
Description Logic with part restrictions:
PSPACE-complete expressiveness

Mitko Yanchev

Faculty of Mathematics and Informatics, Sofia University, Bulgaria
yanchev@fmi.uni-sofia.bg

Abstract. In this paper syntactic objects—concept constructors, called
part restrictions—are considered in Description Logics (DLs). Being able
to convey statements about a part of a set of successors, part restrictions
essentially enrich the expressive capabilities of DLs. An extension of DL
ALCQR with part restrictions is examined, and its PSPACE complete-
ness is proven, what shows that the new expressiveness brings no extra
cost to the complexity of reasoning in ALCQR. The proof uses comple-
tion calculus based on tableaux technique.

Keywords: Description Logics, part restrictions, complexity, PSPACE

1 Introduction

Description Logics are logical formalism widely used in knowledge-based sys-
tems. They both explicitly represent knowledge in form of taxonomy, and infer
new knowledge out of the presented structure by means of a specialized infe-
rence engine. The representation language, called concept language, comprises
expressions with only unary and binary predicates, called concepts and roles, re-
spectively. Concepts describe sets of objects in the domain, while roles represent
links between objects. Examples of these are Person, Male, has child.

Concept languages differ mainly in the constructors adopted for building
complex concepts and roles, and they are compared with respect to their ex-
pressiveness, as well as with respect to the complexity of reasoning in them. DL
ALCQR adopts the most natural for an expressive DL concept constructors:
negation, intersection, union, universal and existential role quantifications, and
qualifying number restrictions, together with the constructor for intersection of
roles. Qualifying number restrictions are ‘counting’ constructors analogous to
grading operators in modal logics. Tobies proves [1] that the satisfiability prob-
lem for the formulae in the language of Graded Modal Logic, a syntactic analogue
of ALCQ, in which only independent roles are adopted, is PSPACE-complete.

We consider concept constructors, which we call part restrictions, capable to
distinguish a part of a set of successors. These constructors are analogues of the
modal operators for rational grading [3] which generalize the majority operators
[2]. They are MrR.C and (the dual) WrR.C, where r is a rational number in
(0, 1), R is a role, and C is a concept. The intended meaning of MrR.C is ‘More

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research at Sofia University

https://core.ac.uk/display/213561935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

than r-part of all R-successors of the current object belongs to (the interpretation
of) C’. Part restrictions essentially enrich the expressive capabilities of DLs. They
can express, for example, notions like qualified majority:

M2/3 voted.Y es

Presburger constraints in the language of Presburger Modal Logic (PML)
capture both integer and rational grading, and have rich expressiveness. Demri
and Lugiez prove [4] that the satisfiability problem for the language of PML, a
many-relational modal language with independent relations, is PSPACE-comp-
lete, thus strengthening the main result in [1], and answering the same question
about the language with majority operators.

The rational grading operators are expressible by the presburger constraints.
Thus, the PSPACE completeness of satisfiability for the corresponding modal
language with rational grading is a consequence of that for the PML language.
On the other hand, the presence of separate integer and rational grading con-
structors also proves beneficial. Together with the use of specific technique for
exploring the complexity of rational grading it allows following a common way
for obtaining complexity results as in less, so in more expressive languages
with rational grading. In particular, complexity results for the satisfiability—
polynomial, NP, and co-NP—concerning a range of description logics from the
AL-family with part restrictions added, are obtained (Yanchev, 2012, 2013).

Now we consider the DL ALCQPR, the extension of ALCQR with part
restrictions. We use completion calculus based on tableau technique to prove
that the reasoning complexity in ALCQPR is still in PSPACE.

2 Syntax and semantics of ALCQPR. Inference problems

Let A be a set of atomic concepts, denoted by A, R be a set of atomic roles,
denoted by P , and Q be a set of rational numbers in (0, 1). Ru denotes the
set of all finite intersections of atomic roles, called roles. The Description Logic
ALCQPR is the smallest set of concepts, obtained inductively using the following
concept constructors, and according to the following syntactic rules: it contains
every atomic concept, the universal concept > and the empty concept ⊥, and,
if it contains the concepts C and D, R is a role, i.e. R = P1 u ... u Pk, for some
k ≥ 1, n ≥ 0, and r ∈ Q, then it contains also:

¬C | (negation)
C uD | (intersection)
C tD | (union)
∀R.C | (universal role quantification)
∃R.C | (existential role quantification)
> nR.C and 6 nR.C | (qualifying number restrictions)
MrR.C and WrR.C (part restrictions)

An interpretation I = (4I , ·I) consists of a nonempty set 4I , called the
domain of I, and a function ·I , which maps every concept to a subset of 4I

and every role to a subset of 4I×4I . For the ‘old’ constructors the mapping is
the usual (see, e.g. in [6]). For part restrictions, for any concept C, role R, and
rational number r ∈ Q the properties that follow hold. RI(a) denotes the set
of RI-successors of a, and RI(a,C) denotes the set of RI-successors of a which
are in CI , i.e. the set {b | (a, b) ∈ RI & b ∈ CI}.

(MrR.C)I = {a ∈ 4I : |RI(a,CI)| > r.|RI(a)|}
(WrR.C)I = {a ∈ 4I : |RI(a, (¬C)I)| ≤ r.|RI(a)|}

The interpretation function is fully determined by the way it interprets the
atomic concepts and atomic roles.

A concept C is satisfiable if there exists an interpretation I such that CI 6= ∅.
Such an interpretation is called a model for that concept. For a ∈ CI we say
that a satisfies C, while a ∈ 4I\CI refuses C.

Thus, an object a ∈ 4I is in (MrR.C)I if (strictly) greater than r part of RI-
successors of a satisfies C, and a is in (WrR.C)I if no greater than r part of
RI-successors of a refuses C.

A concept C is subsumed by a concept D, denoted C v D, if CI ⊆ DI for
any interpretation I.

Checking if a concept is subsumed by another concept is the most general
reasoning task in DLs, as all other inference problems in DLs can be reduced to
it. In particular, the satisfiability can be reduced to subsumption, as a concept C
is unsatisfiable iff C v⊥. So, the reasoning complexity of a DL is the complexity
of checking the subsumption between its concepts.

From the other side, CvD iff C u ¬D is unsatisfiable. Thus, in the presence
of negation of an arbitrary concept in a DL, what is the case with ALCQPR,
checking the (un)satisfiability becomes as complex as checking the subsumption.

In the following we will only consider concepts in the negation normal form
(NNF) in which negations have been moved inwards, and can appear only in
front of the atomic concepts. The NNF of ¬C we denote by ∼C. Note that the
NNF of a concept can always be obtained in linear time and space.

3 A calculus for checking the satisfiability

ALCQPR is PSPACE-hard, as it is an extension of ALC, which is PSPACE-
complete [5]. We prove the PSPACE completeness of ALCQPR by presenting a
PSPACE algorithm that decides the satisfiability of its concepts. The algorithm
tries to build a model for a concept by manipulating sets of constraints induced
by that concept, with the help of so-called completion rules. This is the well-
known tableau technique for checking the satisfiability, already used to prove
decidability and complexity results for a range of DLs ([5], [6]) and modal logics
([1]). We base our algorithm on the one presented in [1] for a many-relational
graded modal language adopting intersection of relations. We make use of a
specific technique, reflecting the presence of part restrictions in the language, to
design the extended set of completion rules.

Definition 1. Let V be a set of syntactic variables. A constraint is a syntactic
object, having one of the forms

x : C, Pxy,
where x, y ∈ V, C is a concept, and P is an atomic role.
A constraint system (c.s.) S is a finite set of constraints. For x : C ∈ S we say
that C is assigned to x in S, and forPxy ∈ S—that y is a P -successor of x in S.

Let R = P1 u ... u Pk. We use the notations P ∈n R (n is for ‘as a name’),
and Q ⊆n R, if P is Pi for some i, 1 ≤ i ≤ k, and Q is an intersection of
atomic roles amongst P1, ..., Pk. With the same meaning we use the notations
P ∈n {P1, ..., Pk} and Q ⊆n {P1, ..., Pk}. We also use as an abbreviation the
notation Rxy ∈ S, if {P1xy, ..., Pkxy} ⊆ S, and we say that y is an R-successor
of x in S, without having defined explicitly constraints with arbitrary roles.

We denote with RS(x) the set of R-successors of x in S, and with RS(x,C)—
the set of R-successors of x in S with C assigned in S, i.e. {y|{Rxy, y :C} ⊆ S}.

A c.s. S is said to contain a clash (an obvious contradiction) if for some
atomic concept A, a concept C, n ≥ 0, and r ∈ Q any of the following holds:

CL0. {x :⊥} ⊆ S
CL1. {x :A, x : ¬A} ⊆ S
CL2. {x :6 nR.C} ⊆ S and |RS(x,C)| > n
CL3. {x :MrR.C} ⊆ S and |RS(x,C)| ≤ r.|RS(x)|
CL4. {x :WrR.C} ⊆ S and |RS(x,∼C)| > r.|RS(x)|

Otherwise it is called clash-free.

A c.s. S is called complete if none of the completion rules can be applied to
it. In Figure 1 are presented only the generating ones from the set of completion
rules. The non-generating ones are →u-, →t, and →∀-rule, and have the usual
form, see e.g. [6]. Note that we do not need, as in [1], the →≤-rule.

→∃-rule: If 1. x : ∃R.C ∈ S, and
2. there is no z such that {Rxz, z : C} ⊆ S,

Then S →∃ S ∪ Sinc

→≥-rule: If 1. x :≥ nR.C ∈ S, and
2. |RS(x,C)| < n,

Then S →≥ S ∪ Sinc

→M -rule: If 1. x : MrR.C ∈ S,
2. |RS(x,C)| ≤ r.|RS(x)|, and
3. |RS(x)| < BASx

Then S →M S ∪ Sinc

→W -rule: If 1. x : WrR.C ∈ S,
2. |RS(x,∼C)| > r.|RS(x)|, and
3. |RS(x)| < BASx

Then S →W S ∪ Sinc

Fig. 1. The generating completion rules

To test the satisfiability of a concept C0, the algorithm starts with the c.s.
{x0 :C0}, and successively applies the completion rules, generating new c.s. until
a complete c.s. is obtained, or an instance of CL0–CL2 occurs in a c.s. The
algorithm answers ‘C0 is satisfiable’ if the rules can be applied in a way that
yields a complete and clash-free c.s.

The algorithm makes non-deterministic choice in both which rule to be ap-
plied, and which concept to be assigned (as in the →t-rule, so in all generating
rules). However, as we aim a PSPACE algorithm, the non-determinism makes
no problem due to Savitch’s theorem which states that deterministic and non-
deterministic polynomial space coincide.

3.1 Completion rules. Rules application strategy

The interaction between the constructors is such that we can keep the rules from
the ‘integer’ case in principle with no changes. These are →u-, →t-, →∀-, →∃-,
and →≥-rule. →M - and →W -rule deal with part restrictions.

We refer to the rules which add constraints with new variables to the c.s. as
generating rules. These are →∃-, →≥-, →M -, and →W -rule.

The set of constraints added by any of the generating rules is formed in one
and same way. Let � P ∃ | ∀ | ≥ m | ≤ m |Mq|Wq, and � P ∃ | ≥ m |Mq|Wq, for
arbitrary m ≥ 0, and q ∈ Q, i.e. � is used to refer to the constructors, talking
about the successors (we will call them successor constructors), while � is used
to refer to those of them which trigger the generating rules (so, we will call them
generating constructors). Using this notation, let the triggering constraint be
x :�R.C. Then the set of constraints to be added by the rule to the c.s. S is:

Sinc = {y : C} ∪ S′ ∪ S′′,
where y is a new variable (what makes the rule a generating one).

S′ = {y : E1, ..., y : El},
where E1, ..., El are obtained as follows. Let {D1, ..., Dl} = {D | x :�Q.D ∈ S},
i.e. D1, ..., Dl are all concepts, preceded by a ‘successor’ constructor, occurring in
constraints at x in S. Then each Ei is chosen non-deterministically to be either
Di, or ∼Di, i.e. Ei ∈ {Di,∼Di}, i = 1, ..., l.

S′′ = {P1xy, ..., Pkxy},
where P1, ..., Pk are chosen non-deterministically such that R ⊆n {P1, ..., Pk} ⊆
RC0

. With RC we denote the set of atomic roles occurring in the concept C;
also, RuC will denote the set of roles in C.

Border amount of successors for the current variable x (BASx) is used to
ensure inapplicability of ‘part’ rules after a given moment. It is a key notion for
the generation process termination, and will be discussed in details later.

We keep as rules application strategy the requirement from [1] all possible
applications of non-generating rules (i.e. →u-, →t-, and →∀-rule) to be done
first, thus ensuring all possible constraints of the form x :�R.C to be added
in the c.s. before a generating rule is applied. Also, instead of generating all
successors of a variable at the same time, rules generate them one-by-one, and
non-deterministically assign formulae to a successor at its generation.

3.2 The clashes with part restrictions

Part restrictions talk about no exact quantities, but ratios, what makes CL3 and
CL4, which are also conditions for applicability of part rules, dynamic. Applied
consecutively, part rules can ‘repair’ one clash, and, at the same time, provoke
another. Thus, instances of CL3 and CL4 can appear and disappear infinitely
during c.s. generation, even if the initial concept is satisfiable. So we have to
take special care to ensure the termination of part rules application, without
leaving avoidable clashes in the c.s. That turns out to be the main difficulty
in designing the algorithm. We overcome it by proving that if it is possible to
unfold part restrictions at a given variable avoiding simultaneously both kinds of
clashes, it can be done within some number of successors. As clashes are always
connected with a single variable, that is enough to guarantee the termination.
The following subsection presents the technique in details.

3.3 Counteracting constraints. Clusters

In a c.s. generated from an initial c.s. having the form {x : C} an instances of
CL3 and CL4 can appear only if two contradicting concepts have been assigned
to one and the same variable. We start our analysis with the simplest case when
at a variable x we have only constraints with part restrictions, and all they are
with one and the same role R, and with subconcepts which are either a fixed
concept C, or its negation ∼C. All such constraints form the set:

{x : Mr1R.C, x : Mr2R.∼C, x : Wr3R.C, x : Wr4R.∼C} (1)

We call the subset of (1) which is in a c.s. S a cluster of R and C at x in S.
We denote it ClSx (R,C).

Definition 2. A constraint with part restriction is S-satisfied, where S is a c.s.,
if the inequality 2. from the corresponding completion rule fails in S.

A cluster is S-satisfied if all constraints in it are S-satisfied.
A cluster is c.s.-satisfiable if it can be S-satisfied for some c.s. S.

In fact, we can have in (1) more than one constraint of any of the four
kinds. But note that, if x : MrR.C is S-satisfied, then that is the case with
x : Mr′R.C, for any r′ ≤ r. So, we can take r1 and r2 to be the maximums,
and, by analogues reasons, r3 and r4 to be the minimums of the rationals in
constraints of the corresponding kinds. Thus we obtain the upper, representative
for the c.s.-satisfiability of all part constraints, set with only four ones.

The idea behind c.s.-satisfiability is that if a cluster, and, more general, the
set of all part constraints at a given variable is c.s.-satisfiable, then a c.s. without
clashes with these constraints can be non-deterministically generated, while the
rules become inapplicable to these constraints. So, concerning part constraints
c.s.-satisfiability is sufficient condition for obtaining a clash-free complete c.s.

Our next observation is that both (x:)Mr1R.C and (x:)Wr3R.C act in one
and the same direction concerning c.s. generation, as the former forces the ad-
dition of enough R-successors of x with C assigned, and the latter limits the

number of R-successors of x with ∼C assigned. The situation is analogues with
Mr2R.∼ C and Wr4R.∼C with respect to ∼C. At that time as Mr1R.C, so
Wr3R.C counteract with any of Mr2R.∼C and Wr4R.∼C. This leads to two
main possibilities for the cluster ClSx (R,C):

A. The cluster contains only constraints, acting in one and the same direction
(or just a single constraint)—we call it cluster of type A, or A-cluster. In the
absence of counteracting constraints these clusters are always c.s.-satisfiable.

B. The cluster contains at least two counteracting constraints—we call it
cluster of type B, or B-cluster.

In order to c.s. generation process to be able to c.s.-satisfy a B-cluster, and
to avoid clashes, the next inequalities between the rationals in the cluster must
be fulfilled—follows directly from the definition of c.s.-satisfiability:

1◦ r1 + r2 < 1,
2◦ r1 < r4,
3◦ r2 < r3, and
4◦ r3 + r4 ≥ 1, what is

(a) r3 + r4 > 1, or
(b) r3 + r4 = 1

If any of the inequalities 1◦–4◦ does not hold, any complete c.s. will contain a
clash, as it is impossible to c.s.-satisfy simultaneously (i.e. in one and same c.s.)
the constraints in which are the rationals, taking part in the failed inequality.

We can combine that four inequalities just in one taking into account the
kind of interaction between part restrictions. x :Wr3R.C means that ∼C has to
be assigned to not greater than r3 part of all R-successors of x, i.e. that C has to
be assigned to at least (1− r3) part of them. We set ř = max

(
{r1, 1− r3}

)
(or, if

the constraint with one of r1, r3 is not in the cluster, ř is just the expression with
the other). Now, it is obvious that if C is assigned to greater than ř part of all
R-successors of x, then both x :Mr1R.C and x :Wr3R.C are (or the single one
from the couple, which is in the cluster, is) c.s.-satisfied. Analogues reasonings
go with the other couple of constraints, acting in one and the same direction
(the ones with Mr2 and Wr4), and (a part smaller than) r̂ = min

(
{1− r2, r4}

)
.

We call the constraints with part restrictions which determine ř and r̂ the
dominating constraints.

It is important to note that r3+r4 = 1 does not spoil the c.s-satisfiability (un-
like r1 +r2 = 1). We exclude this special sub-case from the general examination,
and discuss it separately. Thus, case B. divides into two sub-cases:

(a) The cluster either contains no two W -constraints, or r3 + r4 6= 1.
(b) The cluster contains the constraints with Wr3 and Wr4, and r3 + r4 = 1.

Clusters of type B(a) Our first claim is:

Lemma 1. For a B(a)-cluster ClSx (R,C),

ř < r̂

iff all inequalities from among 1◦, 2◦, 3◦, and 4◦(a), with the corresponding
constraints being in the cluster, hold.

Proofs can be found in the Appendix.

Corollary 1. ř < r̂ is a necessary condition for the c.s.-satisfiability of a B(a)-
cluster ClSx (R,C).

The upper inequality is also a sufficient condition for cluster’s c.s.-satisfiabi-
lity. Indeed, if ř < r̂, and the number of R-successors of x with C assigned—
|RS(x,C)|—is strongly (due to the strong inequality in the →M -rule) between
ř.|RS(x)| and r̂.|RS(x)|, then the dominating constraints are c.s.-satisfied, and
so are the rest of the constraints in the cluster, if any. This shows that ř < r̂
ensures c.s.-satisfiability, but practical c.s.-satisfaction of a cluster is connected
with the number of successors.

Note also that even though ř < r̂ holds, we can have instable c.s.-satisfaction,
as can be seen from the next example. Let the dominating constraints be x :
M2/3R.C and x :M1/4R.∼C. They can be S-satisfied if RS(x) has 10 variables
(with C assigned to 7, and ∼C—to 3 of them), and also 11 variables (with the
assignment C :∼C—8 : 3), while if RS(x) has 12 variables, there is no way these
constraints to be S-satisfied, as the first wants C to be assigned to at least 9,
and the second—∼C to at least 4 successors. In case of 13 R-successors of x the
constraints again can be simultaneously c.s.-satisfied.

Definition 3. A cluster ClSx (R,C) is n-satisfiable, where n ≥ 0, if it can be
c.s.-satisfied when x has exactly n R-successors.

A cluster is stably n-satisfiable, if it is n-satisfiable, and for any natural
number n′ > n it is also n′-satisfiable.

A cluster is stably c.s.-satisfiable, if it is stably n-satisfiable for some n ≥ 0.

Note that from the above definition it follows that if a cluster is stably n-
satisfiable, it is also stably n′-satisfiable, for any natural number n′ > n.

In the example above the cluster is 10-, and 11-satisfiable, it is not 12-
satisfiable, and it is (in fact—stably) 13-satisfiable.

So, if we have a sufficient condition for stable n-satisfiability of B(a)-clusters,
we will know exactly when in the non-deterministic c.s. generation process stable
c.s.-satisfaction of such a cluster will be surely achieved in at least one non-
deterministic generation (we call it a successful generation). Then we will key
at that moment the corresponding rules with respect to the constraints of that
cluster, thus avoiding infinite rules application in the unsuccessful generations.

Lemma 2. Let, for a B(a)-cluster ClSx (R,C), ř < r̂ hold. Then

|RS(x)| > 1
r̂−ř (])

is a sufficient condition for the non-deterministic |RS(x)|-satisfiability of the
cluster.

Lemma 3. Let, for a B(a)-cluster ClSx (R,C), ř < r̂ and (]) hold, and the dom-
inating constraints in the cluster be S-satisfied. Then any generating rule can
always be applied in a way to yield S′ such that the cluster is S′-satisfied.

Lemma 3 shows that (]) also guarantees the stability of the non-deterministic
c.s.-satisfiability, namely stably

(⌊
1

r̂−ř
⌋

+ 1
)
-satisfiability. It is clear that being

once fulfilled, (]) holds for any greater number of R-successors of x, and so
c.s.-satisfying of the dominating constraints can be preserved as Rc.s.(x) grows.

Thus, Lemma 2 and Lemma 3 guarantee for a c.s.-satisfiable (with ř < r̂)
B(a)-cluster ClSx (R,C) that, having the number of R-successors of x equal to
(or greater than)

⌊
1

r̂−ř
⌋

+ 1 (what we will call the border amount of successors,
BAS, for that cluster), the cluster can be non-deterministically c.s.-satisfied.
Then, the termination of application of rules, triggered by (the constraints in)
that cluster, is ensured by the check-up for |RS(x)|.

Shortly said, any c.s.-satisfiable B(a)-cluster can be non-deterministically
stably c.s.-satisfied when the current variable has enough many successors on
the role in the cluster. We will rate that in the general case for all (possibly
counteracting) constraints, to preserve from infinite application of rules.

Clusters of type B(b) B(b)-clusters are determined by the equality 4◦(b)
r3 + r4 = 1 for the rationals in W constructors. These clusters are c.s.-satisfiable
if 2◦ r1 < r4, and 3◦ r2 < r3 hold (in case the corresponding M constructors are
in the cluster). Thus, in case that 2◦ and 3◦ hold, or some of constraints with
M constructors are missing, 4◦(b) can be considered as a sufficient condition for
the c.s.-satisfiability of a B(b)-cluster.

Lemma 4. Let, for a B(b)-cluster ClSx (R,C), r1 < r4 and r2 < r3 hold, in
case the corresponding M constructors are in the cluster. Then the cluster is
c.s.-satisfiable, and the sufficient condition it to be non-deterministically c.s.-
satisfied is the number of R-successors of x to be devisable by the denominator
of r3 and r4 in the cluster.

The general case Let us recall that the rules application strategy requires
all possible applications of non-generating rules for the current variable to be
done before the first application of a generating rule, what ensures all ‘successor’
constraints to be present in the c.s. at that time. Generalizing the considerations
for counteracting in clusters, and using the cluster technique, we prove:

Lemma 5. Let all possible applications of non-generating rules for the current
variable x be done. Then it can be calculated a natural number BASx ≥ 1, de-
pending on the constraints at x, and having the following property: all part con-
straints at x which are simultaneously c.s.-satisfiable can be non-deterministically
simultaneously c.s.-satisfied when the number of successors of x on any role in
that constraints becomes equal to BASx.

Lemma 5 both legitimates the use of BASx in the part rules applicabi-
lity check-up, thus ensuring termination, and guarantees that all simultaneously
c.s.-satisfiable part constraints will be non-deterministically simultaneously c.s.-
satisfied, so that there would not be clashes with them in the complete c.s.

4 Correctness and complexity of the algorithm

Lemma 6. The presented algorithm is a non-deterministic decision procedure
for the satisfiability of an ALCQPR-concept.

Proof. (Sketch) We prove the correctness of the completion algorithm, proving
the three properties of the c.s. generation process: termination, soundness, and
completeness. As we have ensured both the termination of part rules application,
and leaving no avoidable clashes with part constraints in the complete c.s., the
proofs follow the scheme from [1] with no difficulties.

Lemma 7. The completion algorithm can be implemented in PSPACE.

Proof. (Sketch) We present such an implementation.

Then, the next theorem follows simply from the PSPACE hardness of ALC,
shown in [5], the above lemma, and Savitch’s theorem.

Theorem 1 (PSPACE completeness). Subsumption and satisfiability in
ALCQPR are PSPACE-complete in the length of input independently of the
notation of numbers.

Open questions
It is known that in the language with counting constructors transitivity of rela-
tions brings high complexity, and, as it can be seen in [7], even undecidability.
As a next step in the exploration of rational grading, a DL with only part re-
strictions as grading constructors, and transitive relations can be considered. Is
the satisfiability for such DL decidable? And if so, how complex is it?

Acknowledgments

I would like to thank the anonymous referees for their valuable comments and
suggestions.

References

1. Tobies, S.: PSPACE Reasoning for Graded Modal Logics. Journal of Logic and
Computation 11(1), 85–106 (2001)

2. Pacuite, E., Salame, S.: Majority Logic. Principles of Knowledge Representation
and Reasoning (KR 2004), 598–605 (2004)

3. Tinchev, T., Yanchev, M.: Modal Operators for Rational Grading. International
Conference Pioneers of Bulgarian Mathematics, Book of Abstracts, 123-124 (2006)

4. Demri, S., Lugiez, D.: Presburger Modal Logic Is PSPACE-Complete. Automated
Reasoning (IJCAR 2006) LNCS 4130, 541–556 (2006).

5. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

6. Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W.: The Complexity of Concept
Languages. Information and Computation 134(1), 1–58 (1997)

7. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description
Logics. Proceedings of the 6th International Conference on Logic Programming and
Automated Reasoning (LPAR ’99), 161-180 (1999)

