11 research outputs found

    Composition of texture atlases for 3D mesh multi-texturing

    Get PDF
    We introduce an automatic technique for mapping onto a 3D triangle mesh, approximating the shape of a real 3D object, a high resolution texture synthesized from several pictures taken simultaneously by real cameras surrounding the object. We create a texture atlas by first unwrapping the 3D mesh to form a set of 2D patches with no distortion (i.e., the angles and relative sizes of the 3D triangles are preserved in the atlas), and then mixing the color information from the input images, through another three steps: step no. 2 packs the 2D patches so that the bounding canvas of the set is as small as possible; step no. 3 assigns at most one triangle to each canvas pixel; finally, in step no. 4, the color of each pixel is calculated as a smoothly varying weighted average of the corresponding pixels from several input photographs. Our method is especially good for the creation of realistic 3D models without the need of having graphic artists retouch the texture. Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and textur

    State of the Art on Stylized Fabrication

    Get PDF
    © 2018 The Authors Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as ‘stylized fabrication methods’. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion or to devise a particular interaction with the fabricated model. In this state-of-the-art report, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Developable Surfaces from Arbitrary Sketched Boundaries

    Get PDF
    International audienceDevelopable surfaces are surfaces that can be unfolded into the plane with no distortion. Although ubiquitous in our everyday surroundings, modeling them using existing tools requires significant geometric expertise and time. Our paper simplifies the modeling process by introducing an intuitive sketch-based approach for modeling developables. We develop an algorithm that given an arbitrary, user specified 3D polyline boundary, constructed using a sketching interface, generates a smooth discrete developable surface that interpolates this boundary. Our method utilizes the connection between developable surfaces and the convex hulls of their boundaries. The method explores the space of possible interpolating surfaces searching for a developable surface with desirable shape characteristics such as fairness and predictability. The algorithm is not restricted to any particular subset of developable surfaces. We demonstrate the effectiveness of our method through a series of examples, from architectural design to garments

    State of the art on stylized fabrication

    Get PDF
    © 2019 Copyright held by the owner/author(s). Digital fabrication devices are powerful tools for creating tangible reproductions of 3D digital models. Most available printing technologies aim at producing an accurate copy of a tridimensional shape. However, fabrication technologies can also be used to create a stylistic representation of a digital shape. We refer to this class of methods as stylized fabrication methods. These methods abstract geometric and physical features of a given shape to create an unconventional representation, to produce an optical illusion, or to devise a particular interaction with the fabricated model. In this course, we classify and overview this broad and emerging class of approaches and also propose possible directions for future research

    Human perception-oriented segmentation for triangle meshes

    Get PDF
    A segmentação de malhas é um tópico importante de investigação em computação gráfica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de segmentaçãodemalhasteremváriasaplicações,nomeadamentenaproduçãodefilmes, animaçãoporcomputador, realidadevirtual, compressãodemalhas, assimcomoemjogosdigitais. Emconcreto, asmalhastriangularessãoamplamenteusadasemaplicações interativas, visto que sua segmentação em partes significativas (também designada por segmentação significativa, segmentação perceptiva ou segmentação perceptualmente significativa ) é muitas vezes vista como uma forma de acelerar a interação com o utilizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem como animar uma ou mais partes significativas (por exemplo, a cabeça de uma personagem) de um dado objeto, independentemente das restantes partes. Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres− em partes significativas. Algumas técnicas são mais adequadas para objetos de forma não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas), enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas de segmentação não serem totalmente automáticas, no sentido de que quase todas elas exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três desafios relacionados com a proximidade perceptual, generalidade e automação estão no cerne do trabalho descrito nesta tese. Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técnicas de segmentação baseada em arestas, tão comuns em análise e processamento de imagem,porcontraposiçãoàstécnicasesegmentaçãobaseadaemregiões. Aideiaprincipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida, identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas correspondem a saliências e reentrâncias, que não precisam de ser estritamente convexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões relaxadamenteconvexas(ousaliências)eregiõesrelaxadamentecôncavas(oureentrâncias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo, são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas, a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira bastante plausível tanto objectos de forma não-livre como objectos de forma livre. Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura uma variedade grande de técnicas de segmentação, bem como um número significativo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é assim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples e segmentadas, sendo que neste contexto se entende que uma malha simples é uma malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema (entenda-seestruturasdedadosealgoritmos)demulti-resoluçãoesegmentação,designado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras, bem como os seus vincos e ápices são preservados, não importa o nível de resolução que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação por computador, compressão e transmissão de malhas, operações de modelação geométrica, visualização científica e computação gráfica. Em suma, esta tese apresenta um esquema genérico, automático, e orientado à percepção humana, que torna possível a simbiose dos conceitos de segmentação e multiresolução de malhas trianguladas que sejam representativas de objectos 3D.The mesh segmentation is an important topic in computer graphics, in particular in geometric computing. This is so because mesh segmentation techniques find many applications in movies, computer animation, virtual reality, mesh compression, and games. Infact, trianglemeshesarewidelyusedininteractiveapplications, sothattheir segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive segmentationormeaningfulsegmentation)isoftenseenasawayofspeedinguptheuser interaction, detecting collisions between these mesh-covered objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head of a humanoid) independently of the other parts of a given object. It happens that there is no known technique capable of correctly segmenting any mesh into meaningful parts. Some techniques are more adequate for non-freeform objects (e.g., quadricmechanicalparts), whileothersperformbetterinthedomainoffreeform objects. Only recently, some techniques have been developed for the entire universe of objects and shapes. Even worse it is the fact that most segmentation techniques are not entirely automated in the sense that almost all techniques require some sort of pre-requisites and user assistance. Summing up, these three challenges related to perceptual proximity, generality and automation are at the core of the work described in this thesis. In order to face these challenges, we have developed the first contour-based mesh segmentation algorithm that we may find in the literature, which is inspired in the edgebased segmentation techniques used in image analysis, as opposite to region-based segmentation techniques. Its leading idea is to firstly find the contour of each region, and then to identify and collect all of its inner triangles. The encountered mesh regions correspond to ups and downs, which do not need to be strictly convex nor strictly concave, respectively. These regions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses), produce segmentations that are less-sensitive to noise and, at the same time, are more intuitive from the human point of view; hence it is called human perception- oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh segmentation, the existence of these relaxed regions makes the algorithm suited to both non-freeform and freeform objects. In this thesis, we have also tackled a fourth challenge, which is related with the fusion of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmentation techniques, as well as a number of multiresolution techniques, for triangle meshes already exist in the literature. However, it is not so common to find algorithms and data structures that fuse these two concepts, multiresolution and segmentation, into a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a plainmeshisunderstoodasameshwithasinglesegment. So, weintroducesuchanovel multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both global and local terms, i.e., mesh segments and their boundaries, as well as creases and apices are preserved, no matter the level of resolution we use for simplification/refinement of the mesh. Moreover, unlike other segmentation schemes, it was made possible to have adjacent segments with two or more resolution levels of difference. This is particularly useful in computer animation, mesh compression and transmission, geometric computing, scientific visualization, and computer graphics. In short, this thesis presents a fully automatic, general, and human perception-oriented scheme that symbiotically integrates the concepts of mesh segmentation and multiresolution

    Towards parameter-less 3D mesh segmentation

    Full text link
    This thesis focuses on the 3D mesh segmentation process. The research demonstrated how the process can be done in a parameterless approach which allows full automation with accurate results. Applications of this research include, but not limited to, 3D search engines, 3D character animation, robotics environment recognition, and augmented reality

    Fabrication-Aware Design with Performative Criteria

    Get PDF
    Artists and architects often need to handle multiple constraints during design of physical constructions. We define a performative constraint as any constraint on design that is tied to the performance of the model--either during fabrication, construction, daily use, or destruction. Even for small to medium scale models, there are functional criteria such as the ease of fabrication and the assembly process, or even the interplay of light with the material. Computational tools can greatly aid in this process, assisting with the lower-level performative constraints, while the designer handles the high-level artistic decisions. Additionally, using new fabrication methods, our tools can aid in lowering the difficulty of building complex constructions, making them accessible to hobbyists. In this thesis, we present three computational methods for designing with different approaches, each with a different material, fabrication method, and use case. The first method is a construction with intersecting planar pieces that can be laser cut or milled. These 3D forms are assembled by sliding pieces into each other along straight slits, and do not require other support such as glue or screws. We present a mathematical abstraction that formalizes the constraints between pieces as a graph, including fabrication and assembly constraints, and ensure global rigidity of the sculpture. We also propose an optimization algorithm to guide the user using automatic constraint satisfaction based on analysis of the constraint relation graph. We demonstrate our approach by creating several small- to medium-scale examples including functional furniture. The second method presents a solution to building a 3D sculpture out of existing building blocks that can be found in many homes. Starting from the voxelization of a 3D mesh we merge voxels to form larger bricks, and then analyze and repair structural problems based on a graph representation of the block connections. We then output layer-by-layer building instructions to allow a user to quickly and easily build the model. We also present extensions such as hollowing the models to use less bricks, limiting the number of bricks of each size, and including color constraints. We present both real and virtual brick constructions and associated timings, showing improvements over previous work. The final case presented tackles the inverse design problem of finding a surface to produce a target caustic on a receiver plane when light is refracted or reflected. This is an example where the performative constraint is the principal driver of the design. We introduce an optimal transport formulation to find a correspondence between the incoming light and the output target light distribution. We then show a 3D optimization that finds the surface that transports light based on the correspondence map. Our approach supports piecewise smooth surfaces that are as smooth as possible but allow for creases, to greatly reduce the amount of artifacts while allowing light to be completely diverted producing completely black regions. We show how this leads to a very large space of high-contrast, high-resolution caustic images, including point and line singularities of infinite light density as well as photo-realistic images. Our approach leads to surfaces that can be milled using standard CNC milling. We demonstrate the approach showing both simulated and fabricated examples
    corecore