9 research outputs found

    Power Allocation in Multiuser Parallel Gaussian Broadcast Channels With Common and Confidential Messages

    Get PDF
    We consider a broadcast communication over parallel channels, where the transmitter sends K+1 messages: one common message to all users, and K confidential messages to each user, which need to be kept secret from all unintended users. We assume partial channel state information at the transmitter, stemming from noisy channel estimation. Our main goal is to design a power allocation algorithm in order to maximize the weighted sum rate of common and confidential messages under a total power constraint. The resulting problem for joint encoding across channels is formulated as the cascade of two problems, the inner min problem being discrete, and the outer max problem being convex. Thereby, efficient algorithms for this kind of optimization program can be used as solutions to our power allocation problem. For the special case K=2 , we provide an almost closed-form solution, where only two single variables must be optimized, e.g., through dichotomic searches. To reduce computational complexity, we propose three new algorithms, maximizing the weighted sum rate achievable by two suboptimal schemes that perform per-user and per-channel encoding. By numerical results, we assess the performance of all proposed algorithms as a function of different system parameters

    An Overview of Physical Layer Security with Finite-Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving perfect secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and we discuss some open problems and directions for future research.Comment: Submitted to IEEE Communications Surveys & Tutorials (1st Revision

    Optimum Power Randomization for the Minimization of Outage Probability

    Get PDF
    Cataloged from PDF version of article.The optimum power randomization problem is studied to minimize outage probability in flat block-fading Gaussian channels under an average transmit power constraint and in the presence of channel distribution information at the transmitter. When the probability density function of the channel power gain is continuously differentiable with a finite second moment, it is shown that the outage probability curve is a nonincreasing function of the normalized transmit power with at least one inflection point and the total number of inflection points is odd. Based on this result, it is proved that the optimum power transmission strategy involves randomization between at most two power levels. In the case of a single inflection point, the optimum strategy simplifies to on-off signaling for weak transmitters. Through analytical and numerical discussions, it is shown that the proposed framework can be adapted to a wide variety of scenarios including log-normal shadowing, diversity combining over Rayleigh fading channels, Nakagami-m fading, spectrum sharing, and jamming applications. We also show that power randomization does not necessarily improve the outage performance when the finite second moment assumption is violated by the power distribution of the fading. © 2013 IEEE

    An Overview of Physical Layer Security with Finite Alphabet Signaling

    Get PDF
    Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step towards a practical implementation of physical layer security. With this motivation, this article reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research

    Optimum power randomization for the minimization of outage probability

    Get PDF
    The optimum power randomization problem is studied to minimize outage probability in flat block-fading Gaussian channels under an average transmit power constraint and in the presence of channel distribution information at the transmitter. When the probability density function of the channel power gain is continuously differentiable with a finite second moment, it is shown that the outage probability curve is a nonincreasing function of the normalized transmit power with at least one inflection point and the total number of inflection points is odd. Based on this result, it is proved that the optimum power transmission strategy involves randomization between at most two power levels. In the case of a single inflection point, the optimum strategy simplifies to on-off signaling for weak transmitters. Through analytical and numerical discussions, it is shown that the proposed framework can be adapted to a wide variety of scenarios including log-normal shadowing, diversity combining over Rayleigh fading channels, Nakagami-m fading, spectrum sharing, and jamming applications. We also show that power randomization does not necessarily improve the outage performance when the finite second moment assumption is violated by the power distribution of the fading. © 2013 IEEE

    Parallel BCC with one common and two confidential messages and imperfect CSIT

    No full text
    We consider a broadcast communication system over parallel sub-channels where the transmitter sends three messages: a common message to two users, and two confidential messages to each user which need to be kept secret from the other user. We assume partial channel state information at the transmitter (CSIT), stemming from noisy channel estimation. The first contribution of this paper is the characterization of the secrecy capacity region boundary as the solution of weighted sum-rate problems, with suitable weights. Partial CSIT is addressed by adding a margin to the estimated channel gains. The second paper contribution is the solution of this problem in an almost closed-form, where only two single real parameters must be optimized, e.g., through dichotomic searches. On the one hand, the considered problem generalizes existing literature where only two out of the three messages are transmitted. On the other hand, the solution finds also practical applications into the resource allocation of orthogonal frequency division multiplexing (OFDM) systems with both secrecy and fairness constraints

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Collected Papers (on various scientific topics), Volume XII

    Get PDF
    This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.‬‬‬‬‬
    corecore