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Deep Pain: Exploiting Long Short-Term Memory
Networks for Facial Expression Classification

Pau Rodriguez, Guillem Cucurull, Jordi Gonzàlez, Josep M. Gonfaus,
Kamal Nasrollahi, Thomas B. Moeslund, F. Xavier Roca

Abstract—Pain is an unpleasant feeling that has been shown to
be an important factor for the recovery of patients. Since this is
costly in human resources and difficult to do objectively, there is
the need for automatic systems to measure it. In this paper, con-
trary to current state-of-the-art techniques in pain assessment,
which are based on facial features only, we suggest that the
performance can be enhanced by feeding the raw frames to deep
learning models, outperforming the latest state-of-the-art results
while also directly facing the problem of imbalanced data. As a
baseline, our approach first uses convolutional neural networks
(CNN) to learned facial features from VGG Faces, which are
then linked to a Long Short-Term Memory (LSTM) to exploit
the temporal relation between video frames. We further compare
the performances of using the so popular schema based on the
canonically normalized appearance versus taking into account
the whole image: As a result, we outperform current state-
of-the-art AUC performance in the UNBC-McMaster Shoulder
Pain Expression Archive Database. In addition, to evaluate the
generalization properties of our proposed methodology on facial
motion recognition, we also report competitive results in the Cohn
Kanade+ facial expression database.

I. INTRODUCTION

The automatic detection of pain is a subject of high interest
in the health domain since it is not only an important indicator
for medical diagnosis, but has also been shown to be an
obstacle for patient recuperation in Intensive Care Units [1]
and after surgery [2]. In [3], it is shown how good pain
assessment is crucial for a good pain control, which is usually
verbally checked by professional nurses, known as self-report.
However, this is not always possible due to the age of
the patient, the particular illness or language impairments.
Moreover, pain is a subjective feeling which can be described
differently across cultures [4]. Thus, pain assessment could be
highly benefited from automatic tools.

Indeed this goal has been already addressed several times
in the past, for example in 2011 the authors of [5] tackle
the problem using brain activity imaging. So pain detection
is also an important task from the point of view of computer
vision, since it is a clear step towards an automatic detector
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Computer Vision Center - Universitat Autònoma de Barcelona (Catalonia
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of spontaneous face expressions [6], [7], [8], [9] and [10]. In
particular, it was of high importance for the computer vision
community the release of a database published by Lucey et al.
in [11], in order to alleviate the lack of representative data of
the other existing databases. Their UNBC-McMaster database
consists of 200 video sequences taken from 25 patients who
were suffering from shoulder pain. The frames were labeled
using the validated Prkachin and Solomon metric [12] (PSPI)
based on the Facial Action Coding System (FACS) [13], which
codes different movements of the face muscles with different
intensity levels. It is a very challenging dataset, and as it
can be seen in Fig. 1, in some cases it can be very hard to
determine whether a subject is in pain or not, even for clinical
professionals.

So the UNBC-McMaster Painful dataset has been used to
propose new models for facial pain detection. In the first place,
Lucey et al. in [11] already released a baseline along with the
dataset, using Support Vector Machines (SVMs) on top of the
pixel and landmark features extracted using Active Appearance
Models (AAM) [14] in order to predict painful Action Units
(AUs) and the PSPI for the presence of pain. [10] proposed a
late fusion of shape and appearance features in order to predict
the continuous PSPI scores of the Painful data.

In fact, facial Action Units have been typically used to
encode facial motion corresponding to different facial expres-
sions such as pain or anger. As stated by Rudovic et al.
[15], the task of AU intensity estimation is very challenging,
due to the high variability in facial expressions depending
on the context, such as illumination, head movements or
subject-specific expressions. Being a complex task, Action
Unit intensity estimation has received a lot of attention over
two decades for generic facial motion analysis. It has been
approached by Kim et al. in [16], where they use a dynamic
ranking model to overcome the difficulty of the emotion
intensities differing substantially across subjects. Valstar et al.
[17] also tackle the task of facial AUs recognition by using
a facial point detector to localize 20 facial fiducial points.
Then these points are tracked through a sequence of images
and then a combination of GentleBoost, SVMs and hidden
Markov models (HMM) is used for AU recognition. According
to [18] most of the temporal graphical models such as HMM or
conditional random fields (CRF) used for AU recognition fail
to jointly model different emotions. To overcome this issue,
they propose the use of a Hidden Conditional Ordinal Random
Field (H-CORF) to achieve both intensity estimation of facial
expressions and dynamic recognition of multiple emotions at
the same time. Ming et al. [19] proposed a method based
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Figure 1: Examples of pain and no pain frames This figure shows how hard it can be to distinguish between pain and no
pain frames. The subject was not in pain in the frames of the first row (a), whereas it was suffering pain in all frames of row
(b). At first glance it is very hard to determine which row contains pain frames and which one contains frames labeled as zero
pain level, demonstrating that the task of pain detection is not trivial and that the proposed model faces a lot of difficult cases
like the ones being shown.

on multi-kernel SVM and feature fusion to approach AUs
intensity estimation.

Focused on facial landmark estimation for pain detection,
Rudovic et al. [20] proposed to use a heteroscedastic Con-
ditional Ordinal Random Field (CORF) model in order to
deal with the inter-subject variability of the pain expressions.
Authors in [21] and [22] used weakly supervised learning and
multiple instance learning to predict pain only using sequence-
level annotations. Khan et al. [23] also used the referenced
dataset for pain/no-pain recognition using shape information
extracted with a pyramid histogram of orientation gradients
(PROG) and appearance information using a pyramid local
binary patterns (PLBP). Subsequently, Zafar and Khan’s [24]
used a K-NN classifier to classify AUs using 22 facial char-
acteristic points. In 2015, Irani et al. [25] use Spatiotemporal
Feature Extraction in order to model the exploits the released
energy of the facial muscles in the spatial and temporal
domains. They applied their system to both RGB [25] and
RGB-Thermal-Depth [26] facial images. Presti and Cascia [27]
use Hankel Matrices to represent the temporal dynamics of a
sequence of Face Image Descriptors. Pedersen [28] addressed
the identity bias of the dataset using autoencoders, ensuring
the presence of discriminative features by training with a
combined loss function that balances the reconstruction error
and the classification error. Later in the same year, Neshov and
Manolova [29] used SVMs on top of Scale Invariant Feature
Transform (SIFT) features for continuous and discrete PSPI
prediction. Rathee and Ganotra [30] proposed the use of Thin
Plate Spline (TPS) mapping [31] for modeling the deformation
of facial features and a Distance Metric Learning (DML)
method to ensure the distance between features belonging to
different levels of pain. The recent work of Zhao et al. [32]
proposes the novel Alternating Direction Method of Multi-
pliers (ADMM) to solve Ordinal Support Vector Regression
(OSVR) achieving competitive performances in supervised,
semi-supervised and unsupervised prediction of PSPI scores.

In this paper we continue current trends on deep learning
[33][34][35][36][37] applied to pain estimation [38]. Similarly
to [38], we also perform regression with Deep Convolutional
Neural Networks (DCNNs) in order to predict the PSPI score
for each frame. Subsequently, we adapt the resulting CNN
model for pain classification inspired by [11]. In order to
alleviate the problem of data scarcity, we use VGG Faces,
i.e. a VGG-16 CNN [37] pre-trained with millions of faces
[39], which already obtains state-of-the-art scores compared
with other leave-one-subject-out methods.

Differently to [38], we follow the ideas exposed in [25],
by directly exploiting the temporal axis information using
Long Short-Term Memory (LSTM) [40][41] on top of the
previously-learned deep features, boosting our scores even
more. So the main difference of our Deep Learning method-
ology as described above and the Recurrent Convolutional
Neural Networks used in [38] is that we leverage the temporal
information without renouncing to the representational power
of generic pre-trained CNN features like the ones learned from
VGG Faces, i.e. we link the VGG Faces features to the LSTM
Recurrent Network. In other words, the approach of [38] either
discards the temporal information of the data when considering
pre-trained features from VGG Faces or considers temporal
information but using less-discriminative features, since the
RCNN is learned from scratch.

In addition, differently to [38], we consider the raw image
as the input of the CNN, rather than using facial landmarks. By
doing so, the proposed method is able to outperform current
state-of-the-art in pain intensity estimation.

As pain detection is a form of facial expression recognition,
similar methods can be applied to the more general task of
emotion recognition. For example Lucey et al. [42] used an
SVM on top of features extracted using AAM to build a facial
emotion classifier. Based on the observation that only a few
facial patches are important for expression recognition, Zhong
et al. [43] use a two-stage approach. First LBP features are
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Figure 2: Proposed framework. Schematic depicting the different stages of our proposed pain detection model.

used to describe every patch on a grid of 8 × 8 over the
images of 96 × 96 pixels. Then Multi-task sparse learning
(MTSL) is used to learn common patches across expressions.
Similar to this idea, Liu et al. [44] propose a method which
adapts 3D Convolutional Neural Networks (3D CNN) to detect
facial action parts under spatial constraints. In the work by
Liu et al. [45] they propose to use a Boosted Deep Belief
Network to jointly learn the best set of features to describe
expression related facial appearance and a classifier on top
of these features to perform emotion recognition. Jung et al.
[46] approached the task by using deep learning techniques.
Specifically, their method combines two deep networks: the
deep temporal appearance network (DTAN) and the deep
temporal geometry network (DTGN). The DTAN receives as
input raw images, whereas the DTGN receives the position of
the facial landmarks points. Thus, the DTAN learns to extract
appearance features and the DTGN extracts geometrical fea-
tures. Mollahosseini et al. also used a deep learning approach,
but in this case, they use only one CNN, with the difference
that it has several Inception modules. In the work by Zhao et
al. [32] they propose the Peak-Piloted Deep Network (PPDN)
to use the peak samples (frames with maximum expression)
to supervise the feature responses for the non-peak frames of
the same emotion and the same subject. Their approach is
to minimize both the classification error and the difference
in the representations of both frames, and at the same time,
they propose the usage of Peak Gradient Suppression (PGS)
to prevent the representations of peak-frames driving towards
the representations of non-peak frames.

II. THE PROPOSED SYSTEM

The block-diagram of the proposed system is shown in
Fig. 2. We use the same data registration as the one used
by Lucey et al. [11] for fair comparison: images are cropped
using the provided landmarks and then frontalized. Then, we
apply global contrast normalization before feeding the images
to a deep convolutional neural network pre-trained with faces

[39]. Contrary to most of the approaches and in the same
line as Kaltwang et al. [10], we try to solve the regression
task because it fits best to this problem. However, we finally
threshold the predictions in order to get performance metrics
so that we can compare to [47] or [11] as previously seen in
the introduction. The following sub-sections go through the
steps of the system.
• Data Pre-processing. As it can be seen in Figures 3 and

4, we use the provided landmarks in order to crop and
frontalize the faces. Following the procedure in [11], we
use Generalized Procrustes Analysis (GPA) to align the
landmarks [48]. This method is no more than an extension
of the Procrustes Analysis for comparing more than two
ordered sets of landmarks. For the simple case, in order to
align two sets X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn}
of N landmarks, one has to (i) move their centroids x̄, ȳ
to the origin (ii) find their scaling factor s:

s =

√∑
(xi − x̄)2 + (yi − ȳ)2

N
∀xi, yi ∈ X,Y, (1)

so that we can remove it from the landmarks by dividing
them by s. Then, one can find the rotation θ between
two sets of landmarks by optimizing the rotation angle
needed to minimize the mean squared distance between
the two sets. This leads to the following equation:

θ = tan−1

(∑N
i=1(wiyi − zixi)∑N
i=1(wiyi + zixi)

)
. (2)

Then, for K sets of points, the GPA consists in choosing
one of the sets as a reference in order to align the
rest, use the mean of the alignment as a new refer-
ence and repeat the process until the Procrustes distance
d =

√∑
(xi − yi)2 between the new reference and

the previous one are below a threshold. Once the final
reference is obtained, the images are aligned so that their
respective landmarks are aligned to it. Then, Delaunay
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triangulation is used to create a mesh corresponding to
the dual graph of the Voronoi diagram of the points so that
piecewise-affine warping can be used to get the so called
canonical normalized appearance. As it can be seen in
Fig. 4, we did not use all the provided landmarks since
it forces too much the facial expression, i.e. eliminates
mouth gestures and closed eyes, and we did not want to
lose any pain-related information.
Contrary to the procedure described in [11] and followed
by others, e.g. [28], we do not grayscale the image and
we warp it to 224× 244 because it is the common input
size for most deep neural network models after cropping.
We do not crop patches during training due to the fact
that faces are already aligned so there is no need for
translation invariance.
Finally, per-pixel mean subtraction is performed in order
to pass real zeros for the black areas to the neural
network. Global contrast normalization is then applied
to ease the training of the model.

• Facing imbalanced data Since there are about 8K pain
frames and about 40K labeled as no pain in PSPI score, it
is probable that any model gets biased towards the predic-
tion of no-pain at the cost of missing pain frames. There
are two common approaches to overcome this problem:
(i) balancing data, (ii) using weighted loss functions. In
this work we balance the training data (i) and validate
the original validation data, but we also complement the
results by giving normalized scores, as proposed by [49]
(i.e. balancing the validation dataset). To balance the data,
we randomly under-sample the majority class, i.e the
no-pain class, so that both pain and no-pain categories
have the same probability to be randomly picked by the
training algorithm. To create the training sequences for
the RNN we also need to balance the data, but instead of
balancing at the frame level, we balance at the sequence
level so that there are no frame skips. This means that
we sort the frames in time, split them in sequences,
and discard entire sequences with no pain in all their
frames until they match the number of sequences with
pain inside.

• Target pre-processing Because MSE is very sensitive
and most suited for the cases where Gaussian noise is
present, it is good practice to standardize the labels, i.e.
the pain levels, before training.

After data is pre-processed, it is used to train a CNN to
perform the pain level recognition task. This is achieved by
fine-tunning a VGG-16 CNN pre-trained with Faces [39].
Instead of using the log-likelihood objective function, we used
the L2 between the predicted label Ŷ and the actual label
Y in an attempt to make the model get a better insight on
pain detection since it is not binary and it actually proved to
perform slightly better:

E =
1

2N

N∑
n=1

||ŷn − yn||22. (3)

In order to improve the model generalization, data augmen-
tation is used. This is done by (i) flipping images with 50%

probability, and (ii), adding random noise to the reference
landmarks before performing piece-wise affine warping in
order to introduce small deformations to faces, see Fig. 3.

The masking and the frontalization performed during the
pre-process alter the original face, resulting in an image
considerably different from a non-processed face like the ones
that the CNN used has been pre-trained with. These differences
between the pre-training data and the fine-tunning data could
affect the results obtained, because the network has learned
to extract specific features from raw face images, and it may
not be able to extract them from the processed faces. Thus,
we also provide results with a network trained with raw faces,
similar to the ones used during pre-training, and each frame
is processed only to extract a crop around the face, see Fig.
3, and then the mean pixel value is subtracted to each image.

A. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are an architecture

of neural networks proposed by LeCun et al. that localize local
features in images to extract information of the visual content
[50]. CNNs are made of different types of layers, stacked on
top of each other. The basic layer of a CNN is the convolution
layer, which convolves a given tensor of size

W ×H ×D,

with K different filters of size

F × F ×D,

with a stride of S between convolutions and padding the input
with P zeros. This convolution of the input by K filters outputs
a tensor with dimensions:

W ′ ×H ′ ×D′,

where
W ′ = (W − F + 2P )/S + 1,

H ′ = (H − F + 2P )/S + 1,

D′ = K.

The values of the convolution filters are learned by initializing
them randomly and updating them by performing gradient
descent using the backpropagation algorithm [51]. To compute
the error for a given input to the network, the last layer of the
network is a loss layer which computes the error between the
ground truth label of an input image and the predicted output
for that image. This error at the output is backpropagated
to previous layers in order to compute the gradients for the
weights of previous layers.
This architecture is specially designed to capture 2D
information, so it performs very well on images, where
pixels intensities are related to their neighbors. The recent
increase in computational power provided by GPUs and the
availability of large datasets like Imagenet [52] have made the
initial CNN implementations evolve to very deep networks
[36], [37]. These deep networks have been proven to perform
very well in a variety of computer vision tasks such as human
action recognition [53], handwritten digit recognition [54] or
automatic face detection [55].
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Figure 3: Pre-processing pipeline. The different stages of data pre-processing that were applied to the image. First, the image
is aligned and cropped so as to fit the standard CNN input size. Then, it is masked and frontalized using piece-wise affine
warping to match the standard pipeline proposed in [47]. Finally we perform data augmentation by applying landmark-based
random deformations.

Figure 4: Frontalized Images. This figure shows the differ-
ence between frontalizing using all the provided landmarks or
a coarser subset. It can be seen that using a smaller subset,
the eyes preserve their state and the line of the mouth is more
similar to the original frame.

B. Using temporal information

Although we are using video data, the previous sections
only deal with the problem of labeling isolated frames. Thus,
temporal information can still be used in order to improve the
model. In order to take it into account, similarly to the work
of [38], the features from the fc6 layer are extracted and used
to feed a recurrent neural network (RNN). This kind of neural
nets is especially suited for sequential data since their neurons
do not only have connections (weights) between the next layers
but to themselves, which are used to keep information from
previous inputs. Since they have to be unrolled, the training of
this kind of networks is done with an extension of the back-
propagation algorithm [51], called back-propagation through
time BPTT [56].

In this work we use LSTM, a type of RNN which is capable
of learning long-term dependencies present on sequential data.
Standard RNNs are theoretically capable of learning long-
term dependencies, but in practice, it is difficult to train them
because the gradients tend to either explode or vanish [57].
LSTM differs from standard RNN because it has a cell state

controlled by 3 gates, which decide how much information
should be let through. These gates are known as forget,
input and output gates, see 2. The amount of information
that is let through each gate is controlled by a point-wise
multiplication and sigmoid function, as the sigmoid function
output is between 0 and 1, indicating how much of the
information should let through the gate.

At each time-step, the input gate is computed depending on
the input to the LSTM for that time-step and the previously
hidden state. The cell state candidate is also computed by:

it = σ(Wixt + Uiht−1 + bi), (4)

Ĉt = tanh(Wcxt + Ucht−1 + bc). (5)

Then output of the forget get is computed as:

ft = σ(Wfxt + Ufht−1 + bf ). (6)

And when the forget and input gates have determined how
much information of the previous cell state Ct−1 and the new
cell state candidate Ĉt should be let through, the cell state for
the current time-step is computed:

Ct = ft ∗ Ct−1 + it ∗ Ĉt. (7)

Then, the state can be used in order to predict the output of
the cell:

ot = σ(Woxt + Uoht−1 + bo), (8)

ht = ot ∗ tanhCt. (9)

In order to train the RNN for pain detection, we used the
MSE loss since it better suits the nature of the problem, where
pain levels have distances in the output space. In case we
need to compare in terms of binary accuracy, we can just
use a binary threshold. In fact, we empirically found that
using the cross-entropy error for binary classification yielded
worse performance than just using a threshold after regression.
Concretely, we could only reach 81% of accuracy on the test
set with the initial settings shown in Table II, which presents
a 83.1% for the same model after regression and thresholding.

To train the LSTM, first a feature vector has to be extracted
for each image, being this vector the input to the LSTM. We
can think of this feature vector as a low-dimensional represen-
tation of the image in the feature space. To create this vector
for each frame, the frame is processed through the VGG-16
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Feature descriptors Classifier Performance Measure Metric Score Use all images

Lucey et al. [58] PTS, APP, SVM Leave one subject out AUC 78% Yes
Lucey et al. [59] PTS, APP, SVM Leave one subject out AUC 78.4% Yes
Lucey et al. [11] SPTS, CAPP SVM Leave one subject out AUC 83.9% Yes
Lucey et al. [47] SPTS, SAPP, CAPP SVM Leave one subject out AUC 84.7 Yes

Kaltwang et al. [10] PTS, DCT, LBP RVR Leave one subject out MSE, PCC, ICC 1.39, 0.59, 0.50 Yes
Florea et al. [60] HoT SVR Leave one subject out MSE, PCC 1.21, 0.53 Yes
Zhou et al. [38] learnt RCNN Leave one subject out MSE, PCC 1.54, 0.65 Yes
Zhao et al. [32] LBP,Gabor OSVR-L1, OSVR-L2 Leave one subject out MAE,PCC,ICC 0.81, 0.60, 0.56 Yes

Ashraf et al. [9] S-PTS, S-APP, C-APP SVM Leave one subject out Hit rate 82% No

Hammal et al. [61] CAPP SVM Leave one subject out Recall, F1
Precision

61%, 57%
65%

No (Only 15%)

Rudovic et al. [20] LBP KCORF Custom split F1 40.2% No

Khan et al. [23] PHOG, PLBP SVM, DT
RF, 2NN 10 fold CV Accuracy 96.4% Yes

Rathee et al. [30] TPS SVM Leave one frame out Accuracy 96.0% Yes
Pedersen et al. [28] Custom features SVM Leave one subject out AUC, Accuracy 96.5, 86.1% No

Table I: Summary of previous approaches. This table compares the experimental setup of previous approaches to solve the
task of automatic pain detection. We compare our method against the previous approaches that have used a subject-exclusive
leave-one-subject-out performance measure and do not discard any painful image.

CNN fine-tuned to perform pain level detection and the outputs
of the a fully-connected layer are used as the encoding for that
frame. As it can be seen in Table III, we found that the outputs
in the fc6 layer had less temporal invariability than the ones
from the fc7 and thus, the former yielded better performance
when fed to the LSTM. Hence, the fc6 is always used for
comparison with the state-of-the-art. This process results in
M feature vectors v where M is the number of frames and
v ∈ R4096 since the fc6 layer of the VGG-16 network has
4096 units. Then, the M feature vectors have to be grouped
together in sequences of length ρ. The sequences are created
so that each frame is the last of a sequence once, e.g if the first
sequence is s0 = {v0, v1, ..., vn−1, vn}, the next sequence is
s1 = {v1, v2, ..., vn, vn+1}. Each sequence s is labeled with
one label t, corresponding to the label of the last frame of
the sequence. In the classification task, t is a binary one-hot
vector t ∈ {0, 1}2, and for the regression task t is a real
number t ∈ R. As each sequence has only one label, only the
hidden state of the last time-step htn is used to compute the
output of the network.

Hence, the label of a frame is predicted taking into account
the past ρ frames. For this problem, we found that ρ = 16
worked well, and an LSTM [40] RNN is used in order to
avoid the problem of gradient vanishing for long sequences.
The network is optimized with ADAM since it has proved to
be more stable than SGD with momentum [62].

III. EXPERIMENTS AND RESULTS

As said in the previous sections, we center our experi-
mentation on The UNBC-McMaster Shoulder Pain Expression
Archive Database [11]. In addition, we prove the generality of
our model by testing it on the Cohn Kanade+ face emotion
detection dataset [42] and obtaining competitive results.

A. Results on Pain Recognition

A quick skim through the pain detection literature concern-
ing the database will show the reader that there are multiple

benchmark procedures. While the original paper [11] and some
posterior ones [28] use leave-one-subject-out cross-validation,
others like [20], [23], and [30] use k-fold cross-validation or
even leave-one-frame-out cross-validation. In addition, Jeni et
al. face the problem of data imbalance in [49], proposing
normalized metrics that take the skew into account.

In Table I there is a summary of previous approaches to
performing pain detection on the same dataset, indicating the
method used to extract features and the classifier or regressor
trained with those features. It also shows the metric used to
evaluate their approach, along with the score obtained and
the performance measure. The main difference between most
of the listed previous approaches and our approach is that
they manually extract a set of features, and then train a model
with them, whereas we use an end-to-end deep learning model
which learns to extract features from the data and how to
combine them to give the correct output. Our approach is
also based on Convolution Neural Networks as in [38], but in
contrast, we apply temporal modeling using LSTM onto the
features learned from the VGG faces network. This is different
from the method proposed in [38], which discards the temporal
information of the data when considering pre-trained features
from VGG Faces, and considers temporal information on low-
discriminative features, since the RCNN is learnt from scratch
in an unbalanced, quite small dataset (even smaller in [38],
since no data augmentation pre-processing is applied).

In this work, we compare within the dataset authors’
scheme: AUC score on leave-one-subject-out cross-validation,
since subject-exclusiveness increases the confidence that the
model will behave similarly with new data. In addition to
comparing our model in a binary setting by using the AUC
score, we also test it against other state-of-the-art continu-
ous prediction models with the Intraclass Correlation Coeffi-
cient (ICC), Pearson Correlation Coefficient (PCC), the Mean
Square Error (MSE), and the Mean Absolute Error (MAE).
For the continuous setting, we aggregated the pain levels as
indicated in [32] so that the levels 4 and 5 are merged, as well
as 6+, that become the 5th level.
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Normalized [49] Unbalanced

Metric Accuracy AUC Accuracy AUC

Align 77.1 83.2 83.1 83.1
Align + Fron. 83.2 82.4 86.4 82.1

Align + Front. + Data aug. 85.9 89.9 88.8 89.9

Aligned Crop 80.8 90.0 87.5 89.6
Aligned Crop + LSTM 83.8 90.1 90.3 91.3

Table II: Unbalanced and normalized scores. This table
reports the accuracy and area under the ROC curve obtained
by different versions of our method.

Figure 5: Average saliency map and average face. The first
picture (a) corresponds to the average saliency map computed
for each image as described by Simonyan et al. [63]. the
second picture is the average of all the training images. The
saliency map shows where the CNN is looking to decide the
level of pain of a frame.

In our case, and only for comparison purposes, we also
trained on aligned and canonical normalized faces but in-
cluding data augmentation to add robustness to the model
predictions. In Table II, we show the effect of the different
stages of pre-processing shown in Fig. 3 on the perfor-
mance of the model. Specifically, it can be seen that the
aligned frontalized facial landmarks proposed in [11] already
provides a good performance, but the VGG faces model is
not pre-trained with similar kind of images [39]. In fact, it
is interesting that with canonically normalized appearance,
the position and translation invariances of the faces are not
enough to compensate their difference with the pre-trained
model. We also found very important the mean subtraction
step since the pre-trained model was trained with faces with
some background and the canonically normalized appearance
contains a black background. Hence, subtracting the global
pixel mean was making all those zeros to be non-zero and
thus lower the performance. The solution was to subtract the
per-pixel mean. The best score for the AUC metric, 89.9 is
achieved by considering the so popular pre-processing step, as
used in [11].

The last 2 rows in Table II show the results obtained by our
model when it is trained with centrally cropped Procrustes
aligned faces. With this different setting, the performance
of the model is enhanced, only matched by the canonically
normalized setting when heavy data augmentation was used
(face deformations). The main reason to this gain is due to

the fact that VGG Faces is pretrained with millions of raw
images.

A possible drawback of keeping the image background
could be that the CNN is helped by non-facial information
(such as the arms) to improve its performance. In order to
verify that the model is ignoring the background and that it
is using only face information, we performed a class saliency
visualization as described by Simonyan et al. [63]. In Fig. 5 it
can be seen the average saliency map compared to the mean
face, and by comparing both pictures it can be seen that the
network bases its decision looking at the face region, without
using background information. The average saliency map has
been obtained by computing the saliency map of all the images
and averaging them. According to [63] the saliency map of an
image can be thought as the magnitude of the derivative of
the output Sc with respect to the input image I , because the
magnitude of the derivative indicates which pixels need to be
changed the least to affect the output the most, and therefore
those pixels correspond to the region of the image that the
network is using to give its output. The derivative is computed
as following:

w =
∂Sc

∂I
, (10)

and the saliency map M ∈ Rm×n for an image I ∈ Rm×n is
computed as:

Mij = maxc|wh(i,j,c)|, (11)

where h(i, j, c) is the index of the element in w that
corresponds to the i-th row, j-th column and c-th colour
channel value of the image I . As the saliency map does not
have a color dimension, the maximum magnitude of w across
all colour channels is selected to create the map.

The UNBC-McMaster Shoulder Pain Expression Archive
Database is unbalanced, meaning that there are a lot more
frames labeled as zero pain than frames labeled with some
level of pain. There is a total of 48398 frames coded with
a pain intensity, 40029 of them being labeled as zero pain-
intensity. This means that the 83.6% of the examples of the
dataset belong to the same class, whereas only the other 16.4%
examples have some level of pain [11]. As stated by the
authors in [49] the results of the accuracy metric is influenced
by the skew in the testing data, whereas the AUC metric is
not affected that much. Therefore, to avoid providing a score
which is influenced by the skew in the data set, in Table II
the first two columns correspond to the accuracy and AUC
obtained when the score is skew normalized to mitigate the
effect of imbalanced data. The last two columns correspond
to the scores obtained testing the models with an unbalanced
distribution. In the same way as the authors in [49], to calculate
the skew normalized scores shown in Table II, we under-
sample the majority class at test time. This means that we
randomly choose a set of no-pain samples (the majority class)
that has as many images as the pain class (the minority class).
Then, the normalized scores provided are calculated based on
those samples. As stated by [49] the results of the accuracy
metric are influenced by the skew in the testing data, whereas
the AUC metric is not affected that much. That is why the
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AUC

Lucey et al. [11] 83.9
Lucey et al. [47] 84.7
Aligned crop (Ours) 89.6
Frontalization (Ours) 89.9
Aligned crop + LSTM on fc7 (Ours) 91.3
Aligned crop + LSTM on fc6 (Ours) 93.3

Table III: Comparison against binary leave-one-subject-out
methods with AUC scores.

MAE MSE PCC ICC

Kaltwang et al. [10] - 1.39 0.59 0.50
Florea et al. [60] - 1.21 0.53 -
Zhou et al. [38] - 1.54 0.64 -
Zhao et al. [32] 0.81 - 0.60 0.56
Aligned crop + LSTM 0.5 0.74 0.78 0.45

Table IV: Comparison against continuous leave-one-
subject-out methods with MAE, MSE, PCC, and Intraclass
Correlation (ICC).

accuracy scores change significantly when score normalization
is applied and the AUC scores don’t differ much. Accuracies
are reported with a threshold interval of [0, 1) for no-pain and
[1,∞) for pain. It is important to remark that just a square
crop centered on the nose of the subjects already performed
very good in terms of AUC. However, for a fair comparison
with previous work, scores for cut faces are also provided. Fig.
2 shows a fragment of the ground-truth data compared to the
predictions of our model. It can be seen the model is highly
correlated with the data and most of the mistakes are due to
frontier effects. E.g. when a subject just stopped to feel pain,
muscles relax with some lag. A similar effect happens when a
subject reported pain before the facial expression completely
changed.

Tables III and IV show the achieved model is competitive
enough to achieve state-of-the-art results using the thorough
leave-one-subject-out setting. A more detailed analysis of the
binary performance of our model has been conducted, evalu-
ating the results on each subject. Table V shows the number
of pain frames and no-pain frames per subject, indicating how
many of them have been correctly classified by our model.
As it can be seen in Table III, using the same preprocessing
as [47], our model already outperforms the previous state-of-
the-art AUC scores. Namely, Lucey et al. [47] train a model
to detect the presence of facial action units (AUs) from a set
of facial features, while our model tries to directly find the
best hierarchy of features to infer pain from the pixel level.
Then, [47] use these features to train an SVM to detect each
AU while the neural network is end-to-end, i.e. it learns to
extract the features and also learns to use them to predict the
level of pain. Furthermore, when frames are just aligned using
Procrustes analysis, we leverage all the potential of the pre-
trained model, not only outperforming previous AUC scores by
a large margin, but achieving state-of-the-art results in terms
of MAE, MSE, and PCC; when compared with the most recent
literature (as it can be seen in Table IV).

Summarizing, we have demonstrated that considering the
raw image and temporal information at the pixel level allows

Not pain Pain

Subject Correct Total Correct Total

0 1807 1827 122 221
1 354 408 15 40
2 547 571 60 133
3 1461 1472 57 64
4 1867 2059 158 181
5 2148 2171 463 517
6 876 1000 339 408
7 2344 2403 45 93
8 2486 2699 539 821
9 1060 1116 55 100

10 2277 2361 350 455
11 1371 1396 42 76
12 1564 1863 468 505
13 913 944 59 80
14 3034 3116 45 148
15 2026 2164 267 524
16 428 641 784 959
17 713 734 183 354
18 1376 1376 71 160
20 806 844 494 1076
21 1421 1478 218 442
22 1603 1613 103 179
23 634 684 37 84
24 300 311 376 393

Table V: Number of correctly classified pain and no-pain
frames for each subject. This table shows the number of
pain and no-pain frames per subject, and how many of them
are correctly classified. It can be seen that the main source of
classification error is subject 20.

our model to outperform the results obtained by previous
canonical normalized appearance [11] approaches.

B. Results on Emotion Recognition

Pain recognition from facial gestures is a specific task within
the broader task of facial expression recognition. In order
to evaluate the effectiveness and robustness of our proposed
method, we apply it to the task of emotion recognition
from facial pictures. Facial expressions can show different
human emotions such as anger, disgust or happiness [64]
so the task of emotion recognition from pictures of faces
can be approached as a facial expression recognition task.
Our method for pain recognition can be adapted to perform
facial expression recognition very easily. For pain detection
we perform a regression task, i.e. predicting the pain intensity
of a face picture. To switch to emotion detection, we must
now perform a classification task. To do so, we changed the
number of output units in the output layer of the CNN from
1 output unit to N, where N is the number of emotions we
want to recognize in one-hot encoding. The loss function was
also be changed to the cross-entropy error between the correct
output y and the predicted output ŷ as defined by the equation
12:

E(y, ŷ) =

N∑
n=1

ynlog(ŷn) (12)

The output of the network ŷ is the result of applying the
softmax function to the outputs of the last layer, and the true
label y, which is the one-hot representation of the emotion
label assigned to a sample. To test our method on emotion
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Accuracy (%)

Zhong et al. [43] 89.9
Liu et al. [44] 92.4

Mollahosseini et al. [68] 93.2
Liu et al. [69] 94.2

Sikka et al. [66] 95.1
Liu et al. [45] 96.7

Jung et al. [46] 96.9
Zhao et al. [65] 97.3

Aligned crop (Ours) 94.5
Aligned crop + LSTM (Ours) 97.2

Table VI: Results on the CK+ dataset

recognition we used the Extended Cohn-Kanade Emotion
Dataset (CK+) [42].

1) CK+ Dataset: The emotion recognition CK+ dataset
[42] has 593 sequences of 123 subjects which are FACS
coded at the peak frame. In each sequence, the subject face
evolves from a neutral face to a peak facial expression. Only
327 of the sequences are labeled with one of the following
seven emotions: anger, contempt, disgust, fear, happy, sadness,
surprise. In Fig. 6 there is an example of a peak frame for
each of the seven emotions present in the dataset. Following
the trend in other works [43, 65, 66], we split the sequences
into 10 subject-exclusive folds in order to perform a leave-one-
fold-out cross-validation to test our method on this dataset. To
make sure that the classes are evenly distributed among folds,
the subjects are randomly separated into 10 groups. In the
same way as in other works [45, 65] we select the last three
frames of each sequence to train the CNN. To train the LSTM
we must provide fixed-length sequential inputs, and as the
videos vary in duration, from 10 to 60 frames approximately,
we have chosen the length of the sequences to be 10. For
each video, we generate three different sequences of length
10, each sequence ending in one of the last three frames. If
there aren’t enough frames in the video to build a sequence
of length 10, the first frame is repeated at the beginning of
the sequence. The results provided for the CK+ dataset are
obtained by training on 9 of the 10 folds and leaving one out
for testing, and repeating the process until each fold has been
used for testing at least one. The accuracy provided is the
average within the 10 folds.

2) Results on CK+: We provide two results for the CK+
dataset, the baseline accuracy obtained by the emotion clas-
sifier built on top of the CNN and the accuracy obtained by
the LSTM model. In Table VI a comparison of our method
scores against other state-of-the-art procedures reported in the
literature can be seen. The results shown in the table are from
seven emotion classes: anger, contempt, disgust, fear, happy,
sadness, and surprise. The confusion matrix of the predictions
on the test folds can be seen at Fig. 7. Other works [67] provide
scores for the eight class problem where the neutral emotion
is added. We can not construct sequences ending in a neutral
frame because the neutral frame is always the first one, so we
do not provide results for this task.

IV. CONCLUSIONS

Pain recognition has been proved to be an important task for
health-care. In this work we have faced the task of binary pain
recognition on facial images from the deep learning perspec-
tive achieving state-of-the-art results when compared to leave-
one-subject-out setups. This, however, has also exposed the
problem of stating which is the correct comparison method-
ology since results from other works have been provided in
terms of accuracy, AUC, subject exclusive and non-exclusive
settings. We believe subject-exclusiveness is crucial and thus,
provided all the results computed this way. Our approach of
training a deep CNN for pain-level estimation already provided
good results, and we have proved that using an RNN to
exploit the temporal relation between frames improves the
results even more. By training a CNN end-to-end to perform
pain-level estimation our approach obtained an AUC of 89.6,
increasing up to 93.3 when that same CNN is used to the
extract features to train the RNN. Moreover, we prove the
generality of our method by obtaining an accuracy of 97.2%
on the CK+ facial emotion recognition dataset, a competitive
score when compared to the state-of-the-art (97.3% in [65]).
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Barcelona (UAB) in 2004. He is an associate pro-
fessor in computer science at the Computer Science
Department, UAB. He is also a research fellow
at the Computer Vision Center, where he has co-
founded three spin-offs (Cloud Size Services, Visual
Tagging, Care Respite) and the Image Sequence
Evaluation (ISE Lab) research group. His research
interests include machine learning techniques for
the computational interpretation of social images, or

Visual Hermeneutics.



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. YY, MONTH 2017 13

Josep M. Gonfaus received the PhD degree in
Computer Engineering from Universitat Autònoma
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Barcelona (UAB), Cerdanyola del Vallès, Spain, in
1990. He is an Associate Professor and the Director
of the Department of Computer Science, UAB. He
is also a Research Fellow with the Computer Vision
Center. He has been a Principal Researcher in several
projects (public and private funds). He is working in
technological transfer computer vision. The topics
of his research are active vision, biometrics and
tracking.


	Introduction
	The Proposed System
	Convolutional Neural Networks
	Using temporal information

	Experiments and Results
	Results on Pain Recognition
	Results on Emotion Recognition
	CK+ Dataset
	Results on CK+


	Conclusions
	Biographies
	Pau Rodriguez
	Guillem Cucurull
	Jordi Gonzàlez
	Josep M. Gonfaus
	Kamal Nasrollahi
	Thomas B. Moeslund
	F. Xavier Roca


