1,507 research outputs found

    A Domain-Specific Language and Editor for Parallel Particle Methods

    Full text link
    Domain-specific languages (DSLs) are of increasing importance in scientific high-performance computing to reduce development costs, raise the level of abstraction and, thus, ease scientific programming. However, designing and implementing DSLs is not an easy task, as it requires knowledge of the application domain and experience in language engineering and compilers. Consequently, many DSLs follow a weak approach using macros or text generators, which lack many of the features that make a DSL a comfortable for programmers. Some of these features---e.g., syntax highlighting, type inference, error reporting, and code completion---are easily provided by language workbenches, which combine language engineering techniques and tools in a common ecosystem. In this paper, we present the Parallel Particle-Mesh Environment (PPME), a DSL and development environment for numerical simulations based on particle methods and hybrid particle-mesh methods. PPME uses the meta programming system (MPS), a projectional language workbench. PPME is the successor of the Parallel Particle-Mesh Language (PPML), a Fortran-based DSL that used conventional implementation strategies. We analyze and compare both languages and demonstrate how the programmer's experience can be improved using static analyses and projectional editing. Furthermore, we present an explicit domain model for particle abstractions and the first formal type system for particle methods.Comment: Submitted to ACM Transactions on Mathematical Software on Dec. 25, 201

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    Workshop Report: Campus Bridging: Reducing Obstacles on the Path to Big Answers 2015

    Get PDF
    For the researcher whose experiments require large-scale cyberinfrastructure, there exists significant challenges to successful completion. These challenges are broad and go far beyond the simple issue that there are not enough large-scale resources available; these solvable issues range from a lack of documentation written for a non-technical audience to a need for greater consistency with regard to system configuration and consistent software configuration and availability on the large-scale resources at national tier supercomputing centers, with a number of other challenges existing alongside the ones mentioned here. Campus Bridging is a relatively young discipline that aims to mitigate these issues for the academic end-user, for whom the entire process can feel like a path comprised entirely of obstacles. The solutions to these problems must by necessity include multiple approaches, with focus not only on the end user but on the system administrators responsible for supporting these resources as well as the systems themselves. These system resources include not only those at the supercomputing centers but also those that exist at the campus or departmental level and even on the personal computing devices the researcher uses to complete his or her work. This workshop report compiles the results of a half-day workshop, held in conjunction with IEEE Cluster 2015 in Chicago, IL.NSF XSED

    EPSILOD: efficient parallel skeleton for generic iterative stencil computations in distributed GPUs

    Get PDF
    Producción CientíficaIterative stencil computations are widely used in numerical simulations. They present a high degree of parallelism, high locality and mostly-coalesced memory access patterns. Therefore, GPUs are good candidates to speed up their computa- tion. However, the development of stencil programs that can work with huge grids in distributed systems with multiple GPUs is not straightforward, since it requires solv- ing problems related to the partition of the grid across nodes and devices, and the synchronization and data movement across remote GPUs. In this work, we present EPSILOD, a high-productivity parallel programming skeleton for iterative stencil computations on distributed multi-GPUs, of the same or different vendors that sup- ports any type of n-dimensional geometric stencils of any order. It uses an abstract specification of the stencil pattern (neighbors and weights) to internally derive the data partition, synchronizations and communications. Computation is split to better overlap with communications. This paper describes the underlying architecture of EPSILOD, its main components, and presents an experimental evaluation to show the benefits of our approach, including a comparison with another state-of-the-art solution. The experimental results show that EPSILOD is faster and shows good strong and weak scalability for platforms with both homogeneous and heterogene- ous types of GPUJunta de Castilla y León, Ministerio de Economía, Industria y Competitividad, y Fondo Europeo de Desarrollo Regional (FEDER): Proyecto PCAS (TIN2017-88614-R) y Proyecto PROPHET-2 (VA226P20).Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación y “European Union NextGenerationEU/PRTR” : (MCIN/ AEI/10.13039/501100011033) - grant TED2021-130367B-I00CTE-POWER and Minotauro and the technical support provided by Barcelona Supercomputing Center (RES-IM-2021-2-0005, RES-IM-2021-3-0024, RES- IM-2022-1-0014).Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL

    Coaching parents of children with ADHD: A Western Australian study

    Get PDF
    Parents of children with Attention Deficit/Hyperactivity Disorder (ADHD) often experience emotional and behavioural difficulties that contribute to stress and conflict in their family relationships. ADHD Parent Coaching is a promising intervention for these families; however, little is known about its effectiveness. This study explored the effects parent coaching had on parents of children with ADHD using descriptive case study methodology. A secondary purpose was to measure any reduction in stress and homework problems. A workshop offering solutions to homework-related issues was conducted over two consecutive weeks. Parents who attended (N=10) were offered parent coaching, and five parents were subsequently coached over a period of six to eleven weeks. Parents’ experiences of engaging with coaching were explored using thematic analysis of an interview conducted following the intervention (N=4). They also completed a Parent Stress Index (PSI) and Homework Problem Checklist (HPC) pre and post after intervention. Themes relating to mindfulness in parenting, changed parental cognitions, awareness of parenting styles, improved parent-child relationships, impacts on the wider family, and improved self-efficacy emerged from the interviews. The PSI results indicated significantly lower total parent stress scores following intervention while HPC scores were significantly improved. The results showed that parent coaching may produce positive outcomes, including reduced parental stress, increased self-efficacy and parent mindfulness
    corecore