1,962 research outputs found

    Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging

    Get PDF
    We consider the construction of part-of-speech taggers for resource-poor languages. Recently, manually constructed tag dictionaries from Wiktionary and dictionaries projected via bitext have been used as type constraints to overcome the scarcity of annotated data in this setting. In this paper, we show that additional token constraints can be projected from a resource-rich source language to a resource-poor target language via word-aligned bitext. We present several models to this end; in particular a partially observed conditional random field model, where coupled token and type constraints provide a partial signal for training. Averaged across eight previously studied Indo-European languages, our model achieves a 25% relative error reduction over the prior state of the art. We further present successful results on seven additional languages from different families, empirically demonstrating the applicability of coupled token and type constraints across a diverse set of languages

    Cross-lingual part-of-speech tagging using word embedding

    Get PDF
    As one of semi-supervised learning approach, cross-lingual projection leverages existing resources from a resource-rich language when building tools for resource-poor languages. In this paper we attempt to make use of word embedding with anchor based label propagation to improve the accuracy of a cross-lingual projection task: cross-lingual part-of-speech tagging under the graph-based framework. Our approach uses bilingual parallel corpora and labeled data from the resource-rich side assuming that there is no labeled data or only a few labeled data in resource-poor language. The results suggest the efficacy of our approach over traditional label propagation with lexical feature for projecting part-of-speech information across languages, and show that a few of labeled data help to enhance the effect a lot in cross-lingual task

    Practical Natural Language Processing for Low-Resource Languages.

    Full text link
    As the Internet and World Wide Web have continued to gain widespread adoption, the linguistic diversity represented has also been growing. Simultaneously the field of Linguistics is facing a crisis of the opposite sort. Languages are becoming extinct faster than ever before and linguists now estimate that the world could lose more than half of its linguistic diversity by the year 2100. This is a special time for Computational Linguistics; this field has unprecedented access to a great number of low-resource languages, readily available to be studied, but needs to act quickly before political, social, and economic pressures cause these languages to disappear from the Web. Most work in Computational Linguistics and Natural Language Processing (NLP) focuses on English or other languages that have text corpora of hundreds of millions of words. In this work, we present methods for automatically building NLP tools for low-resource languages with minimal need for human annotation in these languages. We start first with language identification, specifically focusing on word-level language identification, an understudied variant that is necessary for processing Web text and develop highly accurate machine learning methods for this problem. From there we move onto the problems of part-of-speech tagging and dependency parsing. With both of these problems we extend the current state of the art in projected learning to make use of multiple high-resource source languages instead of just a single language. In both tasks, we are able to improve on the best current methods. All of these tools are practically realized in the "Minority Language Server," an online tool that brings these techniques together with low-resource language text on the Web. The Minority Language Server, starting with only a few words in a language can automatically collect text in a language, identify its language and tag its parts of speech. We hope that this system is able to provide a convincing proof of concept for the automatic collection and processing of low-resource language text from the Web, and one that can hopefully be realized before it is too late.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113373/1/benking_1.pd

    Inducing Multilingual Text Analysis Tools Using Bidirectional Recurrent Neural Networks

    Get PDF
    International audienceThis work focuses on the rapid development of linguistic annotation tools for resource-poor languages. We experiment several cross-lingual annotation projection methods using Recurrent Neural Networks (RNN) models. The distinctive feature of our approach is that our multilingual word representation requires only a parallel corpus between the source and target language. More precisely, our method has the following characteristics: (a) it does not use word alignment information, (b) it does not assume any knowledge about foreign languages, which makes it applicable to a wide range of resource-poor languages, (c) it provides truly multilingual taggers. We investigate both uni-and bi-directional RNN models and propose a method to include external information (for instance low level information from POS) in the RNN to train higher level taggers (for instance, super sense taggers). We demonstrate the validity and genericity of our model by using parallel corpora (obtained by manual or automatic translation). Our experiments are conducted to induce cross-lingual POS and super sense taggers

    Benchmarking zero-shot and few-shot approaches for tokenization, tagging, and dependency parsing of Tagalog text

    Full text link
    The grammatical analysis of texts in any human language typically involves a number of basic processing tasks, such as tokenization, morphological tagging, and dependency parsing. State-of-the-art systems can achieve high accuracy on these tasks for languages with large datasets, but yield poor results for languages such as Tagalog which have little to no annotated data. To address this issue for the Tagalog language, we investigate the use of auxiliary data sources for creating task-specific models in the absence of annotated Tagalog data. We also explore the use of word embeddings and data augmentation to improve performance when only a small amount of annotated Tagalog data is available. We show that these zero-shot and few-shot approaches yield substantial improvements on grammatical analysis of both in-domain and out-of-domain Tagalog text compared to state-of-the-art supervised baselines.Comment: To appear at PACLIC 2022. 10 pages, 2 figures, 4 table

    Multilingual unsupervised word alignment models and their application

    Get PDF
    Word alignment is an essential task in natural language processing because of its critical role in training statistical machine translation (SMT) models, error analysis for neural machine translation (NMT), building bilingual lexicon, and annotation transfer. In this thesis, we explore models for word alignment, how they can be extended to incorporate linguistically-motivated alignment types, and how they can be neuralized in an end-to-end fashion. In addition to these methodological developments, we apply our word alignment models to cross-lingual part-of-speech projection. First, we present a new probabilistic model for word alignment where word alignments are associated with linguistically-motivated alignment types. We propose a novel task of joint prediction of word alignment and alignment types and propose novel semi-supervised learning algorithms for this task. We also solve a sub-task of predicting the alignment type given an aligned word pair. The proposed joint generative models (alignment-type-enhanced models) significantly outperform the models without alignment types in terms of word alignment and translation quality. Next, we present an unsupervised neural Hidden Markov Model for word alignment, where emission and transition probabilities are modeled using neural networks. The model is simpler in structure, allows for seamless integration of additional context, and can be used in an end-to-end neural network. Finally, we tackle the part-of-speech tagging task for the zero-resource scenario where no part-of-speech (POS) annotated training data is available. We present a cross-lingual projection approach where neural HMM aligners are used to obtain high quality word alignments between resource-poor and resource-rich languages. Moreover, high quality neural POS taggers are used to provide annotations for the resource-rich language side of the parallel data, as well as to train a tagger on the projected data. Our experimental results on truly low-resource languages show that our methods outperform their corresponding baselines
    corecore