one of them with Fred Richman, to infuse a 
serious and rigorous dose of constructivism at the most fundamental level of mathematical 
economics (cf: [11], [12]). 
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In the spectacular developments achieved in dynamical systems theory in the 

second half of the 20th century, the digital computer played a decisive part. 

However, there is a close connection between algorithms and dynamical 

systems via numerical analysis. The use of the digital computer to study 

continuous dynamical systems requires the analyst or the experimenter to 

first discretise the system to be studied. The discretisation processes for 

nonlinear dynamical systems are often intractable and undecidable. On the 

other hand, paradoxically, until very recently the mathematical foundation 

for numerical analysis was not developed in a way that was consistent with 

the mathematical foundation of the digital computer - i.e., computability 

theory. As a result we have, in economics, a plethora of attempts and claims 

about computational economics that are not well founded on recursion theoretic, 

constructive or a numerical analysis based on formal algorithmic foundations.  

Now, there are at least two ways out of the dilemma faced by the 

computational economist. Either be rigorous about the theory of approximations 

and numerical analysis in discretising the continuous; or, look for a 

mathematical foundation for numerical analysis taking heed of the following 

observations remarks by Blum, et.al (to which we will refer as BCSS):  

 
"There is a substantial conflict between theoretical computer science 
and numerical analysis. These two subjects with common goals have 
grown apart. For example, computer scientists are uneasy with 
calculus, whereas numerical analysis thrives on it. On the other hand 
numerical analysts see no use for the Turing machine.  
The conflict has at its roots another age-old conflict, that between the 
continuous and the discrete. Computer science is oriented by the digital 
nature of machines and by its discrete foundations given by Turing 
machines. For numerical analysis, systems of equations and differential 
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equations are central and this discipline depends heavily on the 
continuous nature of the real numbers.  ...  
Use of Turing machines yields a unifying concept of the algorithm well 
formalized. ....  
The situation in numerical analysis is quite the opposite. Algorithms 
are primarily a means to solve practical problems. There is not even a 
formal definition of algorithm in the subject.  ....  
A major obstacle to reconciling scientific computation and computer 
science is the present view of the machine, that is, the digital computer. 
As long as the computer is seen simply as a finite or discrete subject, it 
will be difficult to systematize numerical analysis. We believe that the 
Turing machine as a foundation for real number algorithms can only 
obscure concepts.  
Towards resolving the problem we have posed, we are led to 
expanding the theoretical model of the machine to allow real numbers 
as inputs."  
[9], p.23; italics added.   
 

This is a strategy that is a compromise between using an analog computer and 

a digital one, on the one hand, and, on the other, between accepting either 

constructive or computable analysis and classical real analysis. The model of 

computation developed with great ingenuity by Smale and his co-workers 

may well be the best way to retain much of classical mathematical economics 

while still being able to pose and answer meaningfully questions about 

decidability, computability and computational complexity - and to retain 

numerical meaning in the whole framework.  

 

Yet, we are not convinced at all that the BCSS model is of much relevance to 

the issue of computable foundations for numerical analysis. Our reasons are 

as follows:  

 

(a) What is wrong with the analogue model of computation over the reals and 
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why was it not invoked to provide the mathematical and physical foundation 

for numerical analysis by the authors of the BCSS model? This is particularly 

relevant in this paper, given that a noble analogue computing tradition 

existed – and flourished – in economics, in different eras of the development 

of the subject.  

 
(b) What is wrong with the computable and recursive analytic model, with its 

rich complexity theoretic analysis of classic optimization operators routinely 

used in economic theory (optimal control, dynamic programming, etc.,), of 

the perennial paradoxes of the initial value problem on ordinary differential 

equations and their solution complexities and of much else in a similar vein.  

 

(c) We don’t think there is any historical or analytical substance to the 

Newtonian vision frequently invoked as a backdrop against which to justify 

the need for a new mathematical foundation for numerical analysis.  

 

(d) Finally, there is an important strand of research that has begun to interpret 

numerical algorithms as dynamical systems; from this kind of interpretation 

to a study of undecidability and incompleteness of numerical algorithms is an 

easy and fascinating frontier research topic within the framework of 

computable analysis, which owes nothing to - and has no need for - the BCSS 

kind of modelling framework – even though there are claims to the contrary 

in [9] regarding such issues12. This is also a point of relevance for the problem 

                                                 
12Primarily in relation to the decidability problems of the Mandelbrot and Julia sets, as posed 
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of being rigorous about the theory of approximations and numerical analysis 

in discretising the continuous. It is not just a question about accurate or 

rigorous discretizations of a real analytic model for implementation on a 

digital computer; but we will have to leave it at that, for now.  

 

Therefore, against the general backdrop provided in this Preamble, we will 

concentrate only on the four areas of Algorithmic Behavioural Economics, 

Computable General Equilibrium Theory, Computable Economics and Agent 

Based Computational Economics in discussing the role of Computation in 

Economics. With this in mind, in section 2, an ultra-brief outline of The 

Computing Tradition in Economics is given. In sections 3, 4, 5 & 6, 

algorithmic behavioural economics, computable general equilibrium theory, 

computable economics and agent based computational economics are 

outlined and critically discussed, as afar as possible in methodological and 

epistemological terms. The concluding section, titled ‘Towards an Algorithmic 

Approach to the Social Sciences’ is squarely epistemological in the vision we try 

to cultivate, from the lessons of approximately six decades of machine 

computing traditions in economics – both theoretical and applied.  

 

Before concluding the ‘preamble’ it may be apposite to ask a simple, but 

obvious, question: What is a computation?13 In a sense there is a simple, 

concise, answer to this question. A computation is that which is 

                                                                                                                                            
by Penrose, [51], p. 124, ff. 
13A splendid and characteristically clear, simple – yet deep – discussion of this question can 
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implementable via a Turing Machine. But that leads to further questions: are 

there other models of computation that are richer in some sense - in the 

nature of the data analyzable, in the kind of processing speeds, in the class of 

computable functions, and so on. Mercifully, the Church-Turing Thesis 

obviates the need for any such elaboration: any and every computation that is 

implementable by a Turing Machine answers all such questions 

unambiguously: every model of computation is formally equivalent with 

respect to each of these – and many other – questions. There remains, of 

course, the notion of computation intrinsic to constructive mathematics, 

where no invoking of anything similar to a Church-Turing Thesis. We will 

have to leave any discussion of this important issue for another exercise. It 

means, of course, the answer to the question, ’What is a computation’, may be 

unambiguous!  

2. The Machine Computing Tradition in Economics 

The Method I take to do this, is not yet very usual; for instead of using 
only comparative and superlative Words, and intellectual Arguments, I 
have taken the course (as a Specimen of the Political Arithmetick I have 
long aimed at) to express my self in Terms of Number, Weight, or 
Measure; .....  
Now the Observations or Positions expressed by Number, Weight, and 
Measure, upon which I bottom the ensuing Discourses, are either true, 
or not apparently false, and which if they are not already true, certain, 
and evident, yet may be made so by the Sovereign Power, Nam id 
certum est quod certum reddi potest, and if they are false, not so false as to 
destroy the Argument they are brought for; but at worst are sufficient 
as Suppositions to shew the way to that Knowledge I aim at.  
William Petty, Preface to Political Arithmetick (3rd Edition), 169014; 
italics (non Latin) added.   
 

                                                                                                                                            
be found in [17]. 
14Accessed at: http://www.marxists.org/reference/subject/economics/petty/ 
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Petty, ‘to shew the way to that Knowledge [he] aimed at’ – i.e., for reasons of 

epistemics and epistemology – aimed ’to express [himself] in Terms of Number, 

Weight or Measure’ – a tradition nobly inherited and resolutely preserved 

and enhanced by his Physiocratic and Classical Economic successors. 

Calculating, estimating, comparing, constructing and reasoning with 

numerical ratios, averages, series, tables areas, volumes and so on – in short, 

‘analyzing data’, whether natural or artificial – underpinned much inference 

and some deduction is the way our classical and Physiocratic predecessors 

came to policy precepts. However, with the exception of Charles Babbage and, 

possibly, Jevons, till Irving Fisher ([27]), in 1891, constructed his ‘remarkable 

hydraulic [analogue computing] apparatus for calculating equilibrium prices’ 

([10], p. 57)15, resorting to actually constructed machine models of computing in 

economics seems to have remained an isolated example. Fisher’s own 

description of the functioning of his hydraulic analogue computing machine 

clarifies an important feature of such computations: their independence from 

any intermediation via numerical analysis:  

 
"The [hydraulic] mechanism just described is the physical analogue of 
the ideal economic market16. The elements which contribute to the 

                                                 
15 As Scarf, ([58], p. 207), points out: “In Mathematical Investigations in the Theory of Value and 
Prices, published in 1892, Irving Fisher described a mechanical and hydraulic analogue device 
intended to calculate equilibrium prices for a general competitive model. ...  
At least two versions of Fisher’s device were actually constructed and apparently performed 
successfully. ....  
The equipment seems remarkably quaint and old-fashioned in this era of high-speed digital 
computers." 
16 In an early analogue approach to the study of macroeconomic dynamics, [81], p. 557, 
indicated the nature of what they mean by .analog., in these contexts (italics added): 
"If a single group of equations can be written which defines the assumed performance for two 
separate systems (each of which within itself represents an orderly or definable behavior), 
one system may be called the complete analogue of the other."   
Obviously, Fisher’s system satisfies this condition - as would any analogue computing system, 
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determination of prices are represented each with its appropriate rôle 
and open to the scrutiny of the eye. We are thus enabled not only to 
obtain a clear and analytical picture of the interdependence of the many 
elements in the causation of prices, but also to employ the mechanism 
as an instrument of investigation and by it, study some complicated 
variations which could scarcely be successfully followed without its 
aid."  
([27], p.44, italics in original)   
 

There were, of course, the famous computing machine metaphors used by 

Walras, Pareto – and, then, inspired by Barone, in the important ’Socialist 

Calculation Debate’, most comprehensively summarised, both critically and 

constructively by Hayek ([32] & [33]). Lange, returning to the theme over 

thirty years later, in his Dobb Festschrift article on The Computer and the 

Market ([41]), muddied the issue by unscholarly and unsubstantiable claims 

for the possibilities of a digital computer (having, in the meanwhile, also 

forgotten that the initial discussions were with reference to analog computing 

machines and, in particular, the metaphor of the market as an analogue 

computer). None of the participants had any technical knowledge of the 

mathematical underpinnings of computing, in a sense understandably so, 

since the mathematical foundations of computing were being placed on a 

rigorous basis just during those very years that the debate was at its height17.  

 
Analogue computing techniques in economics had the proverbial still birth. 

There was a flurry of activities in the late 1940s and early 1950s, at the hands 

of A.W.H. (Bill) Phillips, Richard M. Goodwin, Herbert A. Simon, Robert H. 

                                                                                                                                            
by definition. 
17Unless one expected such true economic scholars, before the kind of mathematization of 
economics that we are familiar with now, to be familiar with Brouwerian constructive 
mathematics, which was reaching its zenith, also during those very years. 
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Strotz, Otto Smith, Arnold Tustin, Roy Allen, Oscar Lange and a few others. 

Phillips built his famous MONIAC18 hydraulic national income machine at 

the end of the 40s and it was used at many Universities - and even at the 

Central Bank of Guatemala - for teaching purposes and even as late as the 

early 70s Richard Goodwin, at Cambridge University, taught one of us 

elementary principles of coupled market dynamics using such a machine. 

Strotz and his associates, at Northwestern University, built electro-analogue 

machines to study inventory dynamics and nonlinear business cycle theories 

of the Hicks-Goodwin varieties. Otto Smith and R.M. Saunders, at the 

University of California at Berkeley, built an electro-analogue machine to 

study and simulate a Kalecki-type business cycle model. Roy Allen’s 

successful textbooks on Macroeconomics and Mathematical Economics of the 

50s - extending into the late 60s - contained pedagogical circuit devices 

modelling business cycle theories (cf: [2] especially chapter 9; and [3], 

especially chapter 18). Arnold Tustin’s highly imaginative, but failed textbook 

attempt to familiarise economists with the use of servomechanism theory to 

build analogue machines as models of economic dynamics ([87]) and Oscar 

Lange’s attractive, elementary, expository book with a similar purpose ([44]) 

also suffered the fate of ‘stillbirth’, at the dawn of the digital computing age.  

 

Humphreys ([34]) refers to nonlinear business cycle theories19 as examples of 

                                                 
18Monetary National Income Accounting Analogue Computing Machine. 
19 In an earlier footnote we referred to this article as curiously uninformed and seriously 
incomplete! A concrete example of the reason for us to characterise it as such is his reference 
to [39] for references to ‘nonlinear business cycle theories’. Anyone who takes seriously this 
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computational ‘studies’ that straddle ‘the pre-computational era and the era 

of computational economics’, claiming that ’there is no sharp divide 

between ’the two eras’. This claim can be substantiated by a more finessed 

study of the particular example of a canonical nonlinear business cycle 

equation, using – as was, indeed, actually done – analogue computing 

machines as in the ‘pre-computational era’ and comparing it with its study 

using a digital computing machine of the ‘era of computational economics’.  

 

The example we have chosen here encapsulates a noble tradition of 

computation in economics in every sense of this concept, to study a precisely 

specified mathematical system on both analogue and digital computers. It is, 

in a precise sense, also a substitute for an analytical study (because such a 

study is provably ‘unlikely’ to succeed in any meaningful way). Moreover, it 

can be viewed as an explicit example of an epistemological tool to interpret 

the results (most of which were unexpected), finally, to gain insight into the 

link between a computing machine and its theory and the theory of nonlinear 

dynamical systems. The latter point is turning out to be the most significant 

from the point of view of the epistemology of computation, since the 

interaction can only be explored by representing the one system by the other – 

and, therefore, even an exploration into a new domain: studying the 

                                                                                                                                            
kind of flippant, frivolous, reference and does check-up on  Krugman’s booklet, would and 
the strange claim (ibid, p. 7): 
"I may be the only economist in my generation who has even heard of [these nonlinear 
business cycle theories]."   
Krugman is 57 years old; we could easily list a dozen eminent economist of his generation, 
give or take a few years, who are seriously competent in nonlinear business cycle theories of 
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repertoire of digital machine behaviour with analogue computing machines, 

and vice versa.  

 

Consider, therefore, the following equation, representing a classical 

Keynesian nonlinear multiplier-accelerator model of the dynamics of national 

income, y: 

   

 )()()]([)()-(1(t) tlttytyy ++−=+ βθφαε  (1) 

 

Now, there are at least six different ways to investigate solutions to this 

nonlinear difference-differential equation:  

• In old fashioned analytical modes;  

• Using Non-standard analysis;  

• Graphically, i.e., in terms of the geometry of dynamic behaviour, as 

usually done in the qualitative theory of differential equations;  

• By the method of equivalent linearization;  

• Using an electro-analogue20 computer;  

• Using digital computers;  

It is, of course, only the last two alternatives that are of relevance in this 

                                                                                                                                            
the Goodwin-Kaldor-Hicks era, developing it at some of the current frontiers of 
macroeconomic theory. 
20In parallel, but slightly earlier, work of a related nature, [81], p. 557, indicated the nature of 
what they mean by .analog., in these contexts (italics added): 
 "If a single group of equations can be written which defines the assumed performance for two 
separate systems (each of which within itself represents an orderly or definable behavior), 
one system may be called the complete analogue of the other."    
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discussion. Assuming, for example, )()( tlt +β  a constant 21  and 

reinterpreting )(ty  as a deviation from the unstable equilibrium of (1) 

α
β

−
+

1
)()( tlt one obtains a mixed nonlinear difference-differential equation:  

 )]([)()-(1)(t tytyy φθαθε =+++       (2) 

 

In the first case, expanding (2) by a Taylor series approximation and retaining only 

the first two terms, one obtained the famous (unforced) Rayleigh (- van der Pol) - type 

equation: 0)(
=+⎥⎦

⎤
⎢⎣
⎡+ xx

x
xy χ

       (3) 

With this approximated reformulation began an ‘industry’ in the endogenous 

theory of the business cycle, where the cardinal desideratum was the 

existence of a unique, stable, limit cycle, independent of initial conditions. All 

four desiderata were violated when the approximations were more precise – 

in a purely technical sense – and the analysis proceeded via studies by means 

of analogue and digital computing machines. Even more interestingly, the 

insights obtained from an analogue computing machine study provided hints 

in setting up a computing study of (1) by means of digital computing 

machines.  

 

Now, using an electro-analog computer, it was found, in [82], that the 

approximation of (1) retaining the first four terms of a Taylor series expansion, 

                                                 
21If )()( tlt +β was not assumed a constant, the obdurate forced version of (3) would have to 
be confronted, without any hope of a disciplined solution even with the help of computing 
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generated twenty-five limit cycles, and a potential for a countable infinity of 

limit cycles with further higher order terms included in the approximations. 

Moreover, in its original formulation, one of the desired criteria for the 

nonlinear formulation of the endogenous model of the business cycle, was to 

generate self-sustaining fluctuations, independent of initial conditions. This latter 

property was lost when the approximation was made more precise.  

 

Next, coupling two equations of type (3), via the Phillips 

Electro-Mechanical-Hydraulic Analogue Computing Machine ([30]), Goodwin 

and Phillips were able to generate – unexpectedly – the quasi-periodic 

paradox (cf., [1]). Neither Goodwin, nor Phillips, who did the 

coupled-dynamics computation on the Phillips Machine, had any clue – 

theoretical or otherwise – about interpreting and encapsulating this outcome 

in any economic theoretical formalization. The key point is that they were 

surprised by the outcome and did not know how to interpret it when it 

emerged. This is where the richness of the epistemology of computation 

manifests itself most dramatically. There was no macrodynamic theory to 

which they could relate the observed behaviour, which was contrary to 

expected behaviour.  

 

Finally, one of us – Zambelli ([97] – repeated the exercise in [82], but this time 

on a digital computer. Our results came as a surprise to us: although we can 

confirm the results in [82], the outcomes are richer and more varied and we 

                                                                                                                                            
machines, whether analog or digital. 
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would have no idea which way to proceed, if we are wedded to an 

equilibrium norm to which the results have to conform.  

 

It goes without saying that one of he key differences between analogue and 

digital computing is that in the latter the intermediation between the 

continuous and the discrete is achieved by means of numerical procedures; 

this intermediation is circumvented in the analogue tradition. In this sense, 

there is a sharp difference between ‘the pre-computational era and the era of 

computational economics’. Much of what is routinely referred to as 

computational economics in the modern era is simply variations on the theme 

of numerical analysis, without any anchoring in the mathematical theory of 

the computer, whether digital or analogue.  

3. Classical Behavioural Economics 

"If we hurry, we can catch up to Turing on the path he pointed out to 
us so many years ago."  
[72], p. 101   

3.1. A Brief Note on Classical vs. Modern Behavioural Economics 

Herbert Simon combined and encapsulated, in an intrinsically dynamic, 

decison-theoretic framework, a computationally founded system of choice and 

decision, both entirely rational in a broad sense. ‘Computational’ has always 

meant ‘computable’ in the Turing sense, at least in our reading of Simon’s 

magisterial writings. In particular, in the context of bounded rationality, 

satisficing and their underpinnings in the architecture of human thinking, it 

was the path broached by Turing that guided Simon’s fundamental 
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contributions. In this section we try, in fairly precise and formal ways, to 

suggest computable foundations for boundedly rational choice and satisficing 

decisions. In a nutshell, the aim is to reformulate bounded rationality and 

satisficing in a computable framework so that their intrinsic (complex) dynamics 

is made explicit in as straightforward a way as possible.  

 

Bounded rationality, satisficing and decision problems are the basic 

foundational pillars on which what we refer to as Classical or Algorithmic 

Behavioural Economics rests. A minor digression on the distinction between 

Classical or Algorithmic Behavioural Economics (CBE 22 ) and Modern 

Behavioural Economics (MBE) may be useful to place the discussion in 

context.  

 

The defining works of CBE were the three pioneering contributions by 

Herbert Simon (and his close, early, collaborators: Alan Newell and Cliff 

Shaw), [65], [66] and [74]. These three defining contributions to CBE were 

brought to an initial completion in the monumental book on Human Problem 

Solving by Newell and Simon, [47].  

 

Meanwhile, almost simultaneously, contrary to current attributions, the seeds 

were laid by Ward Edwards for what is now an orthodox vision of 

Behavioural Economics – which we refer to as Modern Behavioural Economics 

                                                 
22We would have preferred to refer exclusively to Algorithmic Behavioural Economics and, 
therefore, ABE. However, ABE has become one of the usual ways to refer to Agent Based 
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(MBE)23 – starting from the work of Leonard Savage, who had, himself, 

become a believer in De Finetti’s approach to probability. The three defining, 

absolutely pioneering contributions, by Ward Edwards, works presaging the 

subsequent works by Nobel Laureate Daniel Kahneman (and Amos Twersky) 

on Prospect Theory, a key foundational basis for Modern Behavioural 

Economics, were, [24], [25] and [26]24. 

  

Both traditions emerged from the infelicities in the axiomatic treatment of 

rationality that came to underpin expected utility maximization, emanating 

from the ground-breaking work of von Neuman-Morgenstern. Both found the 

framework and basis provide by von Neumann-Morgenstern wanting in 

realism – of a basic sort – and lacking in consistency in some of the 

underpinnings. For example, Edwards found the lack of consistency between 

a subjective theory of utility and an objective theory of probability that 

underpinned expected utility maximization. Edwards sought a 

‘reconciliation’ via an appeal and a utilisation of the emerging De 

Finetti-based theory of subjective probability theory that Savage was 

developing just about at that time. The flaw detected, and perceptively 

tackled by Edwards, persists in the post-Prospect theory of behavioural 

                                                                                                                                            
Economics; hence we opt for CBE. 
23The beginning of Modern Behavioural Economics is generally identified with Thaler ([84]), for 
example by Camerer, Loewenstein and Rabin (cf., [15], p.xxii), 
24A discerning reader would already have noticed that five of the six classic contributions 
were published in frontier Psychological Journals! One possibly obvious inference from this 
elementary observation may well be that the two classes of contributions emerged 
independently, focussing on those cognitive aspects that were neglected in more orthodox 
economic theory of decision making, by individual agents and in organisations. But this 
inference – we think – would be most misleading. 
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economics, now called Modern Behavioural Economics. These issues will be 

discussed, critically and exhaustively, in the relevant introductions to the 

respective volumes envisaged in this series.  

 
Simon’s starting point was computational cognitive science, in its psychological 

variants, and its confrontation with the theories of decision making 

economists were developing, applying and refining, all of which were 

variations on the theme of the von Neumann-Morgenstern starting point, 

further developed by Nash and Arrow-Debreu. The key notion was 

computationally underpinning rational decision making, thereby naturally and 

intrinsically taking into account the theoretical limits that comes with 

computability theory. In addition, this framework came with natural measures 

of computational complexity and they were imaginatively, and with great 

originality, incorporated into the kind of theories of decision making Simon 

developed within the formal frame work of what is called, in 

metamathematics and mathematical logic, decision problems (of which 

optimization is a special case).  

 

From the line of research initiated with single-handed determination by Ward 

Edwards we have seen the emergence of modern Behavioural Economics, 

Behavioural Finance, Behavioural Game Theory and Behavioural 

Neuroeconomics.  

 

From the work initiated by Herbert Simon, we have seen the emergence of 
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rich and deep concepts like Bounded rationality and Satisficing and wholly 

refreshing fields like Evolutionary Growth Theory, at the hands of classical 

behavioural economists like Richard Nelson and Sidney Winter; adaptive 

economic dynamics by Richard Day; Models of Discovery by Simon and his 

many associates; the problem of causality and evolution in 

semi-decomposable systems by Simon and others; and much else.  

3.2. Classical Behavioural Economics - Computable Foundations 

A decision problem asks whether there exists an algorithm to decide whether a 

mathematical assertion does or does not have a proof; or a formal problem 

does or does not have an algorithmic solution. Thus the characterization 

makes clear the crucial role of an underpinning model of computation; secondly, 

the answer is in the form of a yes/no response. Of course, there is the third 

alternative of ‘undecidable’, too, but that is a vast issue outside the scope of this 

paper. It is in this sense of decision problems that we interpret the word 

‘decisions’ here.  

 

As for ‘problem solving’, we shall assume that this is to be interpreted in the 

sense in which it is defined and used in the monumental classic by Newell 

and Simon ([47]).  

 

Finally, the model of computation is the Turing model, subject to the 

Church-Turing Thesis. To give a rigorous mathematical foundation for 
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bounded rationality and satisficing, as decision problems25, it is necessary to 

underpin them in a dynamic model of choice in a computable framework. 

However, these are not two separate problems. Any formalization 

underpinned by a model of computation in the sense of computability theory 

is, dually, intrinsically dynamic. 

 

Remark1 Decidable-Undecidable, Solvable-Unsolvable, Computable-Uncomputable, 

etc., are concepts that are given content algorithmically.  

 

Now consider the Boolean formula:  

 

}){}{}({}){(}){(}){()( 321133221321 xxxxxxxxxxxx ¬∨¬∨¬∧¬∨∧¬∨∧¬∨∧∨∨  ---(4) 

 

Remark 2 Each subformula within parenthesis is called a clause; the variables and 

their negations that constitute clauses are called literals; It is ‘easy’ to ‘see’ that for the 

truth value of the above Boolean formula to be 1)( =ixt  all the subformulas within 

each of the parenthesis will have to be true. It is equally ‘easy’ to see that no truth 

assignments whatsoever can satisfy the formula such that its global value is true. This 

Boolean formula is unsatisfiable.  

                                                 
25 The three most important classes of decision problems that almost characterise the subject 
of computational complexity theory, underpinned by a model of computation in general, the 
model of computation in this context is the Nondeterministic Turing Machine are the P, NP 
and NP-Complete classes. Concisely, but not quite precisely, they can be described as follows: 

[1] P denotes the class of computable problems that are solvable in time bounded by a 
polynomial function of the size of the input; 

[2] NP is the class of computable problems for which a solution can be verified in 
polynomial time; 

[3] A computable problem lies in the class called NP-Complete if every problem that is 
in NP can be reduced to it in polynomial time. 
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Problem 3 SAT – The Satisfiability Problem  

Given m clauses, ),....1( miCi = , containing the literals (of) ),....1( njx j = , 

determine if the formula is mCCCC ∧∧∧ ...321 satisfiable.  

 

Determine means ‘find an (efficient) algorithm’. To date it is not known 

whether there is an efficient algorithm to solve the satisfiability problem – i.e., to 

determine the truth value of a Boolean formula. In other words, it is not 

known whether SAT P∈  But:  

 

Theorem 4 SAT NP∈  

 

Definition 5 A Boolean formula consisting of many clauses connected by 

conjunction (i.e.,∧ ) is said to be in Conjunctive Normal Form (CNF). 

 

Finally, we have Cook’s famous theorem:  

 

Theorem 6 Cook’s Theorem  

SAT is NP– Complete  

 

It is in the above kind of context and framework within which we are 

interpreting Simon’s vision of behavioural economics. In this framework 

optimization is a very special case of the more general decision problem 
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approach. The real mathematical content of satisficing26 is best interpreted in 

terms of the satisfiability problem of computational complexity theory, the 

framework used by Simon consistently and persistently - and a framework to 

which he himself made pioneering contributions.  

 

Finally, there is the computably underpinned definition of bounded 

rationality.  

 

Theorem 7  The process of rational choice by an economic agent is formally 

equivalent to the computing activity of a suitably programmed (Universal) Turing 

machine.  

 

Proof. By construction. See 3.2, pp. 29-36, Computable Economics [89]    

 

Remark 8 The important caveat is ‘process’ of rational choice, which Simon – more 

than anyone else – tirelessly emphasized by characterizing the difference between 

‘procedural’ and ‘substantive’ rationality; the latter being the defining basis for 

Olympian rationality ([69], p.19), the former that of the computationally 

underpinned problem solver facing decision problems. Any decision – rational or 

not – has a time dimension and, hence, a content in terms of some process. In the 

Olympian model the ‘process’ aspect is submerged and dominated by the static 

                                                 
26 In [73], p. 295, Simon clarified the semantic sense of the word satisfice, by revealing the way 
he came to choose the word: 
"The term ‘satisfice’, which appears in the Oxford English Dictionary as a Northumbrian 
synonym for ‘satisfy’, was borrowed for this new use by H. A. Simon (1956) in ‘Rational 
Choice and the Structure of the Environment’ [i.e., [66]]"    
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optimization operator, By transforming the agent into a problem solver, constrained 

by computational formalisms to determine a decision problem, Simon was able to 

extract the procedural content in any rational choice. The above result is a summary 

of such an approach.  

 

Definition 9 Computation Universality of a Dynamical System  

 

A dynamical system – discrete or continuous – is said to be capable of computation 

universality if, using its initial conditions, it can be programmed to simulate the 

activities of any arbitrary Turing Machine, in particular, the activities of a Universal 

Turing Machine.  

 

Lemma 10 Dynamical Systems capable of Computation Universality can be 

constructed from Turing Machines  

 

Proof. See [89].    

 

Theorem 11 Non-Maximum Rational Choice  

 

No trajectory of a dynamical system capable of universal computation can, in 

any ’useful sense’ (see Samuelson’s Nobel Prize lecture, [55]), be related to 

optimization in the Olympian model of rationality.  

 

Proof.  See [89]    
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Theorem 12 Boundedly rational choice by an information processing agent within 

the framework of a decision problem is capable of computation universality.  

 

Proof. An immediate consequence of the definitions and theorems of this 

sub-section.  

 

Remark 13 From this result, in particular, it is clear that the Boundedly Rational 

Agent, satisficing in the context of a decision problem, encapsulates the only notion of 

rationality that can ‘in any useful sense’ be defined procedurally.  

 

We have only scratched a tiny part of the surface of the vast canvass on which 

Simon sketched his vision of a computably underpinned behavioural 

economics. Nothing in Simon’s behavioural economics – i.e., in Classical 

Behavioural Economics – was devoid of computable content.  

 
    We should not end this subsection on Classical Behavioural Economics 

without also indicating where the framework we have developed falls short 

of encapsulating the deep and full force of Simon's visions. One important 

narrowness of vision in our approach is the concentration on time 

computational complexity. The key results here, which we have used above, 

are theorems 4 and 6, particularly the latter, i.e., Cooke's celebrated theorem 

that SAT is NP-Complete. Now, because SAT is NP-Complete, it is reasonable 

to believe that it is unsolvable with a polynomial time algorithm. On the other 
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hand, SAT is solvable even with a linear space algorithm. The theorem in 

space computational complexity that corresponds to Cooke's fundamental 

theorem in time computational complexity is, arguably, Savitch's Theorem 

(see [93]). We have neglected this theorem and also did not discuss the 

implications of the following series of plausible -- not, as yet, entirely definite 

-- series of inclusion relations: 

 
P NP PSPACE=NPSPACE EXPTIME 

 
 
    We should have asked ourselves the obvious question: Why didn't 

Herbert Simon ever occupy himself, ever, with the P vs NP question (one of 

the seven Clay Millennium Problems)? We think a plausible answer to this 

(counterfactual) question is that Simon was intrinsically more interested in 

Space Computational Complexity, as the domain in which human problem 

solving was best considered. 

    An additional subsection here should generalize the definition of 

satisficing in terms of the SAT problem in space computational complexity. 

When that task is undertaken it will be possible to go beyond Chess -- a 

paradigmatic canvas on which Simon sketched many of his conjectures on 

human problem solving -- and begin to try to study GO in terms of the notions 

of classical behavioural economics. This is especially and challengingly so 

because GO is known to be PSPACE-hard, but not known, as yet, to be 

PSPACE-complete. 
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4.  Computable General Equilibrium Theory27 

"It is not natural for ‘A implies B’ to mean ‘not A or B’, and students 
will tell you so if you give them the chance. ... [W]e should not be 
surprised to find that certain classically accepted modes of inference 
are no longer correct. The most important of these is the principle of 
the excluded middle -- ‘A or not A’. Constructively, this principle 
would mean that we had a method which, in finitely many purely 
routine steps, would lead to a proof or disproof of an arbitrary 
mathematical assertion A. Of course we have no such method, and 
nobody has the least hope that we ever shall. It is the principle of the 
excluded middle that accounts for almost all of the important 
unconstructivities of classical mathematics."  
[8], pp. 3, 10-11.   

 
The main culprits – although not the only ones – in the failure of so-called 

Computable General Equilibrium (CGE) theory to be computable or constructive 

are the ‘classically accepted modes of inference’. Unfortunately, to the best of 

our knowledge, none of the practitioners of CGE, nor any one of its ‘offshoots’ 

or alleged ‘generalizations’ – such as Applied General Equilibrium (AGE) theory, 

Recursive Competitive Equilibrium (RCE), or Dynamic General Equilibrium (DGE) 

theory – are either aware of the uncomputability and non-constructivity of 

their equilibria; a fortiori, they seem entirely uninterested in why this is so28. 

                                                 
27 Entirely for reasons of space we do not deal with the burgeoning field of Algorithmic Game Theory 
from the point of view of the methodology of computation as conceived in this paper. However, all of 
the strictures that are presented here ‘against’ the computable foundations of CGE apply, pari passu, to 
the claims and assertions of Algorithmic Game Theory. Computing the uncomputable, deciding the 
undecidable and completing the incompleatable is endemic in mathematical economics, of every 
variety. 
28 Perhaps Fred Richman’s perceptive reflection suggests the exact reason for these peculiar 
blinkers:  

 
"Even those who like algorithms have remarkably little appreciation of the 
thoroughgoing algorithmic thinking that is required for a constructive proof. This is 
illustrated by the nonconstructive nature of many proofs in books on numerical 
analysis, the theoretical study of practical numerical algorithms. I would guess that 
most realist mathematicians are unable even to recognize when a proof is 
constructive in the intuitionist’s sense.  
It is a lot harder than one might think to recognize when a theorem depends on a 
nonconstructive argument. One reason is that proofs are rarely self-contained, but 
depend on other theorems whose proofs depend on still other theorems. These other 
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One of the great achievements of mathematical economics in the twentieth 

century was the Walrasian economic equilibrium existence proof of Arrow 

and Debreu ([5]). It is listed as the seventh of ten significant29 achievements in 

applied mathematics in Piergiorgio Odifreddi’s overall list of the 30 great solved 

problems of ‘The Mathematical Century’ ([48]). Its extension to dynamics is 

listed as the eighth of 18 problems for the 21st century - in ‘Hilbertian mode’ - 

by Steve Smale ([76]). Given its undoubted and acknowledged significance in 

the intellectual canvas of 20th century mathematical economics, economic 

theory and applied mathematics, it is not surprising that attempts have been 

made, most notably by Herbert Scarf, to devise algorithmic methods to 

compute Arrow-Debreu equilibria. These attempts have resulted in the 

development of an independent discipline of Computable General Equilibrium 

(CGE) theory. It will not be an exaggeration to claim that, till Scarf’s 

pioneering work on CGE theory and modelling, the Arrow-Debreu 

achievements remained in the realm of pure theory - whether of economics or 

mathematics; after Scarf, it is, surely, also a significant chapter in applied 

mathematics30.  

 

                                                                                                                                            
theorems have often been internalized to such an extent that we are not aware 
whether or not nonconstructive arguments have been used, or must be used, in their 
proofs. Another reason is that the law of excluded middle [LEM] is so ingrained in 
our thinking that we do not distinguish between different formulations of a theorem 
that are trivially equivalent given LEM, although one formulation may have a 
constructive proof and the other not." [55]   

 
29#3.7 in chapter 3, pp. 122-5. 
30Thus meriting inclusion in Odifreddi’s list (op.cit) as a significant contribution to applied 
mathematics. 
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On the other hand, the key feature of the CGE research program is its 

schizophrenic nature: all of the mathematical economic theory of general 

equilibrium is practised in the domain of real analysis, and founded on set 

theory plus the axiom of choice. However, all of the computational content of 

CGE is allegedly based on constructive mathematics (although the 

‘computable’ in CGE may suggest a basis in recursion theory). This 

schizophrenia is ostensibly resolved by an appeal to what is known as 

Uzawa’s equivalence theorem ([88]). Debreu’s admirably concise 

acknowledgement of the importance of Uzawa’s equivalence theorem is a 

testimony to the ‘bridging role’ it plays, between economic equilibrium 

existence theorems and fixed-point theorems, [18], p. 719-720:  

 
“[The equilibrium existence] theorem establishes the existence of a 
price vector yielding a negative or zero excess demand as a direct 
consequence of a deep mathematical result, the fixed-point theorem of 
Kakutani. And one must ask whether the .. proof uses a needlessly 
powerful tool. This question was answered in the negative by Uzawa 
(1962) who showed that [the theorem] directly implies Kakutani’s 
fixed-point theorem."   

 
Scarf’s insight was, then, to utilize algorithms that had been developed to 

approximate (Brouwer’s) fixed-point theorem – invoking Uzawa’s 

equivalence theorem – to determine approximations to (Walrasian or 

Arrow-Debreu) equilibria. Scarf himself was well aware that these were not 

‘approximations’ of a useful nature (unless conjoined to those intangible 

non-formal concepts like intuition, experience and insight):  

 
"In applying the algorithm it is, in general, impossible to select an ever 
finer sequence of grids and a convergent sequence of subsimplices. An 
algorithm for a digital computer must be basically finite and cannot 
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involve an infinite sequence of successive refinements. ....... The passage 
to the limit is the nonconstructive aspect of Brouwer’s theorem, and we have 
no assurance that the subsimplex determined by a fine grid of vectors 
on S contains or is even close to a true fixed point of the mapping."  
[59], p.52; italics added   

 
Scarf, however, misses an important point here: it is not ‘the passage to the 

limit’ that ‘is the nonconstructive aspect of Brouwer’s theorem’ implying 

non-assurance of useful approximations; it is, instead the intrinsic 

undecidable disjunctions that characterize the Bolzano-Weierstrass theorem. 

In one of only two of the standard textbooks on mathematical general 

equilibrium theory where the Uzawa equivalence theorem is explicitly 

discussed ([16], [78]), Starr’s clear and detailed presentation of the proof of 

Brouwer’s fix point theorem is based on the excellent and almost elementary 

exposition in [85] (particularly, pp.424-7). There, in turn, the appeal to the 

Bolzano-Weierstrass theorem is made almost as with a magician’s wand31: 

 
"Making [the] assumption [that given any simplex S, there are 
subdivisions that are arbitrarily fine] we can now finish the proof of 
Browuer’s fixed-point theorem. We take an infinite sequence of 
subdivisions of S with mesh, that is, length of the longest 
one-dimensional edge, approaching 0. From each subdivision, we 
choose one simplex that carries all labels, and in this simplex we choose a 
single point. We thus have an infinite sequence of points in the original 
simplex S, and we can choose a subsequence that converges to a single point. 
This point .. is the limit point of the sequence of all vertices of all the 
simplexes from which the points of the convergent subsequence were 

                                                 
31 In the clear and elementary proof of the Brouwer fix point theorem given in Starr’s 
textbook (op.cit), the appeal to the Bolzano-Weierstrass theorem is made when proving the 
KKM theorem (p. 62). In Scarf’s own elegant text (op.cit) invoking of this theorem occurs, 
during the proof of Brouwer’s theorem, on p. 51: 

"As the vectors are increasingly refined, a convergent subsequence of subsimplices 
may be found, which tend in the limit to a single vector x*.” (italics added)   

  Scarf is careful to claim that the required subsequence ‘may be found’, but does not claim 
that it can be found algorithmically. One may wonder: if not found algorithmically, then 
how?  
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originally chosen." ([85], p.427; all italics, except the first one, are added)   
 
The deceptive use of the word ‘choose’ in the above description of 

mathematical processes conveys the impression that the ‘choices’, in each case, 

are algorithmically implementable. However, it is only the first use of the word 

‘choose’ and the implied choice - i.e., choosing simplexes from increasingly fine 

subdivisions - that can be algorithmized constructively. The part that invokes 

the Bolzano-Weierstrass theorem, i.e., ‘Choosing a subsequence that converges to 

a single point’ - incidentally, this point is the sought after fixed-point of the 

Brouwer theorem – entails undecidable disjunctions and as long as any proof 

relies on this aspect of the theorem, it will remain unconstructifiable32. 

 

Why, then do two of the most renowned practitioners of applied general 

theory, especially in its policy aspects, John Shoven and John Whalley ([62]), 

make the following explicit claim:  

 
"The major result of postwar mathematical general equilibrium theory 
has been to demonstrate the existence of such an equilibrium by 
showing the applicability of mathematical fixed point theorems to 
economic models. ... Since applying general equilibrium models to 
policy issues involves computing equilibria, these fixed point theorems 
are important: It is essential to know that an equilibrium exists for a 
given model before attempting to compute that equilibrium. .....  
...  
The weakness of such applications is twofold. First, they provide 

                                                 
32 Over fifty years ago, when Brouwer returned to the topic of his famous theorem with an 
Intuitionist version of it, he made the trenchant observation that seems to have escaped the 
attention of mathematical economists: 
"[T]he validity of the Bolzano-Weierstrass theorem [in intuitionism] would make the classical 
and the intuitionist form of fixed-point theorems equivalent." ([13], p.1).   
The invalidity of the Bolzano-Weierstrass theorem in any form of constructivism is due to its 
reliance on the law of the excluded middle in an infinitary context of choices (cf. also [23], pp. 
10-12).  
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non-constructive rather than constructive proofs of the existence of 
equilibrium; that is, they show that equilibria exist but do not provide 
techniques by which equilibria can actually be determined. Second, 
existence per se has no policy significance. .... Thus, fixed point 
theorems are only relevant in testing the logical consistency of models 
prior to the models’ use in comparative static policy analysis; such 
theorems do not provide insights as to how economic behavior will 
actually change when policies change. They can only be employed in this 
way if they can be made constructive (i.e., be used to find actual equilibria). 
The extension of the Brouwer and Kakutani fixed point theorems in this 
direction is what underlies the work of Scarf.... on fixed point algorithms ...."  
ibid, pp12, 20-1; italics added   

 
Those who claim that they work with ‘computable’ general equilibrium 

models – the self-proclaimed followers of Leif Johansen, mentioned in the 

opening section, for example, and a host of applied general equilibrium, 

policy-motivated, theorists and applied economists – continue to anchor their 

work on an appeal to formal Arrow-Debreu equilibrium theory or its CGE 

variant. For example such a claim is most explicitly made in Part II of Kermal, 

et.al (1982). The exact claim is that the equilibria they – and others – compute, 

using their versions of general equilibrium models, can be linked to, and 

theoretically substantiated by, the Arrow-Debreu equilibrium of pure theory. 

Thus, [21] p.153 (italics added):  

 
“[I]t is reasonable to ask if, in fact, a solution exists [for the CGE model] 
and, if so, whether or not it is unique. Most applied model builders, in 
contrast to theorists, have not worried too much about general 
existence problems. After all, a solution is numerically computed and an 
existence proof may appear unnecessary. The models are always quite 
well behaved and, given that very general existence proofs have been 
established for theoretical models of which CGE models form a rather 
well-behaved subset, it is reasonable to expect that nonexistence 
problems will not arise in practice. “  

 
This is complete nonsense.  
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The Arrow-Debreu equilibrium is provably uncomputable, both from the point of 

view of the mathematics of constructivism and recursion theory. The 

equilibria computed by any and every computable general equilibrium model 

used for development policy exercises – or those that are linked to, and 

derived from, variations of the Johansen model – have nothing whatsoever to 

do with the theoretical equilibria of general equilibrium theory.  

 

The technical results of these untenabilities, infeasibilities and infelicities are 

rigorously demonstrated in [90] and [91].  

 

Computable General Equilibrium theory has no grounding in computability or 

constructivity. Claims by applied general equilibrium theories of any variety 

that their work is anchored in any form of CGE is vacuous from a theoretical 

computational point of view. At best exercises by applied general equilibrium 

theorists can be considered ad hoc numerical exercises, seeking consistency 

and balance in accounts. Nothing more – especially nothing in theoretical 

anchors of any sort – is warranted. As long as a methodology that theorises in 

a kind of mathematics that is devoid of numerical meaning and 

computationally vacuous and relies on a schizophrenic appeal to a 

mathematics that is grounded in computational feasibilities, any claim of 

computability, constructivity or numerical feasibility must remain dubious, at 

best.  
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5. Computable Economics 

"[W]e want to stress that solutions that are not effectively computable are 
not properly solutions at all."  
[6], p.17; italics added.   

 
In computable economics, as in any computation with analogue computing 

machines or in classical behavioural economics, all solutions are based on 

effectively computable methods. Thus computation is intrinsic to the subject and 

all formally defined entities in computable economics – as in classical 

behavioural economics – are, therefore, algorithmically grounded.  

5.1  Briefly ..... 
Given the algorithmic foundations of computability theory and the intrinsic 

dynamic form and content of algorithms, it is clear that this will be a 

‘mathematics with dynamic and algorithmic overtones’33. This means, thus, 

that computable economics is a case of a new kind of mathematics in old 

economic bottles. The ‘new kind of mathematics’ implies new questions, new 

frameworks, new proof techniques - all of them with algorithmic and 

dynamic content for digital domains and ranges.  

 
Some of the key formal concepts of computable economics are, therefore: 

solvability & Diophantine decision problems, decidability & undecidability, 

computability & uncomputability, satisfiability, completeness & incompleteness, 

recursivity and recursive enumerability, degrees of solvability (Turing degrees), 

universality & the Universal Turing Machine and Computational, algorithmic and 

                                                 
33“I think it is fair to say that for the main existence problems in the theory of economic 
equilibrium, one can now bypass the fixed point approach and attack the equations directly 
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stochastic complexity. The proof techniques of computable economics, as a 

result of the new formalisms, will be, typically, invoking methods of: 

Diagonalization, The Halting Problem for Turing Machines, Rice’s Theorem, 

Incompressibility theorems, Specker’s Theorem, Recursion Theorems. For example, 

the recursion theorems will replace the use of traditional, non-constructive and 

uncomputable, topological fix point theorems, routinely used in orthodox 

mathematical analysis. The other theorems have no counterpart in 

non-algorithmic mathematics.  

 
In the spirit of pouring new mathematical wines into old economic bottles, the 

kind of economic problems of a digital economy that computable economics 

is immediately able to grant a new lease of life are the classic ones of: 

computable and constructive existence and learning of rational expectations 

equilibria, computable learning and complexity of learning, computable and 

bounded rationality, computability, constructivity and complexity of general 

equilibrium models, undecidability, self-reproduction and self-reconstruction 

of models of economic dynamics (growth & cycles), uncomputability and 

incompleteness in (finite and infinite) game theory and of Nash Equilibria, 

decidability (playability) of arithmetical games, the intractability 

(computational complexity) of optimization operators; etc.  

5.2  Formally .... 
Suppose the starting point of the computable economist whose visions of 

                                                                                                                                            
to give existence of solutions, with a simpler kind of mathematics and even mathematics with 
dynamic and algorithmic overtones.”[75], p.290; italics added.   
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actual economic data, and its generation, are the following:  

 

Conjecture 14 Observable variables are sequences that are generated from 

recursively enumerable but not recursive sets, if rational agents underpin their 

generation.  

 

An aside: In 1974 Georg Kreisel posed the following problem:    

 
“We consider theories, ... and ask if every sequence of natural numbers 
or every real number which is well defined (observable) according to the 
theory must be recursive or, more generally, recursive in the data. ....... 
Equivalently, we may ask whether any such sequence of numbers, etc., 
can also be generated by an ideal computing or Turing Machine if the 
data are used as input. The question is certainly not empty because 
most objects considered in a ... theory are not computers in the sense 
defined by Turing. ........”  
[37], p.11   

 
The above conjecture has been formulated after years of pondering on 

Kreisel’s typically thought-provoking question. More recently, a reading of 

Osborne’s stimulating book ([49]), was also a source of inspiration in the 

formulation of the conjecture as an empirical disciplining criterion for 

computable economics.  

 

The conjecture is also is akin to the orthodox economic theorist and her 

handmaiden, the econometrician, assuming that all observable data emanate 

from a structured probability space and the problem of inference is simply to 

determine, by statistical or other means the parameters that characterise their 

probability distributions. If, therefore, the computable economist’s starting 
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point is the above conjecture then it follows that:  

 
Theorem 15 Only dynamical systems capable of computation universality can 

generate sequences that are members of sets that are recursively enumerable but not 

recursive.  

 

Theorem 16 Only dynamical systems capable of universal computation can extract 

patterns inherent in arbitrary, digitally generated, data, without assuming their 

generation by an underlying probability model. 

 

Corollary 17 Asymptotically stable dynamical systems are not capable of 

computation universality.  

 

Proposition 18 Only dynamical systems capable of computation universality are 

consistent with the no arbitrage hypothesis.  

 

Theorem 19 Rational economic agents in the sense of economic theory are equivalent 

to suitably indexed Turing Machines; i.e, decision processes implemented by rational 

economic agents - viz., choice behaviour - is equivalent to the computing behaviour of 

a suitable indexed Turing Machine.  

 
Put another way, this theorem states that the process of rational choice by an 

economic agent is equivalent to the computing activity of a suitably 

programmed Turing Machine. This is exactly parallel to the formalisation 

with which choice in classical behavioural economics is implemented.  
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Conjecture 20 Dynamical systems capable of computation universality can persist 

in disequilibrium configurations for long time periods.  

 

Theorem 21 (Rabin, 1957) There are games in which the player who in theory can 

always win cannot do so in practice because it is impossible to supply him with 

effective instructions regarding how he should play in order to win.  

 

The next item has been mentioned twice already in this essay; but I restate it 

here just for completion.  

 

Theorem 22 Undecidability of Hilbert’s tenth problem  

There is no algorithm which, for a given arbitrary Diophantine equation, would tell 

whether the equation has a solution or not.  

 

Theorem 23 Halting Problem for Turing Machines  

Suppose we are given a Turing Machine computable function )(mfn . Then there is no 

general algorithm for determining, for arbitrary 0≥n and 0≥m , whether )(mfn  is 

defined.  

 
Theorem 24 Rice’s Theorem: Let C be a class of partial recursive functions. Then 

C is not recursive unless it is the empty set, or the set of all partial recursive 

functions.  
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Claim 25 Validity of the Church-Turing Thesis on Effective Calculability  

 

Theorem 26 Specker’s Theorem in Computable Analysis ([77], pp. 145-58)  

 

A sequence exists with an upper bound but without a least upper bound.  

 

Theorem 27 The Pour-El/Richards Theorem  

 

There exists an Ordinary Differential Equation (ODE) s.t: )](,[)( ttFt ϕϕ =′  with 

0)0( =ϕ , s.t: F(x,y) is computable on the rectangle [0 ≤ x ≤ 1, -1 ≤ y ≤ 1] , but no 

solution of the ODE is computable on any interval δδ ],,0[  ≥ 0 

 

 
 
Theorem 28 Fix Point Theorem  

Suppose that nm FF →Φ :  is a recursive operator (or a recursive program P). Then 

there is a partial function φf  that is the least fixed point of Φ  

 

Theorem 29 ;)( φφ ff =Φ  

If gg =Φ )( , then gf ⊆φ  

 

Remark 30 If, in addition to being partial, φf  is also total, then it is the unique 

least fixed point.  

 
Finally, related to invariance theorems in the domain of algorithmic 
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complexity theory and the fix point theorem of classical recursion theory, we 

have the recursion theorem, essential for understanding self-reproduction and 

self-reconstruction (for computable growth theory):  

 

Theorem 31 Recursion Theorem Let T be a Turing Machine that computes a 

function:  

 ***: Σ→Σ×Σt  (5) 

Then, there is a Turing Machine R that computes a function: 

 **: Σ→Σr       (6) 

such that, :ω∀  

 ),()( ωω ><= Rtr   (7) 

where, <R>: denotes the encoding of the Turing Machine into its standard 

representation as a bit string; and the *(star) operator denotes its standard role 

as a unary operator defined as: :},0|,...,{* 21 AxkxxxA iK ∈∀≥=  

 

The idea behind the recursion theorem is to formalize the activity of a Turing 

Machine that can obtain its own description and, then, compute with it. All 

malicious ‘hackers’, perhaps with no knowledge of this theorem, are invoking 

this theorem every time they generate viruses! More seriously, this theorem is 

essential, too, for formalizing, recursion theoretically, a model of growth in a 

digital economy and to determine and learn, computably and constructively, 

rational expectations equilibria. The fix point theorem and the recursion theorem are 

also indispensable in the computable formalization of policy ineffectiveness 

postulates, time inconsistency and credibility in the theory of macroeconomic 
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policy. Even more than in microeconomics, where topological fix point 

theorems have been indispensable in the formalizations underpinning 

existence proofs, the role of the above fix point theorem and the related 

recursion theorem are absolutely fundamental in what I come to call Computable 

Macroeconomics.  

 

Anyone who is able to formalize these theorems, corollaries and conjectures 

and work with them – and accept the claim – as those that are to discipline 

economic theoretical criteria, would have mastered all the necessary 

mathematics of computable economics. Unlike so-called computable general 

equilibrium theory and its offshoots, computable economics – and its 

offshoots – are intrinsically computational and numerical.  

6. Agent Based Computational Economics 

"It is suggested that a system of chemical substances, called 
morphogens, reacting together and diffusing through a tissue, is 
adequate to account for the main phenomena of morphogenesis. ...  
Most of an organism, most of the time, is developing from one pattern 
into another, rather than from homogeneity into a pattern. One would 
like to be able to follow this more general process mathematically also. 
The difficulties are, however, such that one cannot hope to have any 
very embracing theory of such processes beyond the statement of the 
equations. It might be possible, however, to treat a few particular cases 
in detail with the aid of a digital computer. ..... The essential 
disadvantage of the method is that one only gets results for particular 
cases. ...  The morphogen theory of phyllotaxis, to be described, ..., in 
a later paper, will be covered by this computational method. 
Non-linear equations will be used."  
[86], pp. 37, 71-2; italics in the original.   

 
The origins of what has become agent based computational methods can be 

traced to the pioneering works of Turing on Morphogenesis [86], von Neumann 
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on The Theory of Self-Reproducing Automata ([94]), and Ulam on Nonlinear 

dynamics ([28], [79]). A ‘second generation’ of pioneers were Conway ([7]) and 

Wolfram [96]), the former directly in the von Neumann tradition and the 

latter straddling the von Neumann and Ulam traditions – i.e., working on the 

interface between cellular automata modelling and dynamical system 

interpretation of the transition equations.  

 

Remarkably, there was an independent tradition in economics, pioneered by 

Richard Goodwin ([29]), in his computational studies of coupled markets, 

which directly inspired Herbert Simon’s approach to the computational study 

of evolutionary dynamics in terms of semi-decomposable linear systems 

([64]).  

 
Sadly, none of these classics have had the slightest impact on the current 

frontiers of agent based computational economics (see, for example, [83]). 

Had any awareness of the classics, their frameworks, the questions they posed, 

the tentative answers they obtained, the research directions they suggested 

had been absorbed, even in some rudimentary way, many of the exaggerated 

claims and assertions of the advocates of agent based computable economics 

would have been less absurd, more measured and, surely, also humbler in the 

expectations of what this line of computational research could and must 

achieve. An example of the utterly untenable claim of a senior advocate of 

agent based computational economics may convey our sadness of the lack of 

anchoring in the classics more vividly. In his chapter, titled Agent-Based Macro 
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([83], p. 1626; italics added), Axel Leijonhufvud asserts that34:  

 
"Agent-based computational methods provide the only way in which 
the self-regulatory capabilities of complex dynamic models can be 
explored so as to advance our understanding of the adaptive dynamics 
of actual economies."   

 
Quite apart from the many undefined – even formally undefinable 

unambiguously – concepts in this remarkably unscholarly statement, the 

extraordinary claim that ‘agent-based computational methods provide the 

only way’ to understand anything, let alone of the ’adaptive dynamics of 

actual economies’, must make the scientific spirit of Goodwin and Simon 

writhe in intellectual pain – not to mention the noble ghosts of Ulam, von 

Neumann and Turing.  

 
What are ‘agent-based computational methods’? Do they transcend Turing 

Machine computation? If so, how – and why? How does one link a 

computationally implemented method with a complex dynamical system, 

even assuming that it is possible to define such a thing unambiguously and 

consistent with the dynamics of a computation?  

 

On the other hand, agent based computable economic practice is closely tied 

to the belief that such models are capable of generating so-called ‘emergent 

phenomena’, in the sense that their existence cannot be predicted from the 

                                                 
34 When one of us first read this extraordinary statement, his mind went back to the witticism 
with which Dennis Robertson reacted when he supposedly first heard of revealed preference., 
[56], p.19: 

 "Dare I confess that when I first heard this term ... I thought that perhaps to some 
latter-day saint, in some new Patmos off the coast of Massachusetts, the final solution 
of all these mysteries had been revealed in a new apocalypse?" 
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underpinning laws of individual agent interactions. Very little scholarship on 

the rich tradition of philosophical, epistemological, computational and 

dynamic research – with a solid contribution to the epistemology of 

simulation (cf. [95]) – on ‘emergence’ is manifested in the frontier research by 

agent based computational economists ( a paradigmatic example of inflated 

claims and deficient scholarship on agent based computational modelling, the 

tortuous concept of ‘reductionism’ and the possibility of so-called ‘emergent 

aggregative phenomena’ can be found in [19]).  

 

No better characterisation of the practice of agent based computational 

economists can be given that the one Arthur Burks gave (cf. [14], p. xviii), on a 

related ‘procedure for investigating cellular spaces’:  

 
"The investigator starts with a certain global behavior and wants to 
find a transition function for a cellular automaton which exhibits that 
behaviour. He then chooses as subgoals certain elementary behavioral 
functions and proceeds to define his transition function piece-meal so 
as to obtain these behaviors.  
.....  
The task of searching for a transition function which produces a 
specified behavior is an arduous task because there are so many 
possible partial transition functions to explore."   

 
The formal difficulties of ‘searching for a transition function’ are provably 

intractable, at best; algorithmically undecidable, in general. Even when found, 

depending on the way the data generating process if characterised, whether 

the transition function – when viewed as a finite automaton – ‘halts’ at the 

prescribed state is, again, in general, algorithmically undecidable, 

Correspondingly, when viewed as a dynamical system, whether the global 
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behaviour is an attractor or is in a particular basin of attraction of the 

dynamical system, is algorithmically undecidable. Whether a set of initial 

conditions, for the transition function, can be algorithmically determined such 

that their halting state is the desired global behaviour, or such that the global 

behaviour is in the basin of attraction of the transition function as a dynamical 

system, is decidable only for trivial sets.  

 

And so on!  

 
Suppose we succeed in finding such a transition function – as many agent 

based computational economists claim they can, and have – and want to 

characterise it either in terms of computability theory or as a dynamical 

system. Suppose, also, that we ask the questions the pioneers asked: the 

feasibility of self-reproduction, self-reconstruction, evolution, computation 

universality, decidability of limit sets of the transition function when 

interpreted as a dynamical system, whether the transition function, viewed as 

an finite automaton, is subject to the Halting Problem, and so on. At the least, 

any reasonable notion of ‘emergence’ requires unambiguous answers to most 

of these questions – all of which are, in general, subject to algorithmic 

undecidabilities.  

 
Agent based computational economics is vacuous from an epistemological 

point of view, when viewed either from the point of view of computation 

theory or from a dynamical systems point of view, contrary to many and 

varied claims to the contrary. We locate the vacuity on the lack of anchoring 
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in the noble traditions broached by the pioneers. That the Fermi-Pasta-Ulam 

problem remains impervious to analysis, computational experiments or 

dynamical system explorations should be a lesson for those economists who 

think they have found a panacea to all modelling ills. Above all, it is strange 

that the overwhelming majority – if not, in fact, all – of agent based 

computational economists are not aware of the disciplining criteria with 

which the pioneers embarked on computational explorations in cellular space. 

This is why agent based computational economics is essentially an 

exploration of cellular spaces with finite automata that do not have the power 

of Turing Machines – i.e., the transition functions that are routinely used for 

cellular space exploration by agent based computable economists are not 

partial recursive functions, if, indeed, many, or any, of them are even aware of 

such finessed distinctions between classes of functions; there is certainly no 

evidence of any such awareness in any of the contributions in [4], [81] or in 

[19].  

7. Towards an Epistemology of Computation in 
Economics 

"Do we overpass ... the Turing-Church ‘barrier’ and compute the 
uncomputable? Not exactly. We just move the discussion in another 
territory that of processes that handle information. This syntagma is so 
general that in these terms ‘everything is a computation’; it is a matter 
of point of view (‘for every process there is an observer which can 
interpret the process as a computation’)"  
[50], p. 345   

 
’Does nature compute?’, is a question natural scientists ask with increasing 

frequency. The differential equations, or maps, that seem to characterise the 
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dynamical systems of nature are hardly ever analytically ‘solvable’. Either we 

must try to devise and evolve an epistemology to come to terms with 

‘unsolvability’ and, therefore, accept a ‘truth deficit’ – that ‘true’ solutions are 

inherently unreachable – or find other ways to represent nature’s processes. 

One such alternative way is to interpret nature’s processes as computations. 

But computations, too, may not ‘halt’. A master dynamical system theorist 

outlined the dilemma cogently:  

 
"We regard the computer as an ’oracle’ which we ask questions. 
Questions are formulated as input data for sets of calculations. There 
are two possible outcomes to the computer’s work: either the 
calculations rigorously confirm that a phase portrait is correct, or they 
fail to confirm it. .... The theory that we present states that if one begins 
with a structurally stable vector field, there is input data that will yield a 
proof that a numerically computed phase portrait is correct. However, this 
fails to be completely conclusive from an algorithmic point of view, because 
one has no way of verifying that a vector field is structurally stable in advance 
of a positive outcome. Thus, if one runs a set of trials of increasing 
precision, the computer will eventually produce a proof of correctness 
of a phase portrait for a structurally stable vector field. Presented with 
a vector field that is not structurally stable, the computer will not 
confirm this fact; it will only fail in its attempted proof of structural 
stability35. Pragmatically, we terminate the calculation when the computer 
produces a definitive answer or our patience is exhausted. .... 
 The situation described in the previous paragraph is analogous to the 
question of producing a numerical proof that a continuous function has 
a zero. ..... Numerical proofs that a function vanishes can be expected 
to succeed only when the function has qualitative properties that can 
be verified with finite-precision calculations."  
[31], pp.154-5, italics added.   

 
We have discussed and described alternative visions of computation in 

economics. What, then, if the economy is itself a computer? Do economic 

processes, whether aggregative or not, embody the results of a computation? 

                                                 
35A reader, equipped with the standard knowledge of classical recursion theory, would 
immediately invoke the distinction between recursive and recursively enumerable sets to make 
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Do we, as economists, observing the economy’s computational processes, 

impute computability properties to the economy? Analogous to 

Guckenheimer’s thought experiment, if the data set generated by the 

economy as a computer is recursively enumerable but not recursive, 

inferences abut the computability properties of the economy will remain 

incomplete. On the other hand, if we – as observers – feed the economy with 

data sets that are also recursively enumerable but not recursive, then whether 

the economy, as a computer, will be able to process it in a definitive way will 

remain unknown for an indeterminate period.  

 

Whether definitive knowledge of the structure of the economy can be 

obtained by observing its processes will depend on the metaphors we use to 

characterise it; for example, characterising the economy as a finite automaton 

or a dynamical system whose limit sets are stable limit points makes it easy to 

infer structural properties by observations of the outcome of its processes. 

This is the standard approach to modelling and inference of economic 

dynamics.  

 
In the computable approach to economics, the starting point is that the 

economy is a Turing Machine and the data it generates forms a set that is 

recursively enumerable but not recursive. If so, what can be inferred about the 

structure of the economy may only be explored by Turing Machine 

computation, without any guarantee that a definitive answer will be obtained.  

                                                                                                                                            
precise sense of this important observation. 
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Computation in economics becomes epistemologically meaningful only when 

the economic modeller, using computational metaphors to analyse the data 

generated by the economy, begins to accept, at least pro tempore, that the 

economy is itself a computer. This is the natural mode of interaction between 

the economy and the classical behavioural economist and the computable 

economist; it is not the natural mode for the CGE theorist, nor for the agent 

based computational economist. This is why there is a serious epistemological 

deficit in the practice of the latter two classes of economists.  
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