46,558 research outputs found

    A single scale retinex based method for palm vein extraction

    Get PDF
    Palm vein recognition is a novel biometric identification technology. But how to gain a better vein extraction result from the raw palm image is still a challenging problem, especially when the raw data collection has the problem of asymmetric illumination. This paper proposes a method based on single scale Retinex algorithm to extract palm vein image when strong shadow presents due to asymmetric illumination and uneven geometry of the palm. We test our method on a multispectral palm image. The experimental result shows that the proposed method is robust to the influence of illumination angle and shadow. Compared to the traditional extraction methods, the proposed method can obtain palm vein lines with better visualization performance (the contrast ratio increases by 18.4%, entropy increases by 1.07%, and definition increases by 18.8%)

    Palm vein recognition using scale invariant feature transform with RANSAC mismatching removal

    Get PDF
    Palm vein recognition has been gaining increasing interest as a biometric method, although there still remains an issue regarding difficulties in obtaining robust signals. In this paper, the effects of random sample consensus point mismatching removal and the use of different wavelengths of illumination on the recognition rate are investigated. The CASIA multi-spectral palm print image database was used to provide input signals and the scale invariant feature transform (SIFT) and random sample consensus (RANSAC) mismatching removal approaches were adopted for vein extraction and point feature matching. The results show that the RANSAC mismatching point removal was able to eliminate outliers while preserving the appropriate SIFT key points and that this led to an improvement in the equal error rate metric, signifying better recognition performance. The palm vein recognition system was found to achieve a better verification rate when infrared illumination in a specific spectral band was used to obtain the palm vein image

    Local Line Binary Pattern for Feature Extraction on Palm Vein Recognition

    Get PDF
    In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris). Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP) method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP), a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI) detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is neede

    Biometrics and Network Security

    Get PDF
    This paper examines the techniques used in the two categories of biometric techniques (physiological and behavioral) and considers some of the applications for biometric technologies. Common physiological biometrics include finger characteristics (fingertip [fingerprint], thumb, finger length or pattern), palm (print or topography), hand geometry, wrist vein, face, and eye (retina or iris). Behavioral biometrics include voiceprints, keystroke dynamics, and handwritten signatures

    Image fusion based multi resolution and frequency partition discrete cosine transform for palm vein recognition

    Get PDF
    The rapid growth of technology has increased the demand for automated security systems. Due to the accessibility of the palm region and the unique characteristics of each individual's palm vein features, such biometrics have been receiving particular attention. In the published research relating to palm vein biometrics, usually only a single image is used to supply the data for recognition purposes. Previous experimental work has demonstrated that the fusion of multiple images is able to provide richer feature information resulting in an improved classification performance. However, although most of the image fusion techniques are able to preserve the vein pattern, the fused image is often blurred, the colors are distorted and the spatial resolution reduced. In this paper, the multi-resolution discrete cosine transform (MRDCT) and frequency partition DCT (FPDCT) image fusion are applied and are able to extract the finer details of vein patterns while reducing the presence of noise in the image. The performance shows that the use of MRDCT and FPDCT was able to improve recognition rate compared to using a single image. The equal error rate improvement is also significant, falling to 9% in 700nm image, 7% in 850nm image and 6% in 940nm image

    Local Descriptor Approach to Wrist Vein Recognition with DVH-LBP Domain Feature Selection Scheme

    Get PDF
    Local Binary Pattern (LBP) is one of the well-known image recognition descriptors for texture-based images due to its superiority. LBP can represent texture well due to its ability to discriminate and compute efficiency. However, when it is used to describe textures that are barely visible, such as vein images (especially contactless vein), its discrimination ability is reduced, which leads to lower performance. LBP has extensively been implemented for features extraction in recognition system of hand, eye, face, eye, and other images. Nowadays, there are a lot of developments of hand recognition systems as a hand is a part of the body that can be easily used in the recognition process and it is easier to contact the sensor when taking the image (user-friendly). In particular, a hand consists of various parts that can be used, such as palm and fingers. Other parts like dorsal and wrist can also be used as they have unique characteristics, i.e., they are different from each other, and they do not change with ages. Changes in pixel intensity can be derived from skeletal vein images to distinguish individuals in palm vein recognition. In the previous paper, we proposed a method diagonal, vertical, horizontal local binary pattern (DVH-LBP) for implementing the palm vein recognition system successfully. Through this work, we improve our previous procedure and implement the improved method for recognizing wrist. In particular, this study proposes a new and robust directional extraction technique for encoding the functions of the wrist vein in a simple representation of binary numbers. Simulation results show the low equal error rate (ERR) of the proposed technique is 0.012, and the recognition rate is 99.4%

    A Review: Personal Identification Based on Palm Vein Infrared Pattern

    Get PDF
    Palm vein recognition is the latest biometrics technique used and researches currently. This method achieved high performance in identification due to the complexity of vein pattern on the palm. This studies proposed a review of overall process of vein recognition and vein recognition techniques. In particular, this studies is systematically described in three parts which is vein image acquisition and preprocessing, feature extraction and decision matching. According to the available work, various approaches for different kind of features extractions, palm vein segmentation and overall process will be discussed in this paper

    A review: personal identification based on palm vein infrared pattern

    Get PDF
    Palm vein recognition is the latest biometrics technique used and researches currently. This method achieved high performance in identification due to the complexity of vein pattern on the palm. This studies proposed a review of overall process of vein recognition and vein recognition techniques. In particular, this studies is systematically described in three parts which is vein image acquisition and preprocessing, feature extraction and decision matching. According to the available work, various approaches for different kind of features extractions, palm vein segmentation and overall process will be discussed in this paper

    A novel image enhancement method for palm vein images

    Get PDF
    Palm vein images usually suffer from low contrast due to skin surface scattering the radiance of NIR light and image sensor limitations, hence require employing various techniques to enhance the contrast of the image prior to feature extraction. This paper presents a novel image enhancement method referred to as Multiple Overlapping Tiles (MOT) which adaptively stretches the local contrast of palm vein images using multiple layers of overlapping image tiles. The experiments conducted on the CASIA palm vein image dataset demonstrate that the MOT method retains the finer subspace details of vein images which allows excellent feature detection and matching with SIFT and RootSIFT features. Results on existing palm vein recognition systems demonstrate that the proposed MOT method delivers lower EER values outperforming other existing palm vein image enhancement methods
    • …
    corecore