15 research outputs found

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Applying ACO To Large Scale TSP Instances

    Full text link
    Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique

    Heterogeneous architecture to process swarm optimization algorithms

    Get PDF
    Desde años recientes, el paralelismo hace parte de la arquitectura de las computadoras personales al incluir unidades de co-procesamiento como las unidades de procesamiento gráfico, para conformar así una arquitectura heterogénea. Este artículo presenta la implementación de algoritmos de enjambres sobre esta arquitectura para resolver problemas de optimización de funciones, destacando su estructura inherentemente paralela y sus propiedades de control distribuido. En estos algoritmos se paralelizan los individuos de la población y las dimensiones del problema gracias a la granuralidad del sistema de procesamiento, que además proporciona una baja latencia de comunicaciones entre los individuos debido al procesamiento embebido. Para evaluar las potencialidades de los algoritmos de enjambres sobre la plataforma heterogénea, son implementados dos de ellos: el algoritmo de enjambre de partículas y el algoritmo de enjambre de bacterias. Se utiliza la aceleración como métrica para contrastar los algoritmos en la arquitectura heterogénea compuesta por una GPU NVIDIA GTX480 y una unidad de procesamiento secuencial, donde el algoritmo de enjambre de partículas obtiene una aceleración de hasta 36,82x y el algoritmo de enjambre de bacterias logra una aceleración de hasta 9,26x. Además, se evalúa el efecto al incrementar el tamaño en las poblaciones donde la aceleración es significativamente diferenciable pero con riesgos en la calidad de las soluciones.Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution

    Reducing the Size of Combinatorial Optimization Problems Using the Operator Vaccine by Fuzzy Selector with Adaptive Heuristics

    Get PDF
    Nowadays, solving optimally combinatorial problems is an open problem. Determining the best arrangement of elements proves being a very complex task that becomes critical when the problem size increases. Researchers have proposed various algorithms for solving Combinatorial Optimization Problems (COPs) that take into account the scalability; however, issues are still presented with larger COPs concerning hardware limitations such as memory and CPU speed. It has been shown that the Reduce-Optimize-Expand (ROE) method can solve COPs faster with the same resources; in this methodology, the reduction step is the most important procedure since inappropriate reductions, applied to the problem, will produce suboptimal results on the subsequent stages. In this work, an algorithm to improve the reduction step is proposed. It is based on a fuzzy inference system to classify portions of the problem and remove them, allowing COPs solving algorithms to utilize better the hardware resources by dealing with smaller problem sizes, and the use of metadata and adaptive heuristics. The Travelling Salesman Problem has been used as a case of study; instances that range from 343 to 3056 cities were used to prove that the fuzzy logic approach produces a higher percentage of successful reductions

    Re-engineering the ant colony optimization for CMP architectures

    Full text link
    [EN] The ant colony optimization (ACO) is inspired by the behavior of real ants, and as a bioinspired method, its underlying computation is massively parallel by definition. This paper shows re-engineering strategies to migrate the ACO algorithm applied to the Traveling Salesman Problem to modern Intel-based multi- and many-core architectures in a step-by-step methodology. The paper provides detailed guidelines on how to optimize the algorithm for the intra-node (thread and vector) parallelization, showing the performance scalability along with the number of cores on different Intel architectures, reporting up to 5.5x speedup factor between the Intel Xeon Phi Knights Landing and Intel Xeon v2. Moreover, parallel efficiency is provided for all targeted architectures, finding that core load imbalance, memory bandwidth limitations, and NUMA effects on data placement are some of the key factors limiting performance. Finally, a distributed implementation is also presented, reaching up to 2.96x speedup factor when running the code on 3 nodes over the single-node counterpart version. In the latter case, the parallel efficiency is affected by the synchronization frequency, which also affects the quality of the solution found by the distributed implementation.This work was partially supported by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities as well as European Commission FEDER funds under Grants TIN2015-66972-C5-3-R, RTI2018-098156-B-C53, TIN2016-78799-P (AEI/FEDER, UE), and RTC-2017-6389-5. We acknowledge the excellent work done by Victor Montesinos while he was doing a research internship supported by the University of Murcia.Cecilia-Canales, JM.; García Carrasco, JM. (2020). Re-engineering the ant colony optimization for CMP architectures. The Journal of Supercomputing (Online). 76(6):4581-4602. https://doi.org/10.1007/s11227-019-02869-8S45814602766Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, LebanonAkila M, Anusha P, Sindhu M, Selvan Krishnasamy T (2017) Examination of PSO, GA-PSO and ACO algorithms for the design optimization of printed antennas. In: IEEE Applied Electromagnetics Conference (AEMC)Dorigo M, Stützle T (2004) Ant colony optimization. A bradford book. The MIT Press, CambridgeCecilia JM, García JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51Dawson L, Stewart I (2013) Improving ant colony optimization performance on the GPU using CUDA. In: IEEE Conference on Evolutionary Computation, pp 1901–1908Llanes A, Cecilia JM, Sánchez A, García JM, Amos M, Ujaldón M (2016) Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Comput 19(1):1–11Cecilia JM, Llanes A, Abellán JL, Gómez-Luna J, Chang L, Hwu WW (2018) High-throughput ant colony optimization on graphics processing units. J Parallel Distrib Comput 113:261–274Lloyd H, Amos M (2016) A Highly Parallelized and Vectorized Implementation of Max–Min Ant System on Intel Xeon Phi. In: IEEE computational intelligenceTirado F, Barrientos RJ, González P, Mora M (2017) Efficient exploitation of the Xeon Phi architecture for the ant colony optimization (ACO) metaheuristic. J Supercomput 73(11):5053–5070Montesinos V, García JM (2018) Vectorization strategies for ant colony optimization on intel architectures. Parallel Computing is Everywhere. IOS Press, Amsterdam, pp 400–409Lawler E, Lenstra J, Kan A, Shmoys D (1987) The Traveling salesman problem. Wiley, New YorkMontesinos V (June 2018) Performance analysis of ant colony optimization on intel architectures. Master’s Thesis, University of Murcia (Spain)Lloyd H, Amos M (2017) Analysis of independent roulette selection in parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 19–26Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, ItalyDuran A, Klemm M (2012) The intel many integrated core architecture. In: Internal Conference on High Performance Computing and Simulation (HPCS), pp 365–366The OpenMP API specification for parallel programming. URL: https://www.openmp.org . [Last accessed 14 June 2018]The Message Passing Interface (MPI) standard. URL: http://www.mcs.anl.gov/research/projects/mpi/ . [Last accessed 15 June 2018]Vladimirov A, Asai R (2016) Clustering modes in Knights landing processors: developer’s guide. Colfax international. URL: https://colfaxresearch.com/knl-numa/ . [Last accessed: 16 June 2018]Intel Developer Zone. URL: https://software.intel.com/en-us/modern-code . [Last accessed 02 Oct 2018]Pearce M (2018) What is code modernization? Intel developer zone. URL: http://software.intel.com/en-us/articles/what-is-code-modernization . [Last accessed 15 Feb 2018]Stützle T ACOTSP v1.03. Last accessed 15 Feb 2018. URL: http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgzReinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. State-of-the-art handbook in metaheuristics. Kluwer Academic Publishers, Dordrecht, pp 475–513Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61Skinderowicz R (2016) The GPU-based parallel ant colony system. J Parallel Distrib Comput 98:48–60Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener Comput Syst 79:473–487Peake J, Amos M, Yiapanis P, Lloyd H (2018) Vectorized candidate set selection for parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 1300–1306Stützle T (1998) Parallelization strategies for ant colony optimization. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature—PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergAbdelkafi O, Lepagnot J, Idoumghar L (2014) Multi-level parallelization for hybrid ACO. In: Siarry P, Idoumghar L, Lepagnot J (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science, vol 8472. Springer, ChamMichel R, Middendorf M (1998) An island model based ant system with lookahead for the shortest super sequence problem. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature— PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergChen L, Sun H, Wang S (2008) Parallel implementation of ant colony optimization on MPP. In: International Conference on Machine Learning and CyberneticsLin Y, Cai H, Xiao J, Zhang J (2007) Pseudo parallel ant colony optimization for continuous functions. In: International Conference on Natural Computatio

    Optimización de algoritmos bioinspirados en sistemas heterogéneos CPU-GPU.

    Get PDF
    Los retos científicos del siglo XXI precisan del tratamiento y análisis de una ingente cantidad de información en la conocida como la era del Big Data. Los futuros avances en distintos sectores de la sociedad como la medicina, la ingeniería o la producción eficiente de energía, por mencionar sólo unos ejemplos, están supeditados al crecimiento continuo en la potencia computacional de los computadores modernos. Sin embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la conocida “Ley de Moore”, se ha visto comprometido en las últimas décadas debido, principalmente, a las limitaciones físicas del silicio. Los arquitectos de computadores han desarrollado numerosas contribuciones multicore, manycore, heterogeneidad, dark silicon, etc, para tratar de paliar esta ralentización computacional, dejando en segundo plano otros factores fundamentales en la resolución de problemas como la programabilidad, la fiabilidad, la precisión, etc. El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto, donde la facilidad de programación a través de modelos de abstracción, la depuración automática de código para evitar efectos no deseados y la puesta en producción son claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta vía compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones; consecuencia totalmente inadmisible en el contexto científico. En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los campos hardware y software para contribuir a solucionar los retos científicos del siglo XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores orientados al paralelismo masivo de datos, principalmente GPUs Graphic Processing Unit y procesadores vectoriales, que se combinan entre sí para construir procesadores o computadores heterogéneos HSA. En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones científicas. Las GPUs se han situado como una de las plataformas con mayor proyección para la implementación de algoritmos que simulan problemas científicos complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas ha estado marcada por el mundo de los videojuegos, alcanzando altísimas cotas de popularidad según se conseguía más realismo en este área. Un hito importante ocurrió en 2006, cuando NVIDIA (empresa líder en la fabricación de tarjetas gráficas) lograba hacerse con un hueco en el mundo de la computación de altas prestaciones y en el mundo de la investigación con el desarrollo de CUDA “Compute Unified Device Arquitecture. Esta arquitectura posibilita el uso de la GPU para el desarrollo de aplicaciones científicas de manera versátil. A pesar de la importancia de la GPU, es interesante la mejora que se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva a introducir los sistemas heterogéneos tal y como detalla el título de este trabajo. Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas máximas, ya que no sólo las GPUs soportan el cómputo científico de los investigadores, sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte donde puede explotar mejor sus capacidades. Donde mayor rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son interconectados entre sí, pudiendo dichos nodos diferenciarse no sólo entre arquitecturas CPU-GPU, sino también en las capacidades computacionales dentro de estas arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los que lograr que el software que hemos elegido como candidato se ejecuten de la manera más eficiente y obteniendo los mejores resultados posibles. Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar y optimizar los algoritmos existentes para conseguir que las aportaciones en este campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima. Encontramos en este punto una familia de algoritmos denominados bioinspirados, que utilizan la inteligencia colectiva como núcleo para la resolución de problemas. Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su implementación en estas plataformas bajo el nuevo paradigma de computación paralela, puesto que las soluciones pueden ser construidas en base a individuos que mediante alguna forma de comunicación son capaces de construir conjuntamente una solución común. Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que se engloba dentro del término metaheurísticas bajo el paradigma del Soft Computing, el Ant Colony Optimization “ACO”. Se realizará una contextualización, estudio y análisis del algoritmo. Se detectarán las partes más críticas y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejorando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a casos reales, más en concreto se mostrará su aplicación sobre el plegado de proteínas. Todo este análisis es trasladado a su aplicación a un caso concreto. En este trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño e implementación software de un algoritmo bioinspirado aplicado a un problema científico de gran complejidad como es el caso del plegado de proteínas. Es necesario cuando se implementa una solución a un problema real, realizar un estudio previo que permita la comprensión del problema en profundidad, ya que se encontrará nueva terminología y problemática para cualquier neófito en la materia, en este caso, se hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para los individuos que no sean de un perfil biomédico.Ingeniería, Industria y Construcció
    corecore