136,555 research outputs found

    Actris: session-type based reasoning in separation logic

    Get PDF
    Message passing is a useful abstraction to implement concurrent programs. For real-world systems, however, it is often combined with other programming and concurrency paradigms, such as higher-order functions, mutable state, shared-memory concurrency, and locks. We present Actris: a logic for proving functional correctness of programs that use a combination of the aforementioned features. Actris combines the power of modern concurrent separation logics with a first-class protocol mechanism - based on session types - for reasoning about message passing in the presence of other concurrency paradigms. We show that Actris provides a suitable level of abstraction by proving functional correctness of a variety of examples, including a distributed merge sort, a distributed load-balancing mapper, and a variant of the map-reduce model, using relatively simple specifications. Soundness of Actris is proved using a model of its protocol mechanism in the Iris framework. We mechanised the theory of Actris, together with tactics for symbolic execution of programs, as well as all examples in the paper, in the Coq proof assistant.Programming Language

    Expressing Code Mobility in Mobile UNITY

    Get PDF
    Advancements in network technology have led to the emergence of new computing paradigms that challenge established programming practices by employing weak forms of consistency and dynamic forms of binding. Code mobility, for instance, allows for invocation-time binding between a code fragment and the location where it executes. Similarly, mobile computing allows hosts (and the software they execute) to alter their physical location. Despite apparent similarities, the two paradigms are distinct in their treatment of location and movement. This paper seeks to uncover a common foundation for the two paradigms by exploring the manner in which stereotypical forms of code mobility can be expressed in a programming notation developed for mobile computing. Several solutions to a distributed simulation problem are used to illustrate the modeling strategy for programs that employ code mobility

    Reliable Synchronization Primitives for Java

    Get PDF
    Java is an architecture-independent, object-oriented language designed to facilitate code-sharing across the Internet in general, via the Web in particular. Java is multithreaded, providing thread creation and synchronization constructs based on generalized monitors. Although these primitives are appropriate for many windowing applications, they are not necessarily well-suited for the larger class of multithreaded programs that occur as part of distributed systems. We demonstrate how the Java primitives, in conjunction with the object-oriented aspects of the language, can be used to implement a collection of other traditional synchronization paradigms. These paradigms are formally specified, their implementations are rigorously verified, and their use is illustrated with several examples

    Auto-Parallelizing Large Models with Rhino: A Systematic Approach on Production AI Platform

    Full text link
    We present Rhino, a system for accelerating tensor programs with automatic parallelization on AI platform for real production environment. It transforms a tensor program written for a single device into an equivalent distributed program that is capable of scaling up to thousands of devices with no user configuration. Rhino firstly works on a semantically independent intermediate representation of tensor programs, which facilitates its generalization to unprecedented applications. Additionally, it implements a task-oriented controller and a distributed runtime for optimal performance. Rhino explores on a complete and systematic parallelization strategy space that comprises all the paradigms commonly employed in deep learning (DL), in addition to strided partitioning and pipeline parallelism on non-linear models. Aiming to efficiently search for a near-optimal parallel execution plan, our analysis of production clusters reveals general heuristics to speed up the strategy search. On top of it, two optimization levels are designed to offer users flexible trade-offs between the search time and strategy quality. Our experiments demonstrate that Rhino can not only re-discover the expert-crafted strategies of classic, research and production DL models, but also identify novel parallelization strategies which surpass existing systems for novel models

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system
    corecore