69,246 research outputs found

    Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators

    Full text link
    The CHErenkov / Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the first such demonstration for the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63 +/- 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a rise time of 0.75 +/- 0.25 ns

    Time Response of Water-based Liquid Scintillator from X-ray Excitation

    Full text link
    Water-based liquid scintillators (WbLS) present an attractive target medium for large-scale detectors with the ability to enhance the separation of Cherenkov and scintillation signals from a single target. This work characterizes the scintillation properties of WbLS samples based on LAB/PPO liquid scintillator (LS). X-ray luminescence spectra, decay profiles, and relative light yields are measured for WbLS of varying LS concentration as well as for pure LS with a range of PPO concentrations up to 90 g/L. The scintillation properties of the WbLS are related to the precursor LAB/PPO: starting from 90 g/L PPO in LAB before synthesis, the resulting WbLS have spectroscopic properties that instead match 10 g/L PPO in LAB. This could indicate that the concentration of active PPO in the WbLS samples depends on their processing.Comment: 6 pages, 7 figures, 2 tables. Submitted to Materials Advances, a journal of the Royal Society of Chemistr

    Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    Full text link
    We report on ellipsometric measurements of the refractive indices of LAB-PPO, Nd-doped LAB-PPO and EJ-301 scintillators to the nearest +/-0.005, in the wavelength range 210-1000 nm.Comment: 7 pages, 4 figure

    Phase separation in polymer solutions. I. Liquid-liquid phase separation of PPO poly (2, 6-dimethyl 1, 4-phenylene oxide) in binary mixtures with toluene and ternary mixtures with toluene and ethyl alcohol

    Get PDF
    In the system poly(2, 6-dimethy1-1, 4-phenylene oxide) (PPO)-toluene three phase separation lines can be detected: the melting point curve, the cloud point curve, and the spinodial. Because crystallization of PPO occurs very slowly, a phase transition will always be initiated by liquid-liquid phase separation. Depending upon the experimental circumstances two mechanisms are possible, either nucleation and growth (extremely slowly in this system) or the spinodial decomposition mechanism. In the system PPO-toluene-ethanol, liquid-liquid phase separation occurs leading to two bulk liquid fractions. Only in mixtures containing very small concentrations of alcohol can three phase separation curves be detected from which the position of the cloud point curve of the system PPO-toluene can be confirmed

    Pulsed light inactivation of mushroom polyphenol oxidase: a fluorometric and spectrophotometric study

    Get PDF
    Polyphenol oxidase (PPO) is one of the most important food enzymes, it is responsible for the browning of many foods. Pulsed light (PL) is a non-thermal method of food preservation that is able to inactivate PPO. The aim of this work was to gain insight into the mechanism of PPO inactivation by PL. To this, the kinetics of PPO inactivation by PL was measured, together with associated changes in tryptophan fluorescence, KI fluorescence quenching and turbidity; and results were analysed by parameter A and phase diagram methods. Enzyme inactivation followed the Weibull model. Tryptophan fluorescence decreased during PL treatment, as well as the parameter A, while Stern-Volmer constants increased and turbidity was constant. The phase diagram showed only two populated states. There was a high correlation between the loss of activity and parameter A. Results indicate that under the experimental conditions, the inactivation of PPO by PL is an all-or-none process where the enzyme progressively unfolds with no evidence of aggregation.Fundación Universitaria San Antonio de CartagenaCiencias de la Alimentació

    Characterization of the novel ene reductase Ppo-Er1 from paenibacillus polymyxa

    Get PDF
    Ene reductases enable the asymmetric hydrogenation of activated alkenes allowing the manufacture of valuable chiral products. The enzymes complement existing metal- and organocatalytic approaches for the stereoselective reduction of activated C=C double bonds, and efforts to expand the biocatalytic toolbox with additional ene reductases are of high academic and industrial interest. Here, we present the characterization of a novel ene reductase from Paenibacillus polymyxa, named Ppo-Er1, belonging to the recently identified subgroup III of the old yellow enzyme family. The determination of substrate scope, solvent stability, temperature, and pH range of Ppo-Er1 is one of the first examples of a detailed biophysical characterization of a subgroup III enzyme. Notably, Ppo-Er1 possesses a wide temperature optimum (Topt: 20–45 °C) and retains high conversion rates of at least 70% even at 10 °C reaction temperature making it an interesting biocatalyst for the conversion of temperature-labile substrates. When assaying a set of different organic solvents to determine Ppo-Er1′s solvent tolerance, the ene reductase exhibited good performance in up to 40% cyclohexane as well as 20 vol% DMSO and ethanol. In summary, Ppo-Er1 exhibited activity for thirteen out of the nineteen investigated compounds, for ten of which Michaelis–Menten kinetics could be determined. The enzyme exhibited the highest specificity constant for maleimide with a kcat/KM value of 287 mM−1 s−1. In addition, Ppo-Er1 proved to be highly enantioselective for selected substrates with measured enantiomeric excess values of 92% or higher for 2-methyl-2-cyclohexenone, citral, and carvone
    corecore