2,879 research outputs found

    Fusing deep learned and hand-crafted features of appearance, shape, and dynamics for automatic pain estimation

    Get PDF
    Automatic continuous time, continuous value assessment of a patient's pain from face video is highly sought after by the medical profession. Despite the recent advances in deep learning that attain impressive results in many domains, pain estimation risks not being able to benefit from this due to the difficulty in obtaining data sets of considerable size. In this work we propose a combination of hand-crafted and deep-learned features that makes the most of deep learning techniques in small sample settings. Encoding shape, appearance, and dynamics, our method significantly outperforms the current state of the art, attaining a RMSE error of less than 1 point on a 16-level pain scale, whilst simultaneously scoring a 67.3% Pearson correlation coefficient between our predicted pain level time series and the ground truth

    Machine Learning Approaches for Heart Disease Detection: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the application of machine learning algorithms in the early detection of heart disease. Heart disease remains a leading global health concern, necessitating efficient and accurate diagnostic methods. Machine learning has emerged as a promising approach, offering the potential to enhance diagnostic accuracy and reduce the time required for assessments. This review begins by elucidating the fundamentals of machine learning and provides concise explanations of the most prevalent algorithms employed in heart disease detection. It subsequently examines noteworthy research efforts that have harnessed machine learning techniques for heart disease diagnosis. A detailed tabular comparison of these studies is also presented, highlighting the strengths and weaknesses of various algorithms and methodologies. This survey underscores the significant strides made in leveraging machine learning for early heart disease detection and emphasizes the ongoing need for further research to enhance its clinical applicability and efficacy

    Automatic analysis of facial actions: a survey

    Get PDF
    As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System (FACS) has recently received significant attention. Over the past 30 years, extensive research has been conducted by psychologists and neuroscientists on various aspects of facial expression analysis using FACS. Automating FACS coding would make this research faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Such an automated process can also potentially increase the reliability, precision and temporal resolution of coding. This paper provides a comprehensive survey of research into machine analysis of facial actions. We systematically review all components of such systems: pre-processing, feature extraction and machine coding of facial actions. In addition, the existing FACS-coded facial expression databases are summarised. Finally, challenges that have to be addressed to make automatic facial action analysis applicable in real-life situations are extensively discussed. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the future of machine recognition of facial actions: what are the challenges and opportunities that researchers in the field face
    corecore