23 research outputs found

    PSPACE Reasoning for Graded Modal Logics

    Full text link
    We present a PSPACE algorithm that decides satisfiability of the graded modal logic Gr(K_R)---a natural extension of propositional modal logic K_R by counting expressions---which plays an important role in the area of knowledge representation. The algorithm employs a tableaux approach and is the first known algorithm which meets the lower bound for the complexity of the problem. Thus, we exactly fix the complexity of the problem and refute an ExpTime-hardness conjecture. We extend the results to the logic Gr(K_(R \cap I)), which augments Gr(K_R) with inverse relations and intersection of accessibility relations. This establishes a kind of ``theoretical benchmark'' that all algorithmic approaches can be measured against

    Description Logic with part restrictions: PSPACE-complete expressiveness

    Get PDF
    In this paper syntactic objects-concept constructors, called part restrictions-are considered in Description Logics (DLs). Being able to convey statements about a part of a set of successors, part restrictions essentially enrich the expressive capabilities of DLs. An extension of DL ALCQR with part restrictions is examined, and its PSPACE completeness is proven, what shows that the new expressiveness brings no extra cost to the complexity of reasoning in ALCQR. The proof uses completion calculus based on tableaux technique.Presented at CiE2014 as contributed talk.This work was supported by the European Social Fund through the Human Resource Development Operational Programme under contract BG051PO001-3.3.06-0052 (2012/2014)

    CTL Model-Checking with Graded Quantifiers

    Get PDF
    The use of the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k, has been thoroughly studied in various kinds of logics. In classical logic there are counting quantifiers, in modal logics graded modalities, in description logics number restrictions. Recently, the complexity issues related to the decidability of the μ-calculus, when the universal and existential quantifiers are augmented with graded modalities, have been investigated by Kupfermann, Sattler and Vardi. They have shown that this problem is ExpTime-complete. In this paper we consider another extension of modal logic, the Computational Tree Logic CTL, augmented with graded modalities generalizing standard quantifiers and investigate the complexity issues, with respect to the model-checking problem. We consider a system model represented by a pointed Kripke structure and give an algorithm to solve the model-checking problem running in time O() which is hence tight for the problem (where |ϕ| is the number of temporal and boolean operators and does not include the values occurring in the graded modalities). In this framework, the graded modalities express the ability to generate a user-defined number of counterexamples (or evidences) to a specification ϕ given in CTL. However these multiple counterexamples can partially overlap, that is they may share some behavior. We have hence investigated the case when all of them are completely disjoint. In this case we prove that the model-checking problem is both NP-hard and coNP-hard and give an algorithm for solving it running in polynomial space. We have thus studied a fragment of this graded-CTL logic, and have proved that the model-checking problem is solvable in polynomial time

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    A Note on the Complexity of the Satisfiability Problem for Graded Modal Logics

    Full text link
    Graded modal logic is the formal language obtained from ordinary (propositional) modal logic by endowing its modal operators with cardinality constraints. Under the familiar possible-worlds semantics, these augmented modal operators receive interpretations such as "It is true at no fewer than 15 accessible worlds that...", or "It is true at no more than 2 accessible worlds that...". We investigate the complexity of satisfiability for this language over some familiar classes of frames. This problem is more challenging than its ordinary modal logic counterpart--especially in the case of transitive frames, where graded modal logic lacks the tree-model property. We obtain tight complexity bounds for the problem of determining the satisfiability of a given graded modal logic formula over the classes of frames characterized by any combination of reflexivity, seriality, symmetry, transitivity and the Euclidean property.Comment: Full proofs for paper presented at the IEEE Conference on Logic in Computer Science, 200

    Why Propositional Quantification Makes Modal Logics on Trees Robustly Hard?

    Get PDF
    International audienceAdding propositional quantification to the modal logics K, T or S4 is known to lead to undecid-ability but CTL with propositional quantification under the tree semantics (QCTL t) admits a non-elementary Tower-complete satisfiability problem. We investigate the complexity of strict fragments of QCTL t as well as of the modal logic K with propositional quantification under the tree semantics. More specifically, we show that QCTL t restricted to the temporal operator EX is already Tower-hard, which is unexpected as EX can only enforce local properties. When QCTL t restricted to EX is interpreted on N-bounded trees for some N ≥ 2, we prove that the satisfiability problem is AExp pol-complete; AExp pol-hardness is established by reduction from a recently introduced tiling problem, instrumental for studying the model-checking problem for interval temporal logics. As consequences of our proof method, we prove Tower-hardness of QCTL t restricted to EF or to EXEF and of the well-known modal logics K, KD, GL, S4, K4 and D4, with propositional quantification under a semantics based on classes of trees

    Adding Transitivity and Counting to the Fluted Fragment

    Get PDF
    We study the impact of adding both counting quantifiers and a single transitive relation to the fluted fragment - a fragment of first-order logic originating in the work of W.V.O. Quine. The resulting formalism can be viewed as a multi-variable, non-guarded extension of certain systems of description logic featuring number restrictions and transitive roles, but lacking role-inverses. We establish the finite model property for our logic, and show that the satisfiability problem for its k-variable sub-fragment is in (k+1)-NExpTime. We also derive ExpSpace-hardness of the satisfiability problem for the two-variable, fluted fragment with one transitive relation (but without counting quantifiers), and prove that, when a second transitive relation is allowed, both the satisfiability and the finite satisfiability problems for the two-variable fluted fragment with counting quantifiers become undecidable
    corecore