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Abstract

Word alignment is an essential task in natural language processing because of its critical role
in training statistical machine translation (SMT) models, error analysis for neural machine
translation (NMT), building bilingual lexicon, and annotation transfer. In this thesis, we
explore models for word alignment, how they can be extended to incorporate linguistically-
motivated alignment types, and how they can be neuralized in an end-to-end fashion. In
addition to these methodological developments, we apply our word alignment models to
cross-lingual part-of-speech projection.

First, we present a new probabilistic model for word alignment where word alignments
are associated with linguistically-motivated alignment types. We propose a novel task of
joint prediction of word alignment and alignment types and propose novel semi-supervised
learning algorithms for this task. We also solve a sub-task of predicting the alignment
type given an aligned word pair. The proposed joint generative models (alignment-type-
enhanced models) significantly outperform the models without alignment types in terms of
word alignment and translation quality.

Next, we present an unsupervised neural Hidden Markov Model for word alignment, where
emission and transition probabilities are modeled using neural networks. The model is sim-
pler in structure, allows for seamless integration of additional context, and can be used in
an end-to-end neural network.

Finally, we tackle the part-of-speech tagging task for the zero-resource scenario where no
part-of-speech (POS) annotated training data is available. We present a cross-lingual projec-
tion approach where neural HMM aligners are used to obtain high quality word alignments
between resource-poor and resource-rich languages. Moreover, high quality neural POS tag-
gers are used to provide annotations for the resource-rich language side of the parallel
data, as well as to train a tagger on the projected data. Our experimental results on truly
low-resource languages show that our methods outperform their corresponding baselines.

Keywords: Word alignment, machine translation, HMM, neural HMM
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Chapter 1

Introduction

1.1 Motivation

Word alignment is the task of discovering a word-to-word correspondence in a pair of sen-
tences that are translations of each other. Word alignment is an essential component in
a statistical machine translation (SMT) system. Even though neural machine translation
(NMT) does not use explicit alignments, word alignment is useful for analysis of transla-
tion errors (Ding et al., 2017; Li et al., 2019), guiding NMT models during training (Chen
et al., 2016; Liu et al., 2016; Alkhouli and Ney, 2017; Alkhouli et al., 2018), introducing
the coverage and fertility models (Tu et al., 2016) and improving NMT decoding (Alkhouli
et al., 2016). Apart from machine translation, word alignment has been used for many
NLP tasks including bilingual lexicon extraction, projecting linguistic annotations from one
language to another (Yarowsky and Ngai, 2001; Hwa et al., 2005), creating multilingual
embeddings (Faruqui and Dyer, 2014b; Guo et al., 2016; Dufter et al., 2018) and learning
paraphrases in a source language by doing round-trips from source to target and back using
word alignments (Ganitkevitch et al., 2013).

Generative word alignment models, IBM models 1-5 (Brown et al., 1993) and HMM
(Vogel et al., 1996) are the most widely used word alignment approaches. Neural network-
based alignment models have been explored in the literature, including the early works
(Yang et al., 2013; Tamura et al., 2014; Legrand et al., 2016) and the more recent ones
(Zenkel et al., 2019; Garg et al., 2019).

Models for word alignment depend on the way they decompose this problem. The clas-
sic IBM Models 1-5 (Brown et al., 1993) and the HMM model (Vogel et al., 1996) have
underpinned the majority of the SMT systems to date. HMMs have been applied to numer-
ous problems in NLP, such as part-of-speech tagging. The key attraction of HMMs is the
existence of well-known tractable algorithms for EM parameter estimation (Baum, 1972)
and maximization (Viterbi, 1967). HMMs have been widely studied for the word alignment
problem (Och and Ney, 2000a; Toutanova et al., 2002).

1



The HMM-based word alignment model has been shown to significantly outperform IBM
Models 1, 2, and 3 (Och and Ney, 2000a, 2003). IBM 4, 5 and the Och and Ney (2003)
variant called IBMModel 6 all outperform IBMModel 3. However, only IBMModel 4, which
is a probabilistically deficient version of IBM Model 5, is computationally tractable. HMMs
are not deficient (no missing probability mass) and are computationally tractable. On the
other hand, IBM model 4 alignment as produced by GIZA++ (Och and Ney, 2000b) are
often the best that can be obtained for large parallel corpora. Despite its modelling power
and widespread use, IBM model 4 has its own limitations. The parameter estimation of this
model is implemented by approximate hill-climbing methods and hence can be very slow,
memory-intensive and difficult to parallelize. The performance of a refined HMM model is
comparable to that of IBM Model 4, and it is also much easier to understand. Practically,
we can train the HMM model by the Forward-Backward algorithm, and by parallelizing the
parameter estimation, we can control memory usage, reduce the time needed for training,
and increase the corpus used for training. For all these reasons, the focus of this thesis is
on the HMM-based word alignment model and the extensions and neural variants of this
model.

All previous studies on word alignment have assumed that word alignments are untyped.
To our knowledge, the alignment types for word alignment provided by the Linguistics Data
Consortium (LDC) as annotations on word alignment links, have never been used to improve
word alignment. We introduce a new probabilistic model for word alignment where word
alignments are associated with linguistically motivated alignment types.

Despite the rapid rise of neural approaches in different areas of NLP, neural word align-
ment approaches have not matured enough, and traditional unsupervised statistical models
remain the most widely used approaches for word alignment. Using neural networks allows
for seamless integration of additional context that cannot be easily done in traditional mod-
els. We present an unsupervised neural Hidden Markov Model for word alignment, where
emission and transition probabilities are modeled using neural networks.

We then focus on the investigation of using our neural HMM aligner for the part-of-
speech tag projection task. We consider the zero-resource scenario where no POS annotated
training data is available for the low-resource language. We use high quality neural POS
taggers to tag the resource-rich language side of the parallel data, and to train a tagger on
the projected data.

1.2 Contributions

The main contributions of this thesis can be summarized in the following directions:

• Joint prediction of word alignment with alignment types:
A new probabilistic model for word alignment where word alignments are associated
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with linguistically motivated alignment types, as well as a novel task of joint pre-
diction of word alignment and alignment types and a novel semi-supervised learning
algorithms for this task.

• Unsupervised neural Hidden Markov Model for word alignment:
An unsupervised neural Hidden Markov Model for word alignment, where emission
and transition probabilities are modeled using neural networks.

• Cross-lingual annotation projection with neural HMM for low-resource
languages:
A method that induces part-of-speech taggers for low-resource languages using cross-
lingual tag projection that relies on our proposed neural HMM aligners to obtain high
quality word alignments and neural POS taggers to tag the resource-rich language
side of the parallel data as well as to train a tagger on the projected data.

1.3 Thesis Outline

Chapter 2 gives an overview of the relevant literature, starting with an explanation of
word alignment. After reviewing IBM models in section 2.3, we thoroughly present the
original HMM-based word alignment model (section 2.4). We overview the extensions
to this model in section 2.5. We then discuss neural machine translation (section 2.6)
and evaluation measures (section 2.7).

Chapter 3 gives a general framework for the unsupervised neural Hidden Markov
Model. We then demonstrate this approach for the task of part-of-speech tag induc-
tion.

Chapter 4 presents a new probabilistic model for word alignment where word align-
ments are associated with linguistically motivated alignment types. We propose a
novel task of joint prediction of word alignment and alignment types and propose
novel semi-supervised learning algorithms for this task. We also solve a sub-task of
predicting the alignment type given an aligned word pair. The generative models we
introduce significantly outperform the models without alignment types, in terms of
word alignment and translation quality.

Chapter 5 introduces an unsupervised neural Hidden Markov Model for word align-
ment, where emission and transition probabilities are modeled using neural networks.
We incorporate BERT representation into our model in order to include the full tar-
get context for the emission model. In the experiments, we demonstrate improvements
over GIZA++ IBM4 model, which is still a strong baseline, on Romanian-English and
Chinese-English datasets.
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Chapter 6 tackles the part-of-speech tagging task for the zero-resource scenario where
no POS-annotated training data is available. We present a method that induces part-
of-speech taggers for low-resource languages using cross-lingual tag projection. The
proposed method relies on our neural HMM aligners presented in Chapter 5 to ob-
tain high quality word alignments between resource-poor and resource-rich languages.
Moreover, we leverage neural POS taggers to provide annotations for the resource-rich
language side of the parallel data, as well as to train a tagger on the projected data.
We provide experimental results on truly low-resource languages for POS tagging task.

Chapter 7 concludes this thesis and discusses a few of possible future directions.
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Chapter 2

Background

This chapter provides an overview of the backgrounds for the research described in this the-
sis. We start with statistical machine translation (section 2.1) and word alignment (section
2.2). After reviewing IBM models in section 2.3, we go over the original HMM-based word
alignment model (section 2.4). We present some of the extensions to the HMM alignment
model in section 2.5. We discuss neural machine translation (section 2.6) as we will be com-
paring our neural word alignment models with NMT-based systems in terms of alignment
quality. We discuss the evaluation measures that are used in this thesis (sections 2.6.3 and
2.7).

2.1 Statistical Machine Translation

In statistical machine translation, the goal is to translate from a source language F into a
target language E. We assume that the source language is French and the target language
is English. We have a French sentence f = fJ1 = f1, f2, . . . , fJ , and we want to translate
it into an English sentence e = eI1 = e1, e2, . . . , eI . Among all English sentences, we are
looking for the one which has the highest probability Pr(e|f). Using Bayes rule, we can
write:

Pr(e|f) = Pr(f |e)Pr(e)
Pr(f) (2.1)

As the denominator is independent of e, finding the most probable translation e∗ will lead
to the noisy channel model for statistical machine translation:

e∗ = arg max
e

Pr(e|f) (2.2)

= arg max
e

Pr(f |e)Pr(e) (2.3)

where Pr(e) is called the language model, while Pr(f |e) is called the translation model.
The score for a potential translation e is the product of two scores: the language model
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Figure 2.1: An alignment between a French sentence and its translation in English.

score which gives a prior probability of the sentence in English, and the translation model
score, which indicates the likelihood of seeing the French sentence f as the translation of
English sentence e. The advantage of using the noisy-channel model is that it allows us to
benefit from the language model which is helpful in improving the fluency or grammaticality
of the translation. In the next section, we will present approaches towards introducing
structures into the probabilistic dependencies in order to define translation model Pr(f |e)
and estimating its parameters from the training data.

We now focus on the problem of modelling the translation probability. A key idea in
IBM Models (Brown et al., 1993) was to introduce alignment variables to the problem.

2.2 Word Alignment

An alignment a = a1, . . . , aJ is a vector of alignment variables where each aj can take any
value in the set {1, 2, . . . , I}. The alignment vector specifies the mapping for each French
word to a word in the English sentence. Therefore, aj = i specifies that fj is aligned to ei.

Figure 2.1 shows an alignment between a pair of French and English sentences. In this
example, J = 7 and I = 6. Since the length of the French sentence is 7, we have alignment
variables a1, a2, . . . , a7 and a1, a2, . . . , a7 = 〈2, 3, 4, 5, 6, 6, 6〉 specifies the alignment depicted
in the figure.

Note that the alignment is many-to-one; i.e. more than one French word can be aligned
to an English word while each French word can be aligned to exactly one English word. The
fertility φi of an English word ei at position i is defined as the number of aligned French
words:

φi =
J∑
j=1

δ(aj , i) (2.4)

where δ is the Kronecker delta function.
Models describing these alignments are called alignment models. The seminal work on

word alignment is based on IBMModels 1-5 (Brown et al., 1993). We will briefly discuss IBM
Models 1 and 2 in section 2.3.1 and 2.3.2, respectively. We then focus on the HMM-based
word alignment model (section 2.4).
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We follow the notational convention of Vogel et al. (1996); we use the symbol Pr(.) to
denote general probability distributions without any specific assumption, whereas p(.) is
used for model parameters, also known as model-based probability distributions.

2.3 Statistical Alignment Models

In SMT, we model the translation probability Pr(f |e). Having introduced alignment, rather
than modelling Pr(f |e), we can try to model Pr(f ,a|e) which is called alignment model.
We can then calculate the translation model by summing over all possible alignments:

Pr(f |e) =
∑

a

Pr(f ,a|e) (2.5)

Our statistical model depends on a set of parameters θ that can be learned from training
data. We use the following notation to show the dependence of the model on the parameters:

Pr(f ,a|e) = Pr(f ,a|e, θ) (2.6)

We assume that we have a source of bilingual training data D = (f (k), e(k)) for k =
1, ..., n where f (k) is the k’th French sentence and e(k) is the k’th English sentence, and e(k)

is a translation of f (k). We can estimate the parameters of our model using these training
examples. The parameters θ are computed by maximizing the likelihood on the parallel
training corpus:

θ∗ = arg max
θ

n∏
k=1

[∑
a

Pr(f (k), a|e(k))
]

(2.7)

To perform this maximization, we need to have the alignments. But, the alignments are
hidden. Typically, EM algorithm (Dempster et al., 1977) is used in such a scenario. In gen-
eral, the EM algorithm is a common way of inducing latent structures from unlabelled data
in an unsupervised manner. For a given sentence pair, there are many possible alignments.
We can find the best alignment a∗ as follows:

a∗ = arg max
a

Pr(f ,a|e, θ) (2.8)

The best alignment a∗ is called the Viterbi alignment of sentence pair (f , e). We can then
evaluate the quality of this Viterbi alignment by comparing it to a manually produced
reference alignment using the measure explained in section 2.7.

To summarize, given a bilingual training data, we estimate the parameters of our model
using the EM algorithm. Using the parameters, we find the best alignment for each sentence
pair. The output of word alignment is the given bilingual data with the predicted alignments
for each sentence pair. In the following sections, we will describe IBM Models 1 and 2 in a
formulation similar to the one for HMM-based alignment model.
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2.3.1 IBM Model 1

Introducing the alignment variables allows us to model Pr(f ,a|e) instead of Pr(f |e). The
alignment model can be structured without loss of generality as follows:

Pr(f ,a|e) =
J∏
j=1

Pr(fj , aj |f j−1
1 , aj−1

1 , eI1) (2.9)

=
J∏
j=1

Pr(aj |f j−1
1 , aj−1

1 , eI1)Pr(fj |f j−1
1 , aj1, e

I
1) (2.10)

In IBM model 1, we assume a uniform probability distribution for Pr(aj |f j−1
1 , aj−1

1 , eI1),
which depends only on the length of the English sentence:

Pr(aj |f j−1
1 , aj−1

1 , eI1) = 1
I + 1 (2.11)

where we define e0 to be a special NULL word that is responsible for generating English
words without any corresponding words in the French sentence; aj = 0 specifies that word
fj is generated from the NULL word.

Furthermore, we assume that Pr(fj |f j−1
1 , aj1, e

I
1) depends only on fj and eaj . Hence, we

have:
Pr(fj |f j−1

1 , aj1, e
I
1) = p(fj |eaj ) (2.12)

Putting everything together, we have the following translation model for IBM Model 1:

Pr(f |e) = 1
(I + 1)J

∑
a

J∏
j=1

p(fj |eaj ) (2.13)

Parameter estimation and decoding is explained for IBM Model 2 since Model 1 is a
special case of Model 2.

2.3.2 IBM Model 2

In IBMModel 2, we make the same assumptions as in Model 1 except that Pr(aj |f j−1
1 , aj−1

1 , eI1)
is assumed to depend only on j, aj , J and I. A set of alignment parameters is defined as
follows:

Pr(aj |f j−1
1 , aj−1

1 , eI1) = p(aj |j, J, I) (2.14)

Hence, we have the following translation model for IBM Model 2:

Pr(f |e) =
∑
a

J∏
j=1

p(aj |j, J, I)p(fj |eaj ) (2.15)
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Parameter Estimation

As explained in the previous section, the expectation maximization algorithm or EM algo-
rithm (Dempster et al., 1977) is used for partially-observed data. This algorithm initializes
the model parameters (typically with uniform distribution). The algorithm iterates over the
expectation and maximization steps until convergence. In the expectation step, it applies
the model to the data; in the maximization step, it learns the model from data. The output
of this algorithm is the set of translation parameters and alignment parameters. Once we
estimate these parameters, we can use them to find the most probable alignment, also called
the Viterbi alignment, for any given training example as follows:

a∗ = arg max
a

Pr(a|f , e) (2.16)

For IBM model 2, the solution to equation 2.16 is as follows:

aj
∗ = arg max

i∈{0,...,I}
(p(i|j, J, I)× p(fj |ei)) (2.17)

2.4 Hidden Markov Alignment Model

In this section, we present the HMM-based alignment model proposed by Vogel et al. (1996).
We begin with the motivation behind this model. The training and decoding algorithms for
this model will be explained in the following sections. We will present the forward-backward
and the Viterbi algorithm for the word alignment problem and hence we will explain how
to compute the expected counts and posterior probabilities for a parallel training data.

2.4.1 Motivation

Translation of sentences in parallel texts, especially for language pairs from Indo-European
languages, shows a strong localization effect. Words close to each other in a sentence in the
source language remain close in the translation sentence. Figure 2.2 shows this effect for
the language pair German-English. Note that we visualize the word alignment task by a
matrix where alignments between words are represented by points in the alignment matrix.
Each word in the German sentence is aligned to a word in the English sentence. Alignments
tend to preserve their local neighbourhood when going from German to English, as shown
in Figure 2.2.

2.4.2 Alignment with HMM

As explained previously, introducing the alignment variables allows us to model Pr(f ,a|e)
instead of Pr(f |e). The alignment model can be structured without loss of generality as in
equation 2.10. In the Hidden Markov alignment model, we assume a first-order dependence
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Figure 2.2: Word alignment for a German-English sentence pair (figure from Vogel et al.
(1996))

for the alignments aj ; also, the translation probability is assumed to be dependent on the
word at position aj and not on the one at position aj−1. Hence, we have:

Pr(aj |f j−1
1 , aj−1

1 , eI1) = p(aj |aj−1, I) (2.18)

Pr(fj |f j−1
1 , aj1, e

I
1) = p(fj |eaj ) (2.19)

Putting everything together, we have the following basic HMM-based model:

Pr(f |e) =
∑
a

J∏
j=1

[ p(aj |aj−1, I) · p(fj |eaj ) ] (2.20)

with two components: the alignment probability (transition probability) p(aj |aj−1, I) or
p(i|i′, I) , and the translation probability (emission probability) p(fj |eaj ). Figure 2.3 shows
the graphical model of the HMM-based word alignment model.

a1,
ea1

aj−1,
eaj−1

aj ,
eaj

aJ ,
eaJ

f1 fj−1 fj fJ

Figure 2.3: Graphical model of the basic HMM-based word alignment model
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Estimating the alignment parameters p(i|i′, I) using the conventional maximum like-
lihood (ML) criterion depends on the expectation of consecutive French words generated
from the English word at position i′ and i with English sentence length I. This clearly could
suffer from sparsity within the available bitext. To address this problem, Vogel et al. (1996)
make the alignment parameters independent of the absolute word positions. It is assumed
that the alignment probabilities p(i|i′, I) depend only on the jump width (i − i′). Hence,
the alignment probabilities are estimated using a set of distortion parameters c(i− i′) as
follows:

p(i|i′, I) = c(i− i′)∑I
i′′=1 c(i′′ − i′)

(2.21)

where at each iteration {c(i − i′)} is the fractional count of transitions with jump width
d = i− i′:

c(d) =
J−1∑
j=1

I∑
i=1

Pr(aj = i, aj+1 = i+ d|f , e, θ) (2.22)

where θ is the model parameters obtained from the previous iteration and the terms Pr(aj =
i, aj+1 = i + d|f , e, θ) can be efficiently computed using the Forward-Backward algorithm
(Rabiner, 1989).

To illustrate how the alignment model is computed for a given sentence pair and its
alignment, consider the following example. We visualize the word alignment task by a ma-
trix as in Figure 2.4. Here, alignments between words are represented by points in the
alignment matrix. We are given the alignment vector a = 〈1, 3, 4, 5〉. To assign a probability
to the alignment model using the HMM model, we consider the first alignment point in
the figure, i.e. (je, I).1 Hence, the emission probability p(je|I) is considered for this point.
The second alignment point is (voudrais, like). As the previous French word is aligned
to English word I, which is at position 1 in the English sentence, we have a transition
to position 3 in the English sentence for the word like. Therefore, we have to multiply
p(3|1, 5) and also p(voudrais|like) for the emission probability. Similarly, we have a transi-
tion probability p(4|3, 5) because of jumping to position 4 for a and an emission probability
for p(un|a). Finally, we multiply transition probability p(5|4, 5) and emission probability
p(croissant|croissant).

Suppose we are given c(1) = 2 and c(2) = 1. Computing the transition probabilities is
straightforward; for example, p(3|1, 5) = c(2)

c(1)+c(2) = 1
3 .

2.4.3 Training

Parameter estimation of the HMM-based word alignment model can be done using the
Baum-Welch (Baum, 1972) algorithm which makes use of the forward-backward algorithm.

1For the sake of simplicity, we have not included the initial state probabilities in this example.
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+ p(a,f |e) = ∏J
j=1 p(aj |aj−1, I)p(fj |eaj )

= p(je|I)×

p(3|1, 5)× p(voudrais|like)×

p(4|3, 5)× p(un|a)×

p(5|4, 5)× p(croissant|croissant)

Figure 2.4: Alignment model computation for a HMM-based model for a French-English
sentence pair.

Forward-backward algorithm is a dynamic programming algorithm that makes it possible to
avoid the summation over all alignments. We will look at this algorithm for the HMM-based
word alignment model here. A compact representation of the HMM model for alignment
is θ = {p(i|i′, I), p(f |e), p(i)} where {p(i|i′, I)} are the transition probabilities, {p(fj |ei)}
are the emission probabilities and {p(i)} are the initial state probabilities. Note that we
include the initial state probabilities here to give a more precise HMM model. The initial
state distribution is defined as p(i) = Pr(a1 = i) (i.e. p(i) is the probability of aligning the
first word in the French sentence to the i-th word in the English sentence). The forward
and backward probabilities can be computed efficiently using the recursive definitions, as
shown in Figure 2.5.

Posterior Probabilities

With the forward and backward probabilities, we can calculate the posterior probabilities.
The probability of aligning the j-th French word to the i-th English word is defined as
follows:

γi(j) = Pr(aj = i|f , θ) = αi(j)βi(j)∑I
l=1 αl(J)

(2.23)

The probability of aligning the j-th French word to the i-th English word and (j − 1)-th
French word to the i′-th English word is defined as follows:

ξi′i(j − 1) = Pr(aj−1 = i′, aj = i|f , θ) = αi′(j − 1)p(i|i′, I)βi(j)p(fj |ei)∑I
l=1 αl(J)

(2.24)
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Algorithm 1 Forward-backward(f , e, θ)
-given: A French sentence f1 . . . fJ , an English sentence e = e1 . . . eI and the
HMM parameter set θ = {p(i|i′, I), p(fj |ei), p(i)}
Let αi(j) = Pr(f1 . . . fj , aj = i) be the forward probabilities
Base case:

αi(1) = p(i)p(f1|ei) for i ∈ 1, . . . , I

Recursive case :

αi(j) = p(fj |ei)
∑I

i′=1 αi′(j− 1).p(i|i′, I) for all i ∈ 1, . . . , I and j ∈ 2, . . . , J

Let βi(j) = Pr(fj+1 . . . fJ |aj = i) be the backward probabilities
Base case:

βi′(J) = 1 for all i′ ∈ 1, . . . , I
Recursive case :

βi′(j− 1) =
∑I

i=1 βi(j).p(i|i′, I).p(fj |ei) for all i′ ∈ 1, . . . , I and j ∈ 2, . . . , J

Figure 2.5: The forward-backward algorithm

Parameter Re-estimation

The Baum-Welch algorithm adjusts the model parameters using the expected couts. Let D

denote the parallel data. Let c(f, e) be the posterior count accumulated over all training
sentences of the English word e generating the French word f . Hence, we have

c(f, e) =
∑

(f ,e)∈D

∑
i,j

γi(j)δ(fj , f)δ(ei, e) (2.25)

The translation probabilities (emission parameters) are then estimated as

p(f |e) = c(f, e)∑
f ′ c(f ′, e)

(2.26)

Let c(i′, i, I) be the posterior count of transitions with jump width (i− i′) over all training
sentences:

c(i′, i, I) =
∑

(f ,e)∈D

∑
i′,i

c(i− i′)δ(|e|, I) (2.27)

where c(i − i′) is computed using equation 2.22 and |e| denotes the length of the sentence
e. Note that the terms in this equation are the transition posterior probabilities ξ. The
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Algorithm 2 Viterbi(f , e, θ)
-given: A French sentence f1 . . . fJ , an English sentence e = e1 . . . eI and the
HMM parameter set θ = {p(i|i′, I), p(fj |ei), p(i)}
Base case:

V [i, 1] = p(i)p(f1|ei) for i ∈ 1, . . . , I
Recursive case :

V [i, j] = max
i′
{V [i′, j− 1] · p(i|i′, I) · p(fj |ei)} for all i ∈ 1, . . . , I and j ∈ 2, . . . , J

The best score is max
i

V [i, J ]
To find the most probable alignment, trace back using the V matrix

Figure 2.6: The Viterbi algorithm

alignment probabilities (transition parameters) are then estimated as

p(i|i′, I) = c(i′, i, I)∑I
i′′=1 c(i′, i′′, I)

(2.28)

2.4.4 Decoding

After training, Viterbi decoding is used to find the best alignment a∗:

a∗ = arg max
a

J∏
j=1

[ p(aj |aj−1, I).p(fj |eaj ) ] (2.29)

The Viterbi algorithm is shown in Figure 2.6. Both the Viterbi and the forward-backward
algorithms can be computed in O(I2J).

To avoid the summation over all possible alignments in equation 2.20, Vogel et al. (1996),
use the maximum approximation where only the Viterbi alignment is used to collect the
counts:

Pr(f |e) ∼= max
a

J∏
j=1

[ p(aj |aj−1, I) · p(fj |eaj ) ] (2.30)

Later on, Och and Ney (2000a) use the Baum-Welch algorithm to train the parameters of
the model efficiently.

2.5 Extensions and Improvements

In this section, we will present some of the extensions to the HMM alignment model. We first
look at a group of methods that propose refined alignment models in section 2.5.1. Then, we
give an overview of the methods that address empty word problem for the HMM model in
section 2.5.2. We discuss methods that model fertility in an HMM-based model in section
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2.5.3, and a method that incorporates part of speech tag information in the translation
model in section 2.5.4. We also explore a word-to-phrase HMM alignment model in section
2.5.5. A feature-enhanced HMM model is presented in section 2.5.6.

2.5.1 Refined Alignment Models

The motivation behind these methods is that the transition model in the HMM-based
alignment model is coarse. Transition probabilities only depend on the jump width from
the last state to the next state. They, therefore, enhance the transition model in the HMM.
We are going to look at three methods : Och and Ney (2000a), Och and Ney (2003) and He
(2007).

Class Dependent Transition Models

Och and Ney (2000a) focuses on improving the transition probability. The motivation be-
hind their approach is that the count table c(i − i′) has only 2 · Imax − 1 entries which is
suitable for a small corpus, but for a large one, it is possible to give an improved model
for Pr(aj |f j−1

1 , aj−1
1 , I). For instance, the effect of dependence on the surrounding words

such as eaj−1 or fj is analyzed. As conditioning on all English words (or French words)
would result in a huge number of parameters, equivalence classes G over the English and
French words are used. G is a mapping of words to classes. The categorization of words into
classes (here, 50 classes) is performed using the statistical learning procedure described in
Kneser and Ney (1993). Och and Ney (2000a) extend the transition probabilities to be class
dependent as follows:

p(aj − aj−1|G(eaj ), G(fj), I) (2.31)

Och and Ney (2003) extend the alignment parameters to include a dependence on the
class of the preceding English word:

p(aj |aj−1, G(eaj−1), I) (2.32)

Word-Dependent Transition Model

Knowledge of transition probabilities given a particular English word e is not modelled
in the original HMM model. To put it more simply, knowledge of jumping from e to an-
other position, e.g., jumping forward (monotonic alignment) or backward (non-monotonic
alignment) is not modelled. To improve the transition model, He (2007) extends the transi-
tion probabilities to be word-dependent. The proposed word-dependent HMM model is as
follows:

Pr(f |e) =
∑
a

J∏
j=1

[ p(aj |aj−1, eaj−1 , I).p(fj |eaj ) ] (2.33)
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Figure 2.7: Word-dependent transition probability p(4|3, like, 5) for the red edge.

Figure 2.7 shows an example of a word-dependent transition probability p(4|3, like, 5) for the
red edge. We need to estimate the transition parameter p(aj |aj−1, eaj−1 , I). Consequently,
the full parameter set that we need to estimate is θ = {p(i|i′, ei′ , I), p(fj |ei)}. The estimation
for word-dependent transition probabilities p(i|i′, ei′ , I) can be carried out using maximum
likelihood training:

p(i|i′, e, I) = c(i− i′; e)∑I
i′′=1 c(i′′ − i′; e)

(2.34)

where at each iteration the word-dependent distortion set {c(i − i′; e)} is computed as
follows:

c(d; e) =
J−1∑
j=1

I∑
i=1

δ(eaj , e)Pr(aj = i, aj+1 = i+ d|f , e, θ) (2.35)

where d = i− i′ is the jump width and δ is the Kronecker delta function. For non-frequent
words, the data samples for c(d; e) is very limited and hence leads to data sparsity problem.
To address this problem, maximum a posteriori (MAP) framework is applied (Gauvain and
Lee, 1994) where an appropriate prior g(θ|e) is used to incorporate prior knowledge into
the model parameter estimation:

θMAP = arg max
θ

p(f |e, θ)g(θ|e) (2.36)

The relation between ML and MAP estimation is through the Bayes theorem:

p(θ|f , e) ∝ p(f |e, θ)g(θ|e) (2.37)
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As the transition model p(i|i′, ei′ , I) is a multinomial distribution, its conjugate prior is a
Dirichlet distribution with the form

g(p(i|i′, ei′ , I)|e) ∝
I∏
i=1

p(i|i′, ei′ , I)vi′,i−1 (2.38)

where vi′,i is the set of hyper-parameters of the prior distribution. By substituting 2.38 in
2.37, the iterative MAP training formula for transition model is obtained as

pMAP (i|i′, e, I) = c(i− i′; e) + vi′,i − 1∑I
i′′=1 c(i′′ − i′; e) +∑I

i′′=1 vi′,i′′ − I
(2.39)

Hyper-parameter set {vi′,i} of the prior distribution is set to word-independent transition
probabilities:

vi′,i = τ.p(i|i′, I) + 1 (2.40)

where τ is a positive parameter which needs to be tuned on a held-out dataset. Substituting
2.40 in 2.39, we obtain the MAP-based transition model:

pMAP (i|i′, e, I) = c(i− i′; e) + τ.p(i|i′, I)∑I
i′′=1 c(i′′ − i′; e) + τ

(2.41)

In this new formulation, for frequent words with a substantial amount of data samples
for c(d; e), the summation in the denominator is large; therefore, pMAP (i|i′, e, I) is domi-
nated by the data distribution. On the contrary, for rare words with low counts of c(d; e),
pMAP (i|i′, e, I) will approach to the word-independent model. Note that we can vary τ to
control the contribution of the prior in this model. For instance, for a small τ , a weak prior
is applied, and the transition probability is more dependent on the training data of that
word. Conversely, for a large τ , a stronger prior is applied, and the model will approach to
the word-independent model.

2.5.2 Empty Word

Some words in a French sentence may have no relation to any of the words in the corre-
sponding English sentence. To model this in the IBM word alignment models, Brown et al.
(1993) define e0 to be a special NULL (empty) word that is treated just like another English
word; hence, aj = 0 specifies that fj is generated from a NULL word. The inclusion of a
NULL word is helpful since we still want to align each French word to an English word. If
we do not model NULL, we have to align those French words with no correspondences in
the English sentence, to arbitrary unrelated words in the English sentence. This results in
a model with a high alignment error rate.

Figure 2.8 shows an example of a pair of sentences where the French word des has no
corresponding word in the English sentence. IBM models align des to NULL.
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Figure 2.8: Introducing a NULL word at position 0 as Brown et al. (1993) to generate the
French word des with no corresponding translation in the English sentence.

In the original formulation of the HMMmodel, there is no empty word that is responsible
for generating French words with no corresponding English words. A direct inclusion of the
NULL word in the HMM model by adding an e0 as in Brown et al. (1993) is problematic
if we want to model the jump distances i − i′, as the position i = 0 for the NULL word is
chosen arbitrarily. We explain two methods that address this issue: Och and Ney (2000a)
and Toutanova et al. (2002).

Adding a Group of NULLs

Och and Ney (2000a) extend the HMM network by I NULL words e2I
I+1 such that the

English word ei has a corresponding NULL word ei+I . The NULL position chosen by the
model is determined by the previously visited English word. The following constraints are
enforced for the transition probabilities in the HMM network (i ≤ I, i′ ≤ I):

p(i+ I|i′, I) = p0.δ(i, i′) (2.42)

p(i+ I|i′ + I, I) = p0.δ(i, i′) (2.43)

p(i|i′ + I, I) = p(i|i′, I) (2.44)

The parameter p0 is the probability of transitioning to the NULL word, which has to be
optimized on a held-out dataset. Och and Ney (2000a) set p0 = 0.2 for their experiments.
To illustrate how the NULL word is chosen in this approach, we use the following example.
Consider the sentence pair given previously. As the length of the English sentence is 3, we
extend the HMM network by 3 NULL words as in Figure 2.9. These NULL words are added
to the end of the English sentence. The French word des has no corresponding word in the
English sentence; hence, it should be aligned to a NULL. However, there are three possible
choices. Since the previous French word aimes is aligned to a non-NULL word, we fall into
the case 2.42 . The word aimes is aligned to love which is at position 2. Therefore, the
position of the NULL word for des is 2 + 3 = 5, as shown in Figure 2.9.

The purpose of the above constraints is to preserve the locality in the HMM when an
alignment to NULL is necessary. Suppose, we use the IBM NULL model for our HMM,
as in Figure 2.8. The jump sequence {aj − aj−1} is {1,−2, 3} where -2 is for jumping to
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Figure 2.9: Introducing a group of NULL words as Och and Ney (2000a) to generate the
French word des.

NULL (from position 2 to position 0) and 3 is for jumping back to position 3 from NULL.
Note that transition probabilities for jump widths of -2 and 3 are caused by the inclusion of
empty word at position 0, and these probabilities should not be included in the alignment
model computation. The method proposed by Och and Ney (2000a) resolves this problem.
In this method, the transition probabilities used in the computation of the alignment model
are p(2|1, 3), p(5|2, 3) and p(3|5, 3) where p(5|2, 3) is p0 due to constraint 2.42 and p(3|5, 3)
is p(3|2, 3) due to constraint 2.44. The locality is preserved even though we align des to
NULL because the last English word (at position 2) is remembered by the HMM model so
that the next alignment to a non-NULL word is computed using p(3|2, 3).

Translation Model for NULL

This method presents a new generative model for the source language words that do not
have any correspondences in the target language (Toutanova et al., 2002). The translation
probabilities for the French words with no correspondences in English is modelled such that
these words are generated from NULL and also from the next word in the French sentence
by a mixture model. For instance, in the pair des chiens in Figure 2.8, chiens contributes
extra information in generation of des. The new formulation for the probability of a French
word given that it does not have a corresponding word in the English sentence is:

p(fj |aj = 0) = λp(fj |fj+1, eaj = NULL) + (1− λ)p(fj |eaj = NULL) (2.45)

The probabilities p(fj |fj+1, eaj = NULL) are re-estimated from the training corpus using
the EM algorithm. Note that the dependence of a French word on the next French word
requires a change in the generative model. First, alignments are proposed for all words in
the French sentence and then French words are generated given their alignment starting
from the end of the sentence towards the beginning. For this model, there is an efficient
dynamic programming algorithm similar to the forward-backward algorithm that can be
used for computations in EM.
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2.5.3 Modelling Fertility

One major advantage of IBM models 3-5 over the HMM model is the presence of a model
for English word fertility. Thus, knowledge that some French words translates as phrases
in English was incorporated in these models. HMM-based word alignment model has no
memory, but the previous alignment, about how many words have been aligned to an English
word, and this memory is not used to decide whether to generate more words from this word.
This decision is independent of the word and is estimated over all the words in the corpus as
estimating the transition probability with a jump of size 0 is computed using equation 2.21.
Toutanova et al. (2002) extend the HMM model such that deciding whether to generate
more French words from the previous English word eaj−1 or to move to another English
word depends on the word eaj−1 . To do this, they introduce a factor p(stay|eaj−1), where
the boolean random variable stay depends on the English word eaj−1 . The rationale for this
method is that as in most cases words with fertility more than one generate consecutive
words in the source language, this method approximately models fertility. They change the
baseline model, equation 2.20, as follows:

Pr(f |e) =
∑

a

J∏
j=1

[p̃(aj |aj−1, eaj−1 , I)p(fj |eaj )] (2.46)

where

p̃(aj |aj−1, eaj−1 , I) = δ(aj , aj−1)p(stay|eaj−1)

+ (1− δ(aj , aj−1))(1− p(stay|eaj−1))p(aj |aj−1, I)

A jump of size zero in the new alignment (transition) probabilities p̃(aj |aj−1, eaj−1 , I) de-
pends on the English word eaj−1 .

To handle the sparsity problem in estimating p(stay|eaj−1), smoothing is done using a
probability of a jump zero as the prior:

p(stay|eaj−1) = λpZJ + (1− λ)p(stay|eaj−1) (2.47)

where pZJ is the alignment probability of the baseline model for a jump of size zero
pZJ = Pr(aj = i|aj−1 = i, I).

Modeling fertility is challenging in the HMM framework as it violates the Markov as-
sumption. Whereas the HMM jump model considers only the prior state, fertility requires
looking across the whole state space. Therefore, the standard forward-backward and Viterbi
algorithms do not apply.

Zhao and Gildea (2010) build a fertility hidden Markov model by adding fertility to the
HMM. Their model assumes that fertility φi for a word ei follows a Poisson distribution
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Figure 2.10: The basic HMM model makes a simple alignment error (figure from Toutanova
et al. (2002)).

Poisson(φi, λ(ei)). Compared to IBM Models 3-5, this model has a much smaller number of
parameters to learn; one parameter for each English word. In this method, we estimate the
parameters using the EM algorithm. However, to compute the expected counts, we have
to sum over all possible alignments, which is exponential. Gibbs sampling is thus used to
approximate the expected counts.

2.5.4 Part of Speech Tags in a Translation Model

This method extends the HMM model by incorporating part of speech (POS) tag informa-
tion of the source and target languages in the translation model (Toutanova et al., 2002).
Basic HMM model introduces some alignment irregularities. For instance, the transition of
the NP → JJ NN rule to NP → NN JJ from English to French2. There are two main
reasons why translation probabilities may not catch such irregularities in monotonicity. (1)
When both English adjective and noun are unknown words, the translation probabilities
will be close to each other after smoothing. (2) When the adjective and noun are words that
are frequently seen together in English and therefore there will be an indirect association be-
tween the English noun and the translation of the English adjective. In such cases, the word
translation probabilities are not differentiating enough and alignment probabilities become
the dominating factor to make a decision about which English word should be aligned to fj .
Figure 2.10 shows how the basic HMM model makes such an alignment mistake. The table
shows the alignment and translation probabilities of two alignments, Aln1 and Aln2, for the
last three words. Aln1 correctly aligns the pair of adjective and noun in French to the cor-
responding pair in English while Aln2 incorrectly aligns both French noun and adjective to
the English word. ( i.e. eaj−1 = unity and eaj−2 = unity). Since the jump width sequences
{(aj−1 − aj−2), (aj − aj−1)} for Aln2 is {0, 1} which are more probable than {−1, 2} for

2Word order changes in translating an adjective-noun pair in English to French.
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Figure 2.11: Part of speech tag information for modelling local word order variation

Aln1, and the translation probabilities are not differentiating enough, Aln2 is preferred by
the HMM model.

POS Tags for Translation Probabilities

Let eT and fT be the possible part of speech tag sequences of the sentences e and f . The
model with part of speech tags for translation probabilities has the following form:

Pr(f , fT|e, eT) =
∑
a

J∏
j=1

[ p(aj |aj−1, I).p(fTj |eTaj ).p(fj |eaj ) (2.48)

This model introduces tag translation probabilities as an extra factor to equation 2.20.
This factor boosts the translation probabilities for words of part of speech that are often
translations of each other. Hence, it provides a prior knowledge of the translations of a
word based on its part of speech. This factor should not be too sharp that dominates the
alignment and translation probabilities. To avoid this potential problem, smoothing is done
for tag translation probabilities:

p(fTj |eTaj ) = λp̃(fTj |eTaj ) + (1− λ) 1
T

(2.49)

where T is the size of the French tag set and λ = 0.1. It is necessary to set λ to a small value
to prevent tag translation probabilities from becoming very sharp in EM and dominating
the alignment and translation probabilities.

In section 2.5.1, we discussed methods that explores conditioning the alignment prob-
abilities on the class of the English word eaj−1 and/or that of French word fj . Toutanova
et al. (2002) investigates whether they can improve the model by conditioning on the POS
tags of those words or even more words around the alignment position. For instance, con-
sider using p(aj |aj−1, eTaj−1−1, eTaj−1 , eTaj−1+1) as the alignment probability. This model
is helpful in modelling local word order variations. Figure 2.11 shows an example where
the probability of aligning fj = la (with fTj = DT ) to the will be boosted knowing that
eTaj−1 = V BP and eTaj−1+1 = DT .
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2.5.5 HMM Word and Phrase Alignment

This method develops a generative probabilistic model of Word-to-Phrase (WtoP) alignment
(Deng and Byrne, 2008). Suppose, we have a target sentence in English e = eI1 and its
translation in the source language French f = fJ1 . Here, the term phrase is used to refer
to any subsequence in the source sentence. We define the phrase count variable K, which
specifies that the French sentence is segmented as a sequence of K phrases: f = vK1 .

Each French phrase is generated as a translation of an English word. The correspondence
between English words and French phrases are determined by the alignment sequence aK1 .
The length of each phrase is specified by the random process φK1 which is constrained to
satisfy∑K

k=1 φk = J . French phrases are allowed to be generated by NULL. Hence, a binary
NULL prediction sequence hK1 is introduced. If hk = 0, then vk is aligned to NULL; if
hk = 1, then vk is aligned to eak

. Taking into account all these quantities, the alignment
can be treated as a = (φK1 , aK1 , hK1 ,K). We can rewrite alignment model Pr(f ,a|e) as:

Pr(f ,a|e) = Pr(vK1 ,K, aK1 , hK1 , φK1 |e) = Pr(K|J, e) (2.50)

× Pr(aK1 , φK1 , hK1 |K,J, e)

× Pr(vK1 |aK1 , φK1 , hK1 ,K, J, e)

We describe the component distributions here:

• Phrase count distribution: Pr(K|J, e) specifies the distribution over the number of
phrases in the French sentence given the length of the French sentence and the English
sentence. A single parameter distribution is used for phrase count distribution:

Pr(K|J, I) ∝ ηK (2.51)

where η ≥ 1 controls the segmentation of the French sentence into phrases such that
larger values of η leads to French sentence segmentation with many short phrases. η
is used as a tuning parameter to control the length of phrases.

• Word-to-Phrase alignment: The alignment is modelled as a Markov process that spec-
ifies the length of phrases and their alignment with English words:

Pr(aK1 , φK1 , hK1 |K,J, e) =
K∏
k=1

Pr(ak, φk, hk|ak−1, φk−1, e) (2.52)

=
K∏
k=1

p(ak|ak−1, hk; I)d(hk)n(φk; eak
)

The word-to-phrase alignment ak is a first order Markov process as in word-to-word
HMM (Vogel et al., 1996). It is formulated with a dependency on the NULL prediction
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variable as follows:

p(aj |aj−1, hj ; I) =


1 aj = aj−1, hj = 0

0 aj 6= aj−1, hj = 0

pa(aj |aj−1; I) hj = 1

(2.53)

The phrase length model n(φ; e) is a form of English word fertility. It specifies the
probability that an English word e generates a French phrase with φ words. A distri-
bution n(φ; e) over the values φ = 1, . . . , N is maintained as a table for each English
word. The model also has a table of transition probabilities pa(i|i′, I) for all English
sentence lengths I. We use d(0) = p0, and d(1) = 1−p0. p0 is a tuning parameter that
controls the tendency towards the insertion of French phrases.

• Word-to-Phrase translation: The translation of words to phrases is computed as fol-
lows:

Pr(vK1 |aK1 , hK1 , φK1 ,K, J, e) =
K∏
k=1

p(vk|eak
, hk, φk) (2.54)

We introduce the notation vk = vk[1], . . . , vk[φk] and a dummy variable xk:

xk =

eak
if hk = 1

NULL if hk = 0
(2.55)

where French phrases are conditionally independent given the individual English
words. two models are introduced for word-to-phrase translation: The simplest model
is based on context-independent word-to-word translation:

p(vk|eak
, hk, φk) =

φk∏
j=1

t1(vk[j]|xk) (2.56)

A more complex model captures word context within the French language phrase via
bigram translation probabilities:

p(vk|eak
, hk, φk) = t1(vk[1]|xk)

φk∏
j=2

t2(vk[j]|vk[j − 1], xk) (2.57)

where t1(f |e) is the usual word-to-word translation probability and t2(f |f ′, e) is a bigram
translation probability that specifies the likelihood that French word f ′ is followed by French
word f in a phrase generated by English word e. In a nutshell, the parameter set θ of the
WtoP HMM consists of the transition parameters pa, the phrase length parameters n, the
jumping-to-NULL parameter p0, the unigram word-to-word translation parameters t1 and
the bigram translation probabilities t2: θ = {pa(i|i′, I), n(φ, e), p0, t1(f |e), t2(f |f ′, e)}.
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The relationship between the current approach with the word-to-word HMM is straight-
forward. Constraining the phrase length model n(φ; e) to permit only phrases of one word
gives a word-to-word HMM model. The extensions introduced in this method are the phrase
count, phrase length model and the bigram translation model. The hallucination process
addresses the NULL problem explained in section 2.5.2. The phrase length model is an
alternative to fertility, and it is motivated by stay probabilities introduced in Toutanova
et al. (2002). It is, however, more powerful than a single stay parameter.

WtoP HMM and IBM model 4 allow the same alignments. Both model NULL and
fertility. However, distortion is not incorporated into the WtoP HMM model. Although
WtoP model is more complex than the basic word-to-word HMM, the Baum-Welch and
Viterbi algorithms can still be used. Hence, training can be done by forward-backward
algorithm and by parallelizing we can control memory usage, reduce the time needed for
training and increase the bitext for training.

2.5.6 HMM with Features

In this section, we discuss a method that shows how features can be added to a standard
HMM model to inject prior knowledge to the model (Berg-Kirkpatrick et al., 2010). Each
component multinomial of the generative model is turned into a miniature logistic regression
model. The EM algorithm is used to learn the parameters. The E-step is unchanged, but the
M-step involves gradient based training. Berg-Kirkpatrick et al. (2010) explained a general
method to add features to an unsupervised model. We explain the feature-enhanced model
for word alignment problem. To be consistent in the notations, we will use a slightly different
notation from that of Berg-Kirkpatrick et al. (2010) for the word alignment task.

Later in this section, we discuss discriminative feature-enhanced models developed re-
cently. We briefly describe a discriminative variant of the Berg-Kirkpatrick et al. (2010)
method and mention neural-network-based models for word alignment.

Feature-enhanced HMM

There are two types of distributions in the HMM model: emission and transition proba-
bilities which are both multinomial probability distributions. Let the emission distribution
Pr(Fj = fj |Ej = eaj , θ) be parameterized by θf,e for each French word f given English word
e. For word alignment, the transition probabilities are estimated based on the jump width
as explained. However, the emission factors can be expressed as the output of a logistic
regression model, replacing the explicit conditional probability table by a logistic function
parameterized by weights w and features h:

θf,e(w) = exp(w.h(f, e))∑
f ′ exp(w.h(f ′, e)) (2.58)
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In the emission, the decision f is a French word and the context e is an English word.
The denominator is a normalization term to make the factor a probability distribution over
French word decisions. Here, h is a feature function that consists of all indicator features
on tuples (f, e), and w is the vector of weights associated to each feature that we want to
optimize such that the likelihood of the data is maximized. As commonly used in log-linear
models, the objective function is modified to include a regularization term:

L(w) = logPr(F = f |w)− κ||w||22 (2.59)

Note that the feature-based logistic expression, equation 2.58, is equivalent to the flat multi-
nomial when the feature function h(f, e) consists of all the indicator features on tuples
(f, e), which we call BASIC features. The equivalence occurs when weights are set such
that wf,e = log(θf,e). This is known as the natural parameterization of the multinomial
distribution. Optimization EM algorithm is used to learn the parameters of the model. In
the E-step, expected counts are calculated for each tuple of source word f and target word
e:

εf,e ← Eθ
[∑
j∈J

1(fj = f, eaj = e|F = f)
]

(2.60)

In the M-step, to re-estimate the parameters, the expected counts are normalized as follows:

θf,e ←
εf,e∑
f ′ εf ′,e

(2.61)

Similarly, we can use EM to optimize L(w) for the model with logistic parameterizations.
The E-step precomputes θ parameters from w for each French word f and English word e
using equation 2.58. Expected counts are computed using the forward-backward algorithm.
The only difference from the standard model is that the conditional probabilities θ are now
functions of w. In the M-step, we use gradient based optimization. The goal is to find the
w that maximizes the regularized log-likelihood:

`(w, ε) =
∑
f,e

εf,e log θf,e(w)− κ||w||22 (2.62)

Optimization of the objective function can be done using LBFGS. This method relies on
the computation of the log-likelihood and the gradient at each step. The log-likelihood has
the form given in equation 2.62, while the gradient with respect to w takes the following
form:

∇`(w, ε) =
∑
f,e

εf,e.∆f,e(w)− 2κ.w (2.63)

∆f,e(w) = h(f, e)−
∑
f ′

θf ′,e(w)h(f ′, e)
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Algorithm 3 Feature-enhanced EM
repeat

compute expected counts ε
repeat

compute `(w, ε)
compute ∇`(w, ε)
w← climb(w, `(w, ε),∇`(w, ε))

until convergence
until convergence

Figure 2.12: Feature-enhanced EM

The M-step is now an iterative procedure which is much more expensive than before, because
for each value of w considered during the search, θ(w) should be recomputed for each f

and e. This computation is in proportion to the size of parameter space. Figure 2.12 shows
the feature-enhanced EM algorithm.

Word Alignment Features: The BASIC features provide a strong baseline perfor-
mance. Table 2.1 shows linguistically-motivated features that are added to the model in
Berg-Kirkpatrick et al. (2010) in order to inject prior knowledge. These features are de-
signed for Chinese-English. However, language-specific features can be designed for other
language pairs similarly. Note that all the features in this table are binary.

Table 2.1: Feature templates for experiments

Template Description

BASIC fires for each source word and target word pair in the alignment
EDIT-DISTANCE fires when the edit distance between source word and the target word

is a specific value
DICTIONARY fires when the source word and the target word pair is in the dictionary

STEM fires for each source word and stem of the target word pair (for porter
stemmer)

PREFIX fires for each pair of source word and prefix of length 4 of the target
word

CHARACTER fires for each target word and ith source (Chinese here) character pair

Discriminative methods

A discriminative log-linear variant of the Berg-Kirkpatrick et al. (2010) method is introduced
by Dyer et al. (2011). This method can incorporate arbitrary overlapping features, and it is
used to infer word alignment. A log-linear model with parameter w and feature function h
is used to model p(f ,a|e, J) directly. The feature function used in this model includes word
association features, positional features, lexical features and HMM-like path features. As for
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the inference, Dyer et al. (2011), design their features to keep the width of tree decomposition
low to allow exact inference with dynamic programming. To learn the parameters, we select
w that minimizes the `1 regularized conditional log-likelihood. Dyer et al. (2011) use an
online method that approximates `1 regularization and only depends on the gradient of the
unregularized objective (Tsuruoka et al., 2009).

Blunsom and Cohn (2006) use a Conditional Random Field (CRF), a discriminative
model, on a small supervised setting. The model directly encodes p(a|f , e) with a CRF.
With a first order Markov assumption, exact inference and efficient learning are possible
using forward-backward and Viterbi algorithms.

Yang et al. (2013) propose a model that integrates a multi-layer neural network into
an HMM-like framework. They adapt and extend the context dependent deep neural net-
work HMM (CD-DNN-HMM) (Dahl et al., 2011) model to the HMM-based word alignment
model. In their method, context dependent lexical translation score is computed by neural
network, and distortion is modelled by a simple jump distance scheme. The model is dis-
criminatively trained on bilingual corpus, in a supervised setting, while huge monolingual
data is used to train word embeddings.

Tamura et al. (2014) propose a word alignment model based on a recurrent neural net-
work (RNN) to extend the feed-forward neural network (FNN) model of Yang et al. (2013).
This RNN-based model captures long alignment history through recurrent architectures.
Compared to the CD-DNN-HMM approach which can only explore the context in a win-
dow, the RNN predicts the j-th alignment aj by conditioning on all the preceding alignments
aj−1

1 . Moreover, noise-contrastive estimation (NCE) is applied for unsupervised training of
the model.

2.6 Neural Machine Translation

2.6.1 Encoder-Decoder

Neural Machine Translation models the conditional probability p(y|x) of translating a source
sentence x = (x1, x2, . . . , xJ) into a target sentence y = (y1, y2, . . . , yI). Using the encoder-
decoder framework (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014), the encoder reads the input sentence into a context vector c that represents the
sentence meaning. The encoder is a recurrent neural network (RNN) that reads each word
of the input sentence x sequentially. At each time step t, RNN updates its hidden state ht
as follows:

ht = f(xt, ht−1) (2.64)

where f(.) is a non-linear activation function that can be as simple as an element-wise
logistic sigmoid or as complex as a Long Short-Term Memory (LSTM) unit (Hochreiter and
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Schmidhuber, 1997). Sutskever et al. (2014) used LSTM as f and the last hidden state of
the LSTM hT as c.

The decoder is another RNN that is trained to predict the next word yt given the context
vector and all the previously predicted words y1, y2, . . . , yt−1. The decoder decomposes the
conditional probability as follows:

p(y|x) =
I∏
t=1

p(yt|y1, . . . , yt−1, c) (2.65)

where the conditional probability of predicting the next word yt can be computed as:

p(yt|y1, . . . , yt−1, c) = g(yt−1, st, c) (2.66)

where g(.) is a non-linear activation function that produces valid probabilities (eg. with a
softmax). st is the hidden state of the RNN that is also conditioned on yt−1 and context
vector c:

st = f(st−1, yt−1, c) (2.67)

Figure 2.13 illustrates an encoder-decoder architecture for NMT. The model translates
a source sentence “le croissant aux amandes” into a target one “the almond croissant”. The
NMT model consists of two RNN networks: the encoder RNN (on the left with the red color)
consumes the input source words; the decoder RNN generates a translation, one word at a
time.

Training

The key benefit of NMT is that all components of the model can be trained jointly in
an end-to-end fashion. This is in contrast with SMT where most components needs to be
trained separately. The training objective is formulated as :

Jt =
∑

(x,y)∈D
− log p(y|x) (2.68)

where D is the parallel training data. After training the encoder-decoder, the model can
be used to generate a translation for a given source sentence. It can also be used to score a
pair of source and target sentence.

Attention-based Model

In the attention-based framework, given an input source sentence, x = (x1, x2, . . . , xJ), and
all the previously predicted target words {y1, y2, . . . , yi−1} , the probability of generating
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le croissant aux amandes <eos>

the almond croissant <eos>

Figure 2.13: Encoder-decoder architecture for NMT. The model reads the input sentence
“le croissant aux amandes” and produces “the almond croissant” as the output sentence.
The model stops making predictions after predicting the end-of-sequence token <eos>. The
bottom layer is an embedding layer, followed by a hidden layer on top, and another output
layer (in yellow) on the decoder side.

the next target word yi is

p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci) (2.69)

where g(.) is a non-linear function and si is the hidden state of the decoder RNN at time
step i which is computed as

si = f(si−1, yi−1, ci) (2.70)

where f(.) can be a non-linear function as simple as element-wise tanh or as sophisticated as
a long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997). Bahdanau et al.
(2015) use a gated recurrent unit (GRU). Unlike the Encoder-Decoder framework, a distinct
context vector ci is computed at each time i to generate target word yi. The context vector
ci is computed as a weighted sum of source annotations hj as follows

ci =
J∑
j=1

αijhj (2.71)

where hj = [−→hjT ;←−hjT ]
T

is the annotation of xj , which is computed using a bidirectional
RNN (BiRNN) (Schuster and Paliwal, 1997) that has the information of the whole input
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−→
hj

←−
hj

xj

vj

⊕
sisi−1

yi−1 yi

ci

Figure 2.14: Attention model generates a target word yt given a source sentence (x1, . . . , xJ).
In this figure, vj is the embedding of source word xj .

sentence with a strong focus on the words around xj . The weight αij is computed as

αij = exp(eij)∑J
k=1 exp(eik)

(2.72)

where
eij = a(si−1, hj) (2.73)

is called an alignment model that scores how well the source words around xj match the
target words around yi. All αijs(i = 1 . . . I, j = 1 . . . J) can be seen as an alignment-like
matrix, where each row (for each target word) is a probability distribution over the source
sentence x. The alignment model is parameterized as a feed forward neural network which is
jointly trained with all other components of the translation system. Since alignment model
needs to be evaluated J × I times for each sentence pair of lengths J and I, a single layer
multilayer perceptron is used to reduce computation:

a(si−1, hj) = vTa tanh(Wasi−1 + Uahj) (2.74)

where Wa ∈ IRn×n, Ua ∈ IRn×2n and va ∈ IRn are the weight matrices.
The attention mechanism allows the decoder to select parts of the source sentence to

pay attention to and frees the encoder from having to represent the entire source sequence
into a single vector. The attention model is illustrated in Figure 2.14
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2.6.2 Transformer

Transformer (Vaswani et al., 2017) still follows the overall architecture of the encoder-
decoder, but instead of RNN layers, it uses self-attention and point-wise, fully connected
layers for both the encoder and decoder. The transformer encoder is composed of six identi-
cal layers. Each encoder layer has two sub-layers: a multi-headed self attention mechanism
and a fully connected feed-forward neural network. These layers are stacked to generate a
final encoding of the source sentence. The structure of the transformer decoder is similar
to the encoder except that it has an additional (third) sub-layer to attend to the source
sentence. The novelty of the transformer architecture is in its self-attention layers in the
encoder and the decoder. Self-attention is an attention mechanism that relates different
positions of a single sequence to compute a representation of the sequence.

2.6.3 Evaluation

BLEU

The most common evaluation metric for machine translation is the BLEU score (Papineni
et al., 2002). It is based on the n-gram matches between the candidate translation and
the reference translation. Given the n-gram matches up to order N , we compute n-gram
precision, pn, with weights wn that sums to one. BLEU is defined as:

BLEU = BP. exp
( N∑
n=1

wn log pn
)

(2.75)

where N is usually up to 4, and brevity penalty (BP) reduces the score if the output is too
short. BP is computed as:

BP =

1 if c > r

e1− r
c if c ≤ r

(2.76)

where c and r are the lengths of the candidate translation and the reference, respectively.
BLEU score has a high correlation with human judgements, and ranges from 0 to 1 where
1 is achieved when output is identical to the reference.

TER

Translation Edit Rate (TER) (Snover et al., 2006) measures the minimum number of edits
needed to change an output translation to exactly match one of the references, normalized
by the average length of the references. Possible edits are single word insertion, deletion
and substitution as well as phrasal shift (shift of word sequences). All edits have equal
costs. This edit-distance based measure penalizes phrasal shifts less than BLEU, and it is
intended to correlate well with human judgements while being less sensitive to the number
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of references. TER score also ranges from 0 to 1. However, unlike BLEU, the lower the score
the better as it indicates that less edits are required.

2.7 Word Alignment Evaluation

2.7.1 Alignment Error Rate

The quality of the alignment methods is evaluated by the performance on a test set for
which a gold standard has been established by human annotators. The annotators are
asked to specify alignments of two kinds: an S (sure) alignment, for alignments that are
unambiguous and a P (possible) alignment, for ambiguous alignments. Thus, the reference
alignment obtained may contain many-to-one and one-to-many relationships. The quality of
an alignment A = {(j, aj)|aj > 0} is evaluated using redefined precision and recall measures:

precision = |A ∩ P |
|A|

, recall = |A ∩ S|
|S|

(2.77)

and the alignment error rate (AER), which is defined as

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S| (2.78)

2.7.2 F-measure

Fraser and Marcu (2007b) argue that AER can be a misleading metric when we make a
distinction between the sure and possible alignments (S ⊂ P ). This is because AER does not
penalize unbalanced precision and recall as F-measure. Therefore, it is possible to obtain
good AER by guessing fewer alignment links making it a less useful metric. Fraser and
Marcu (2007b) suggest an F-measure with sure and possible distinction:

F-measure = 1
α

Precision(A,P ) + 1−α
Precision(A,S)

(2.79)

where α sets the trade-off between precision and recall. They show that F-measure with an
appropriate setting of α is useful during the development process of new alignment models,
and hence has a better ability to capture alignment quality which can also lead to a better
translation performance.

2.8 Summary

In this chapter, we covered all the necessary background knowledge to understand this
thesis. We started with a background about word alignment, and introduced the basic
concepts such as the noisy-channel model. We looked at two statistical alignment models
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(IBM Models 1 and 2) and explained training and decoding of these models. We have par-
ticularly studied the HMM-based word alignment model as it is going to be the basis of
the models that will be presented in this thesis. We showed how to train and decode the
HMM model using the Baum-Welch and Viterbi algorithms. A detailed explanation of the
forward-backward algorithm was then given for the word alignment problem. We have cat-
egorized the extensions to the basic HMM-based model into six groups of models based on
the enhancement they offer: refined alignment (transition) models, NULL-enhanced mod-
els, fertility-enhanced models, part-of-speech-enhanced model, word-to-phrase model and
feature-enhanced model. We have reviewed neural machine translation and attention-based
NMT and closed this chapter with a discussion of evaluation measures for translation and
word alignment.
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Chapter 3

Unsupervised Neural Hidden
Markov Models

In this chapter, we present a generative neural approach to HMMs (Tran et al., 2016).
This approach can be applied to latent variable models with tractable inference that can
be trained with EM. We will demonstrate this approach for the part-of-speech tag induc-
tion task (Section 3.2). In Section 3.4, we discuss the general training procedure which
is a combination of forward-backward algorithm and backpropagation. We show how this
framework allows easy inclusion of morphological information (Section 3.5) and integration
of additional context (Section 3.6).

3.1 Framework

In a graphical model, with a set of observed variables x and latent variables z, potential
functions ψ(x, z) over these sets of variables are defined based on the hand-crafted features.
Independence assumptions are made to simplify the model structure, and make the inference
tractable. Tran et al. (2016) propose to produce the potentials using neural networks. By
using neural networks, task-specific abstract representation of the data can be extracted.
Furthermore, we can use LSTM-based RNNs to model unbounded contexts with much less
parameters compared to one-hot feature encodings. The potentials can be reparameterized
with neural networks as follows:

ψ(z,x) = fNN(z,x|θ) (3.1)

In a model with a set of observed variables x = {x1, . . . , xn}, and latent variables z =
{z1, . . . , zn}, we want to find θ that maximizes p(x|θ). Using the generalized EM, the gra-
dient is defined in terms of the gradient of the joint probability scaled by the posteriors:

J(θ) =
∑

z

p(z|x)∂ ln p(x, z|θ)
∂θ

(3.2)
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sentence But the issue is stickier than it seems .
PTB CC DT NN VBZ JJR IN RPR VBZ .

Figure 3.1: An example of a part-of-speech tagged text.

To compute the posterior probability p(z|x) in Equation 3.2, the message passing algorithm
can be used. It is noted that if we can easily compute the derivative ∂ ln p(x,z|θ)

∂θ , Direct
Marginal Likelihood optimization (Salakhutdinov et al., 2003) can be performed. In the
next section, we present how this framework can be applied to HMMs for the part-of-speech
tag induction task.

3.2 Part-of-speech Induction Task

From the unsupervised perspective, part-of-speech tagging can be viewed as a clustering
problem where words are assigned to different clusters that are called the POS classes or
categories of the words. For example, in English, the Penn Treebank (Marcus et al., 1994)
consists of 36 POS categories and 12 other tags (for punctuation and currency symbols).
Figure 3.1 shows an example of a sentence, with its POS tags, extracted from the Penn
Treebank data.

3.2.1 Hidden Markov Model

The Hidden Markov Model (HMM) is a standard model for the POS induction task. An
HMM-based POS tagger generates a sequence of words in order. In this model, it is assumed
that an observed word xi is generated by the latent POS tag zi, and the latent POS tag zi
is generated independently, conditioned on the previous latent POS tag zi−1. This model
has two types of distributions, emission and transition. The graphical representation of an
HMM is shown in Figure 3.2 where the shaded circles are the observations and the ones
with the white background are the latent variables. The joint probability of a distribution
over both latent and observed variables is given by

p(x, z) =
n∏
t=2

p(zt|zt−1)
n∏
t=1

p(xt|zt) (3.3)

where p(xt|zt) is the emission probability and p(zt|zt−1) is the transition probability.
To estimate the parameter of the HMM, the Baum-Welch (Baum, 1972) algorithm is

used. In the next section, we present the neural HMM for the part-of-speech tag induction
task (Tran et al., 2016).
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z1 zt−1 zt zn

x1 xt−1 xt xn

Figure 3.2: Graphical representation of a Hidden Markov Model. At time step t, latent
variable (zt) depends on the previous latent variable (zt−1), and emits an observed word
(xt).

3.3 Neural HMM

We now describe the neural HMM for unsupervised POS tag induction (Tran et al., 2016).
A standard POS HMM learns the emission and transition probabilities. In a neural HMM
variant, emission and transition probabilities are modeled by neural networks. Enhancing
each of these distributions is seamless. To achieve this, conditioning variables can be in-
troduced as inputs to the network. We now discuss the basic feed-forward emission and
transition models.

3.3.1 Emission Architecture

For an input tag zk, the emission model gives a probability distribution over all possible
words wi. This can be implemented by a simple feed-forward neural network with an em-
bedding matrix of K × D following by a non-linear activation (ReLU). We then apply a
hidden layer of size D followed by a ReLU. Finally, an output linear layer of size V will be
applied. The softmax function will be applied to provide p(wi|zk) probabilities:

p(wi|zk) = exp(vTk wi)∑V
j=1 exp(vTk wj)

(3.4)

where vk ∈ RD is the vector embedding of tag zk, and wi is the weight of unit i at the
output layer of the network. V is the vocabulary size and K is the number of possible tags
(clusters).

3.3.2 Transition Architecture

The transition model relies on a Multi-Layer Perceptron (MLP) to compute the multinomial
distribution. Given a hidden layer vector q ∈ RD and a weight matrix W ∈ RK2×D, we
compute the un-normalized transition matrix as follows:

T = W q (3.5)
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The transition matrix T is reshaped to a K × K matrix. A softmax layer per row is
then applied to produce transition probabilities.

3.4 Training Neural HMM

In this framework, the EM algorithm still applies where the E-step is similar to a standard
HMM, but the M-step involves a gradient-based training. Whereas traditionally the ex-
pected counts are normalized during the M-step to re-estimate the parameters, in a neural
HMM, they are used to re-scale the gradients. Using the HMM factorization (Equation 3.3)
in the gradient (Equation 3.2), gives the following gradient update rule for the baseline
neural HMM:

J(θ) =
∑

z

p(z|x)∂ ln p(x, z|θ)
∂θ

=
∑
t

∑
zt

p(zt|x)∂ ln p(xt|zt, θ)
∂θ

+

∑
t

∑
zt

∑
zt−1

p(zt, zt−1|x)∂ ln p(zt|zt−1, θ)
∂θ

where p(zt|x) and p(zt, zt−1|x) are the posterior probabilities that can be computed using
the Baum-Welch algorithm. The gradient terms come from the backpropagation algorithm.
Note that because of the HMM factorization, it is easy to compute the joint probability
p(x, z|θ); hence, Direct Marginal Likelihood (DML) (Salakhutdinov et al., 2003) can be
used to optimize the parameters of the model. Tran et al. (2016) discuss that compared to
EM, DML is faster to converge and yields to a slightly better performance.

During training, for a given batch, we compute the posterior probabilities using the
neural-network based emission and transition models, perform backpropagation, and update
the parameters of the networks. This procedure is repeated for a fixed number of epochs.
The next two section demonstrate the extended versions of the emission and transition
model.

3.5 Character-based Emission Model

Character-based representations is used to replace word embeddings to accommodate arbi-
trary vocabularies. Words are replaced with embedding vectors derived from a Convolutional
Neural Network (CNN) (Kim et al., 2016; Jozefowicz et al., 2016). A convolutional kernel
with widths from 1 to 7 is used which covers up to 7 character n-grams. The model learns
the lexical representations based on prefix, suffix and stem information of a word.
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3.6 Contextual Transition Model

Using neural networks allows for seamless integration of additional context. Tran et al.
(2016) augment their transition model with with all the preceding words in the sentence
p(zt|zt−1, w0, . . . , wt−1). Incorporating this amount of context into a traditional HMM is
intractable due to the exponentially large number of parameters. An LSTM is used to
encode the word context (w0, . . . , wt−1) into a vector that can be fed into the network when
producing a transition matrix. Therefore, the transition probability becomes

p(zt|zt−1, w0, . . . , wt−1) = p(zt|zt−1, ht−1) (3.6)

where ht−1 is the LSTM hidden state at time step t−1. In terms of the model architecture,
the hidden layer vector q (Equation 3.5) will be replaced by ht−1.

3.7 Evaluation

After training, the Viterbi algorithm is used to find the best latent POS tag sequence
for every sentence. The Viterbi algorithm for POS tagging is very similar to the Viterbi
algorithm for word alignment given in Figure 2.6. The evaluation can be done using the
following metrics:

Many-to-One (M-1) Many-to-one measure maps each cluster to the most common
gold POS tags for the words in that cluster. The tagging accuracy is then computed after
the mapping is done. More than one cluster can be mapped to the same gold POS tag. This
metric has been widely used in the literature. However, it tends to give higher scores as the
number of clusters increases, making comparisons difficult when the number of clusters can
change.

One-to-One (1-1) In the One-to-one measure, at most one cluster can be mapped to
a given tag. Generally, as the number of clusters increases, fewer clusters can be mapped to
their most common tag leading to a decrease in the score. Note that when the number of
clusters is larger than the number of tags, some clusters remain unassigned.

V-Measure (VM) V-Measure (Rosenberg and Hirschberg, 2007) is an entropy-based
measure which is analogous to F-measure that trades off the conditional entropy between
the clusters and the gold tags. Christodoulopoulos et al. (2010) found VM to be the most
stable and informative metric across different numbers of found and true clusters.

3.8 Summary

In this chapter, we presented a general unsupervised neural HMM and discussed this frame-
work for part-of-speech tag induction task. The proposed neural HMM consists of neural
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network-based emission and transition probabilities. We gave an overview of different net-
work architectures used for the POS induction task. In Chapter 5, we will show how we
develop a new model based on this framework and present an unsupervised neural HMM
for the word alignment task.
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Chapter 4

Joint Prediction of Word
Alignment with Alignment Types

Current word alignment models do not distinguish between different types of alignment
links. In this chapter, we provide a new probabilistic model for word alignment where
word alignments are associated with linguistically motivated alignment types. We propose
a novel task of joint prediction of word alignment and alignment types and propose novel
semi-supervised learning algorithms for this task. We also solve a sub-task of predicting
the alignment type given an aligned word pair. In our experimental results, the generative
models we introduce to model alignment types significantly outperform the models without
alignment types.

4.1 Introduction

Word alignment is an essential component in a statistical machine translation (SMT) sys-
tem. Soft alignments, or attention, are also an important component in neural machine
translation (NMT) systems. The classic generative model approach to word alignment is
based on IBM models 1-5 (Brown et al., 1993) and the HMM model (Vogel et al., 1996; Och
and Ney, 2000a). These traditional models use unsupervised algorithms to learn alignments,
relying on a large amount of parallel training data without hand annotated alignments. Su-
pervised algorithms for word alignment have become more widespread with the availability
of manually annotated word-aligned data and have shown promising results (Taskar et al.,
2005; Blunsom and Cohn, 2006; Moore et al., 2006; Liang et al., 2006). Manually word-
aligned data are valuable resources for SMT research, but they are costly to create and
are only available for a handful of language pairs. Semi-supervised methods for word align-
ment combine hand-annotated word alignment data with parallel data without explicit word
alignments. Even small amounts of hand-annotated word alignment data has been shown to
improve the alignment and translation quality (Callison-Burch et al., 2004). In this chap-
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ter, we provide a novel semi-supervised word alignment model that adds alignment type
information to word alignments.

Unsupervised or semi-supervised probabilistic word alignment models do not play a cen-
tral role in neural machine translation (NMT) (Bahdanau et al., 2015; Sutskever et al., 2014;
Luong et al., 2015; Chung et al., 2016). However, attention models, which are crucial for
high-quality NMT, have been augmented with ideas from statistical word alignment (Luong
et al., 2015; Cohn et al., 2016). Other than machine translation, word alignments are also
important in the best performing models for NLP tasks. They play a central role in learning
paraphrases in a source language by doing round-trips from source to target and back using
word alignments (Ganitkevitch et al., 2013). Alignments have also been used for learning
multi-lingual word embeddings (Faruqui and Dyer, 2014a; Lu et al., 2015) and in the pro-
jection of syntactic and semantic annotations from one language to another (Hwa et al.,
2005; McDonald et al., 2011). Therefore, there is still a prominent role for word alignment
in NLP; research into improvements in word alignment is a worthy goal.

Adding additional information such as part-of-speech tags and syntactic parse infor-
mation has yielded some improvements in word alignment quality. Toutanova et al. (2002)
incorporated the part-of-speech (POS) tags of the words in the sentence pair as a constraint
on HMM-based word alignment. Additional constraints have also been injected into gener-
ative and discriminative models by designing linguistically-motivated features (Ittycheriah
and Roukos, 2005; Blunsom and Cohn, 2006; Deng and Gao, 2007; Berg-Kirkpatrick et al.,
2010; Dyer et al., 2011). These models provide evidence that additional constraints can
help in modelling word alignments in a log-linear model where word based features can be
augmented with morphological, syntactic or semantic features. For example, such a model
might learn that function words in one language tend to be aligned to function words in
the other language.

In this chapter, we propose a novel task which is the joint prediction of word alignment
and alignment types for a given sentence pair in a parallel corpus. We present how to enhance
the alignment model with alignment types. The primary contribution of this chapter is
to demonstrate the success of the proposed joint model (alignment-type-enhanced model)
to improve word alignment and translation quality. We apply our method on Chinese-
English, because the annotated alignment type training data is provided in this language
pair. However, the proposed method is potentially language-independent and can be applied
to any language-pair as long as alignment type annotated data is created. The alignment
types themselves may be language dependent and may vary in different language pairs.

4.2 The Data Set

The Linguistic Data Consortium (LDC) developed a linguistically-enriched word alignment
data set: the GALE Chinese-English Word Alignment and Tagging Corpus. This human
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所以 一定 要 好好 照顾 自己 。

so you must be sure to take really good care of yourself .

FUN FUN SEM SEM

GIS GIF

FUN

Figure 4.1: An alignment between a Chinese sentence and its translation in English which
is enriched with alignment types . SEM (semantic), FUN (function), GIF (grammatically
inferred function) and GIS (grammatically inferred semantic) are tags of the links.

annotated data set adds alignment type information to word alignments. The goal was
to sub-categorize different types of alignment and draw a distinction between different
types of alignment. For instance, it makes a distinction between aligned function words
in both languages versus aligned content words. The goal was to improve word alignment
and translation quality. Figure 4.1 shows an example of an enriched word alignment with
alignment types extracted from the LDC data. Each link tag in the figure demonstrates the
alignment type between its constituents.

The GALE Chinese-English Word Alignment and Tagging corpus contains 22,313 man-
ually word aligned sentence pairs from which we extracted 20,357 sentences for training and
we kept the rest as a test set. Table 4.1 shows the type and number of each alignment type
in our training data.

ID Alignment Type Count
1 SEM 159,277
2 GIS 81,235
3 FUN 97,727
4 GIF 12,314
5 PDE 1,421
6 COI 3,256
7 CDE 1,608
8 TIN 1,116
9 MDE 4,615
10 NTR 34,090
11 MTA 84

Table 4.1: Number of each alignment type in the annotated training data

We briefly explain the existing alignment types in the GALE Chinese-English Word
Alignment and Tagging Corpus. The SEM tag represents a semantic link between content
words/phrases of source and translation, indicating a direct equivalence. Content words are
typically nouns, verbs, adjectives and adverbs. FUN refers to a Function link which indicates
that a word on either side of the link is a function word. Grammatically Inferred Function
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(GIF) link is a type of link in which by stripping off extra words, we get a pure function
link. In Grammatically Inferred Semantic (GIS) links, stripping off extra words results in
pure semantic links. Alignment types PDE (DE-possesive), CDE (DE-Clause) and MDE
(DE-modifier) are designed to handle the different features of the Chinese word 的(DE).
In Contextually Inferred (COI) links, the extra words attached to one side of the link are
required. Without these words, the grammatical structure might still be acceptable, but it
is not semantically sensible. TIN (Translated Incorrectly) and NTR (Not translated) types
are designed to handle the various errors that occur in the translation process, such as
incorrect translation and no translation. MTA (Meta word) was designed to handle special
characters that usually appear in the context of web pages.

Sub-categorizing different types of word alignments is likely to result in better word
alignments. The alignment types provided by the LDC as annotations on each word align-
ment link have never been used (as far as we are aware) in order to improve word alignment.
A subset of this data was used in (Wang et al., 2014) to refine word segmentation for machine
translation but they ignore the alignment link types in their experiments.

4.3 Word Alignment

Given a source sentence f = {f1, f2, . . . , fJ} and a target sentence e = {e1, e2, . . . , eI}, the
goal in SMT is to model the translation probability Pr(f|e). In alignment models, a hidden
variable a = {a1, a2, . . . , aJ} is introduced which describes a mapping between source and
target words. Using this terminology, aj = i denotes that fj is aligned to ei. The translation
probability can therefore be written as a marginal probability over all alignments:

Pr(f|e) =
∑

a
Pr(f,a|e) (4.1)

In IBM Model 1, the alignment model is decomposed into the product of translation prob-
abilities as follows:

Pr(f,a|e) = 1
(I + 1)J

J∏
j=1

p(fj |eaj ) (4.2)

In the Hidden Markov alignment model, we assume a first order dependence for the align-
ments aj . The HMM-based model has the following form:

Pr(f,a|e) =
J∏
j=1

p(aj |aj−1, I) · p(fj |eaj ) (4.3)

where p(aj |aj−1, I) are the alignment probabilities (transition parameters) and p(fj |eaj ) are
the translation probabilities (emission parameters). Vogel et al. (1996) make the alignment
parameters p(i|i′, I) independent of the absolute word positions and assume that p(i|i′, I)
depend only on the jump width (i − i′). Hence, the alignment probabilities are estimated
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using a set of distortion parameters c(i− i′) as follows:

p(i|i′, I) = c(i− i′)∑I
i′′=1 c(i′′ − i′)

(4.4)

where at each EM iteration c(i− i′) is the fractional count of transitions with jump width
i− i′.

The HMM network is extended by I NULL words (Och and Ney, 2000a) with the
following constraints on the transition probabilities (i ≤ I, i′ ≤ I):

p(i+ I|i′, I) = p0 · δ(i, i′) (4.5)

p(i+ I|i′ + I, I) = p0 · δ(i, i′) (4.6)

p(i|i′ + I, I) = p(i|i′, I) (4.7)

where δ is the Kronecker delta function. The parameter p0 controls NULL insertion and is
optimized on a held-out dataset.

4.4 Joint Model for IBM Model 1 and HMM

We consider two classic generative models, IBM Model 1 (Brown et al., 1993) and the HMM
alignment model (Vogel et al., 1996) as our baselines and present how we can enhance
these models with alignment types. In this section, we introduce two models (a generative
and a discriminative model) for each baseline to jointly find the word alignments and the
corresponding alignment types for a sentence pair.

4.4.1 Generative Models

IBM Model 1 with Alignment Types

We augment IBM Model 1 (Equation 4.2) with alignment type information. In addition to
alignment function a : j → i, our model has a tagging function: h : j → k which specifies the
mapping for each alignment link (fj , ei) to an alignment type k. Alignment type k can be
any tag in the set of all possible linguistic tags. The new generative model with alignment
type, has the following form:

Pr(f,a,h|e) = 1
(I + 1)JNJ

J∏
j=1

p(fj , hj |eaj ) (4.8)
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where N is the number of possible linguistic alignment types. Using the chain rule, we have
the following enhanced IBM Model 1 which includes alignment-types:

Pr(f,a,h|e) = 1
(I + 1)JNJ

J∏
j=1

p(fj |eaj ) · p(hj |fj , eaj )

In order to normalize the probability, we modify the fraction in Equation 4.2 by adding
term NJ as there are N different alignment types for each alignment link from each source
word.

EM algorithm

Similar to IBM Model 1, we use EM algorithm to estimate the parameters of our model.
In the expectation step, we need to compute the posterior probability Pr(a,h|f, e) which is
the probability of an alignment with its types given the sentence pair. Applying the chain
rule gives:

Pr(a,h|f, e) = Pr(a|f, e)× Pr(h|a, f, e) (4.9)

where Pr(a|f, e) is the posterior probability of IBM Model 1:

Pr(a|f, e) =
J∏
j=1

p(fj |eaj )∑I
i=0 p(fj |ei)

(4.10)

Pr(h|a, f, e) can be written as a product of alignment type parameters over the individual
source and target words and their corresponding alignment type:

Pr(h|a, f, e) =
J∏
j=1

p(hj |fj , eaj ) (4.11)

Substituting Equations 4.10 and 4.11 in Equation 4.9 and simplifying it results in:

Pr(a,h|f, e) =
J∏
j=1

p(fj |eaj )× p(hj |fj , eaj )∑I
i=0 p(fj |ei)

(4.12)

We collect the expected counts over all possible alignments and their alignment types,
weighted by their probability. Suppose c(f, h|e; f, e) is the expected count for a word e

generating a word f with an alignment type h in a sentence pair (f, e):

c(f, h|e; f, e) =
∑
a,h

[Pr(a,h|f, e)
J∑
j=1

δ(f, fj)δ(e, eaj )δ(h, hj)] (4.13)
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Plugging Pr(a,h|f, e) (Equation 4.12) in Equation 4.13, yields

c(f, h|e; f, e) = p(f |e)× p(h|f, e)∑I
i=0 p(f |ei)

J∑
j=1

δ(f, fj)
I∑
i=0

δ(e, ei)δ(h, hj) (4.14)

The alignment type parameters are then estimated by Equation 4.15.

p(h|f, e) =
∑

(f,e) c(f, h|e; f, e)∑
h

∑
(f,e) c(f, h|e; f, e) (4.15)

Translation probabilities are estimated similar to IBM Model 1. This model is called
IBM1+Type+Gen in the experiments section.

After training, we can jointly predict the best alignment and the best alignment types
for each sentence pair:

â, ĥ = arg max
a,h

J∏
j=1

p(fj |eaj )p(hj |fj , eaj ) (4.16)

In this decoding method, for a given sentence pair, for each source word fj , we have to go
through all the target words eaj in the target sentence and all the possible alignment types
and find the pair of target position and alignment type that maximizes p(fj |eaj )p(hj |fj , eaj ).

HMM with Alignment Types

Our HMM with alignment types model has the factor p(fj , hj |eaj ) in its formulation, which
can be further decomposed to give:

Pr(f,a,h|e) =
J∏
j=1

p(aj |aj−1, I)p(fj |eaj )p(hj |fj , eaj )

This model is called HMM+Type+Gen. We now explain how we can estimate the parame-
ters of this model. A compact representation of this model is θ = {p(i|i′, I), p(f |e), p(hj |f, e)}
where p(i|i′, I) are the transition probabilities, p(fj |ei) are the emission probabilities and
p(hj |fj , ei) are the alignment type probabilities.

Let γi(j, h) = Pr(aj = i, hj = h|f, θ) be the posterior probabilities for the generative
HMM (HMM+Type+Gen). Since Pr(aj = i, hj = h|f, θ) = Pr(aj = i|f, θ) × Pr(hj =
h|aj = i, f, θ), we have:

γi(j, h) = γi(j)× p(h|fj , ei) (4.17)

Equation 4.17 confirms that the posterior probability of the HMM+Type+Gen model is
the HMM posterior multiplied by the alignment type probability factor p(h|fj , ei) which is
similar to the relationship between posterior probabilities in case of IBM Model 1 as shown
in Equation 4.12.
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Using this equation, we can compute the expected counts:

c(f, h|e; f, e) =
∑
i,j

γi(j, h)δ(fj , f)δ(ei, e)δ(hj , h) (4.18)

The expected counts are then normalized in the M-step to re-estimate the parameters. The
transition and emission parameters are estimated as the standard HMM-based alignment
model.

The EM algorithm for this model is similar to the Baum-Welch algorithm for the stan-
dard HMM-based word alignment model. The only change is that in the E-step, we need to
collect the alignment type expected counts and in the M-step, alignment type parameters
are re-estimated.

After training, Viterbi decoding is used to find the best word alignment and alignment
types for new sentences. We define Vi(j, h) to be the probability of the most probable
alignment for f1 . . . fj that fj is aligned to ei and the alignment type for this link is h. It
can be computed recursively as follows:

Vi(j, h) = max
i′,h′
{Vi′(j − 1, h′)p(i|i′, I)p(fj |ei)p(h|fj , ei)} (4.19)

4.4.2 Discriminative Models

Although we can use the generative models explained in Section 4.4.1 to estimate the
alignment type probabilities p(h|f, e), we can build a classifier to predict the alignment
type given a pair of aligned words.

We have a set of 11 possible alignment types in the LDC data which are the possible
classes in the classification problem. We use logistic regression to model the alignment type
prediction problem. The rationale for using this model is that it can provide us with both
the alignment type and the probability of being classified as this type.

Features

We used 22 different types of features in our logistic regression model as shown in Table
4.2. Lexical features are the heart of all lexical translation models; here, they are defined
on pairs of Chinese and English words, shown by feature template (c0, e0) in Table 4.2.

Moreover, we include features taking the context into consideration. For example, feature
(c−1, c0, e0) uses the previous Chinese word apart from the pair of English and Chinese
words. Part-of-speech (POS) tags are used to address the sparsity of the lexical features.
For example, POS tags of the pair of Chinese and English words (ct0 , et0) are included. We
also use the first five letters of the English word in a feature, to approximate the stem of an
English word. An example used as a feature is (c0, [e0]5), where the pair of Chinese word
and the prefix of English word is used as a feature.
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word-based (c0, e0), (c−1, c0, e0), (c−2, c−1, c0, e0), (c0, c1, c2, e0),
(c0, e−1, e0), (c0, e−1, e0, e1), (c0, e0, e1)

part-of-speech tag-based
(c0, et0 , e0), (c−1, c0, e−1, et0), (c0, et−1 , et0 , e0)
(c0, et−1 , e0, et1), (c0, et−1 , et0 , et1), (ct0 , et0), (ct0 , ct1 , ct2),
(ct0 , ct−1 , et0), (ct−1 , ct0 , ct−2 , et0), (ct0 , ct1 , et0), (ct−1 , ct0 , ct1 , et0)

substring-based (c0, [e0]5), (c0, [e−1]5, [e0]5, [e1]5), (ct0 , e−1, [e0]5, et0), (c0, et0 , et−1 , [e0]5)

Table 4.2: Feature types used in our alignment type classifier.

EM for the Discriminative Models

We introduce discriminative variants of the generative models explained in Section 4.4.1.
These discriminative models are referred to as IBM1+Type+Disc and HMM+Type+Disc.
The main difference between these models and their generative counterparts is in the way
they compute alignment type probabilities p(h|f, e). Whereas the generative models es-
timate these probabilities using the EM algorithm, the discriminative models estimate
these probabilities using the logistic regression classifier. For the discriminative models,
we first train a logistic regression model on the LDC data (see Section 4.5 ). The model
provides us with the alignment type probabilities which are used in the decoding stage. For
IBM1+Type+Gen model, expected counts for alignment types are collected and alignment
type parameters are updated in each iteration. In the EM algorithm for IBM1+Type+Disc,
however, we do not need to collect the expected counts for alignment types since these
parameter values are obtained from the pre-trained logistic regression classifier. However
there is an important difference in the decoding step: Equation 4.16 is used to jointly find
the best alignment and alignment types for each sentence pair. This joint decoding step
makes this approach different from simply using a pipeline trained EM model followed by a
discriminative classifier on the Viterbi output of the EM trained model. A comparison with
the pipeline model is given in Section 4.5.2. Similarly, the EM training of HMM+Type+Disc
is similar to the EM training of baseline HMM. For decoding a new sentence pair, Equation
4.19 is used.

4.5 Experiments

For the experiments, we have used two datasets. The first is the GALE Chinese-English
Word Alignment and Tagging corpus which is released by LDC1. This dataset is annotated
with gold alignment and alignment types (see Section 4.2 for more details). The second
dataset is the Hong Kong parliament proceedings (HK Hansards) for which we do not have
the gold alignment and alignment types.

1Catalog numbers: LDC2012T16, LDC2012T20, LDC2012T24, LDC2013T05, LDC2013T23 and
LDC2014T25.
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We used 1 million sentences of the HK Hansards in the experiments to augment the
training data. In the following sections, we describe three experiments. First, we examine
how effective the logistic regression classifier is for alignment type prediction. Second, we
present our experiments for two tasks: word alignment and the joint prediction of word
alignment and alignment types. Finally, we explain the machine translation experiment.2

4.5.1 Alignment Type Prediction Given Alignments

For the alignment type prediction task given an aligned word pair, we have examined
three simple maximum likelihood classifiers, as well as the logistic regression classifier with
the features shown in Table 4.2. We have trained all these classifiers on the parallel Chinese-
English 20K LDC data which is annotated with gold alignment and alignment types. To
obtain the word pairs, we have extracted the word pairs from the parallel sentences with
the gold alignment. To get the part-of-speech tags, we annotated the 20K LDC data with
the Stanford POS tagger (Toutanova et al., 2003). We ignored the gold alignment if the
Chinese side of the gold alignment is not contiguous; i.e., it cannot form one Chinese word.
This usually happens in the many-to-one and many-to-many alignments. There were only
a small number of these discontiguous alignments (2% of all alignments) as mentioned in
the LDC catalog entry for this data.

Maximum Likelihood Classifiers

We have examined three maximum likelihood (ML) classifiers. The first model is a word-
based ML classifier that uses the maximum likelihood estimate of the alignment type pa-
rameters p(h|f, e), computed from the training data, to predict the alignment type for a
new given pair of aligned words in a sentence pair in the test data. If the aligned words
were not seen in the training data, this model backs-off to SEM as it is the most probable
alignment type.

The second model which is a tag-based ML classifier, uses the maximum likelihood
estimate of p(h|tf , te) parameters of the model trained on the POS tagged data. tf and te
are the POS tags of the Chinese word f and the English word e, respectively. It backs-off to
SEM for unseen pairs of POS tags. Finally, for a pair of word (f, e), the last classifier first
uses the ML estimate of p(h|f, e) parameter. For unseen pair of words, it backs-off to use
the ML estimate of p(h|tf , te) and in case the pair of POS tags was not seen, it backs-off to
SEM.

2All our codes for the baselines and the proposed models are available at https://github.com/
sfu-natlang/align-type-tacl2017-code.
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Model accuracy
ML word-based 73.8
ML tag-based 72.3
ML word-tag 79.1

Logistic regression 81.4

Table 4.3: Accuracy of the alignment type classifiers given the alignment.

Logistic Regression Classifier

We evaluated the logistic regression classifier which makes use of the features shown in Table
4.2 and the combination of different sets of these features. We assessed the performance of
our features using 10-fold cross-validation. The best average cross-validation accuracy of
81.5% was achieved by a classifier that combines all the 22 features, shown in Table 4.2.
We have used this trained classifier for the discriminative models (IBM1+Type+Disc and
HMM+Type+Disc) in the experiments reported in Section 4.5.2.

Results

Table 4.3 shows the accuracy of the classifiers on the 2K sentences used as held-out data.
The logistic regression classifier achieved the best accuracy on the test data. Since the
logistic regression classifier obtains 87.5% on training, and the cross-validation accuracy
variance was small, we do not believe the classifier overfits on our training data.

4.5.2 Joint Word Alignment and Alignment Type Experiments

We measure the performance of our models using precision, recall, and F1-score. We also
evaluated the performance of our models and the baseline models on two different tasks:
(1) The traditional word alignment task and (2) The joint prediction of word alignment
and alignment types task. The second task is harder as the model has to predict both word
alignment and alignment types correctly. Moreover, as the baseline IBM Model 1 and the
baseline HMM cannot predict the alignment types, we can only make a comparison between
our generative and discriminative models for the second task.

We initialized the translation probabilities of Model 1 uniformly over the word pairs
that occur together in the same sentence pair.

We built an HMM similar to the one proposed by Och and Ney (2003). This model is
referred to as HMM in this chapter. HMM was initialized with uniform transition prob-
abilities and Model 1 translation probabilities. Model 1 was trained for 5 iterations; it is
followed by 5 iterations of HMM.
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To handle unseen data when the model is applied to the test data, smoothing has been
used. We smooth translation probability p(f |e) by backing-off to a uniform probability 1/|V |
where |V | is the source vocabulary size.

For smoothing alignment type probabilities p(h|f, e), we used the following linear inter-
polation:

p∗(h|f, e) = λ1p(h|f, e) + λ2p(h|tf , te) + λ3p(h) (4.20)

where λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 are the smoothing parameters and λ1 + λ2 + λ3 = 1.
tf and te are the POS tags of the Chinese word f and the English word e, respectively.

To obtain p(h|tf , te), we labelled the parallel data with the Stanford POS tagger and
then trained a model on these POS tags. p(h) is the prior probability of alignment type
h estimated over the gold training data using Table 4.1. Both p(h|f, e) and p(h|tf , te) are
smoothed with p(h) using linear interpolation.

To learn the hyper-parameters, we split the 20K LDC training data into two sets: a train
set of 18K sentences and a 2K validation set. To learn p0 and NULL emission probability,
we performed a two-dimensional grid search varying p0 in the set {0.05, 0.1, 0.2, 0.3, 0.4} and
NULL emission probability in the set {1e-7, 5e-7, . . .,1e-2, 5e-2, 1e-1}. The tuned parameters
that lead to the best result were achieved when p0 = 0.3 and NULL emission probability
was 5e-6. To tune the hyper-parameters λ1, λ2 and λ3, we performed a two-dimensional
grid search. The tuned parameters that lead to the best result was achieved when λ1 = 0.99,
and λ3 =1e-15. Hence, λ2 = 1−λ1−λ3 = 9.99e-11. We then used these learned parameters
in the experiments.

Finally, for HMM-based models, we smooth transition parameters p(i|i′, I) by backing
off to a uniform prior 1/I.

Results on the LDC Alignment Type Data

Table 4.4 shows the models’ performance for the word alignment task for all the baselines
and the methods introduced in this thesis. In this table, MODEL+Type+Gen denotes the
proposed generative variant of MODEL while MODEL+Type+Disc denotes the proposed
discriminative variant of MODEL. We trained all the models on the 20K data and tested
on the 2K sentences used as held-out data.

We can see that our generative models consistently outperform their corresponding base-
lines. The best performing model, HMM+Type+Gen, achieves up to 13.9% improvement
in F1-score over the baseline HMM. To compare our models against GIZA++, we add the
test data to the training, and use Moses (Koehn et al., 2007) with its default parameters
to obtain word alignments. We report its performance on the test data. Unlike the other
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Word Alignment (WA) Task: Train(20K)+Test(2K)
Model Prec. Rec. F1-score
IBM1 50.9 40.5 45.1

IBM1+Type+Disc 51.7 41.2 45.8
IBM1+Type+Gen 59.0 47.0 52.3

HMM 68.0 48.7 56.7
HMM+Type+Disc 66.2 50.5 57.3
HMM+Type+Gen 72.9 58.0 64.6

GIZA++ 61.4 47.7 53.8

Table 4.4: Word alignment task results of the models trained on 20K LDC data (22K LDC
data for GIZA++) and tested on 2K LDC test data.

WA+Type Task: Train(20K) + Test(2K)
Model Prec. Rec. F1-score

IBM1+Type+Disc 44.0 37.5 40.5
IBM1+Type+Gen 47.8 40.8 44.0
HMM+Type+Disc 55.3 45.2 49.8
HMM+Type+Gen 59.2 50.5 54.5

IBM1→Disc 42.9 36.6 39.5
HMM→Disc 57.2 43.8 49.6

GIZA++→Disc 52.2 43.5 47.5

Table 4.5: Results of the models trained on 20K LDC data (22K LDC data for GIZA++)
and tested on 2K LDC test data for (1) joint prediction of word alignment and alignment
types task, and (2) word alignment models followed by the discriminative classifier to predict
alignment types.

models in Table 4.4 which are trained on 20K data, GIZA++ model is trained on 22K
data.3

Table 4.5 shows the results obtained for the joint prediction of word alignment and
alignment types task. As mentioned previously, the basic IBM Model 1 and HMM are inca-
pable of predicting the alignment types and hence are not included in this table. However,
it is interesting to compute word alignments using our baselines and then apply the logistic
regression classifier on the alignments to get the corresponding alignment types. In Table
4.5, MODEL→Disc denotes this pipelined version of MODEL. The only difference between
MODEL+Type+Disc and MODEL→Disc is in the decoding step. The former jointly pre-

3GIZA++ does not allow the user to run it as a classifier (a model that is trained on the training data
and can be tested on new data). Initially, we performed incremental training with inc-giza-pp (Levenberg
et al., 2010). Since the performance was very poor, we used GIZA++ in our experiments by appending the
test data to the training data (even though our models did not see the test data) and reported the result of
Viterbi output from the trained GIZA++ model on the combined data.
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WA Task: Train(20K+1M) + Test(2K)
Model Prec. Rec. F1-score
IBM1 49.7 39.6 44.1

IBM1+Type+Disc 50.5 40.2 44.8
IBM1+Type+Gen 59.5 47.4 52.8

HMM 67.7 48.8 56.7
HMM+Type+Disc 66.1 50.7 57.4
HMM+Type+Gen 73.1 58.2 64.8

GIZA++ 60.0 47.0 52.7

Table 4.6: Word alignment task results for the augmented model.

dicts word alignment and alignment types while the latter performs word alignment and
then applies the classifier on the output of word alignment to obtain the alignment types.
We also computed word alignments using GIZA++ as explained for the previous experiment
and then ran our logistic regression classifier on the alignments to get the corresponding
alignment types. This model is denoted as GIZA++→Disc in Table 4.5. The results in this
table show that the generative model outperforms its discriminative counterpart. Similar
to the previous experiment, HMM+Type+Gen model achieved the best result.

Results with Augmented Model

We conducted another experiment to see whether we can improve the current results
by augmenting the training data. We trained on the 20K LDC data with gold alignment
and alignment types, and 1 million HK Hansards which has no alignment or alignment type
annotations and tested on the 2K sentences used as held-out data. Although HK Hansards
data is not annotated, it can augment our vocabulary. We built a model with the 20K
LDC data; we call it LDC model. We then trained a model using the 20K LDC data and
the 1 million HK Hansards data; we refer to this as the augmented model. The alignment
type parameters of the augmented model are initialized, based on the maximum likelihood
estimate of the 20K LDC data. Table 4.6 shows the results of the augmented model for the
word alignment task. Table 4.7 shows the results of this model for the joint prediction of
word alignment and alignment types tasks.
Results with Augmented Model and Back-off Smoothing

Purely using the augmented model was not effective in estimating the translation prob-
abilities p(f |e), and hence did not contribute to any improvement compared to the previous
experiment. This is due to the fact that HK Hansards data is from a different domain com-
pared to our test LDC data. Since the 2K test data is from the LDC data, we applied a
back-off smoothing technique: we estimated p(f |e) from the LDC model if the word pair
(f, e) was seen by the LDC model, and we used the augmented model to compute p(f |e)
otherwise.
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WA+Type Task: Train(20K+1M) + Test(2K)
Model Prec. Rec. F1-score

IBM1+Type+Disc 42.9 36.6 39.5
IBM1+Type+Gen 48.0 40.9 44.2
HMM+Type+Disc 55.2 45.4 49.8
HMM+Type+Gen 59.2 50.4 54.5

IBM1→Disc 41.9 35.7 38.6
HMM→Disc 56.7 43.7 49.4

GIZA++→Disc 51.0 42.8 46.5

Table 4.7: Results using the augmented model for (1) joint prediction of word alignment
and alignment types task, and (2) word alignment models followed by the discriminative
classifier to predict alignment types.

WA Task: Train(20K+1M) + Test(2K)
Model Prec. Rec. F1-score
IBM1 52.7 42.0 46.7

IBM1+Type+Disc 53.5 42.6 47.4
IBM1+Type+Gen 60.3 48.0 53.5

HMM 69.4 50.0 58.1
HMM+Type+Disc 67.1 51.9 58.5
HMM+Type+Gen 74.5 59.2 66.0

GIZA++ 60.0 47.0 52.7

Table 4.8: Word alignment task results, back-off using the augmented model.

Table 4.8 shows the results of the augmented model after the smoothing step is done for
the word alignment task. Compared to the results in Table 4.4, all the models performed
better, with the HMM+Type+Gen outperforming all the other methods.

The results for the joint prediction task are shown in Table 4.9. This confirms our success
in improving the performance of all the methods, compared to the results in Table 4.5.

Statistical significance tests were performed using the approximate randomization test
(Yeh, 2000) with 10,000 iterations. The generative models significantly outperform their
baseline and discriminative counterparts (p-value < 0.0001).

4.5.3 Machine Translation Experiment

To see whether the improvement in F1-score by our generative model also improves the
BLEU score, we aligned the 20K LDC data and 1 million sentences of the HK Hansards data
using the augmented model and tested on 919 sentences of MTC part 4 (LDC2006T04). We
trained models in each translation direction and then symmetrized the produced alignments
using the grow-diag-final heuristic (Och and Ney, 2003). We used Moses (Koehn et al., 2007)
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WA+Type Task: Train(20K+1M) + Test(2K)
Model Prec. Rec. F1-score

IBM1+Type+Disc 45.3 38.6 41.7
IBM1+Type+Gen 48.6 41.5 44.8
HMM+Type+Disc 55.9 46.2 50.6
HMM+Type+Gen 60.3 51.3 55.4

IBM1→Disc 44.3 37.8 40.8
HMM→Disc 58.2 44.9 50.7

GIZA++→Disc 51.0 42.8 46.5

Table 4.9: Results with back-off using the augmented model for (1) joint prediction of
word alignment and alignment types task, and (2) word alignment models followed by the
discriminative classifier to predict alignment types.

Model BLEU TER
GIZA++ HMM 23.4 70.4

GIZA++ (Moses) 23.2 69.1
HMM 23.5 68.3

HMM+Type+Gen 24.4 67.8

Table 4.10: Comparison of the BLEU and TER scores. HMM is our baseline HMM (cf.
footnote 2). GIZA++ (Moses) is the version used in the Moses MT system.

with standard features, and tuned the weights with MERT (Och, 2003). An English 5-gram
language model is trained using KenLM (Heafield, 2011) on the Gigaword corpus (Parker
et al., 2011). We give a comparison between HMM+Type+Gen model, our baseline HMM,
GIZA++ HMM and standard GIZA++ (as used by Moses) in Table 4.10. We report the
BLEU scores and TER computed using MultEval (Clark et al., 2011).

The generative model improves over GIZA++ HMM by 1.0 BLEU points. It also im-
proves over the standard GIZA++ by 1.2 BLEU points. HMM+Type+Gen significantly
outperforms GIZA++ HMM (p-value=0.00036) and GIZA++ IBM4 (p-value=0.0004) eval-
uated by MultEval.

4.6 Discussion

Figure 4.2 shows the performance of baseline HMM and HMM+Type+Gen model for two
word alignment examples extracted from the test data, where squares indicate the gold
standard alignments. Numbers in the circles show the IDs of the predicted tags by the
HMM+Type+Gen model, where ID of each tag is defined in Table 4.1. The incorrectly
predicted tags are shown with the ∗ symbol.
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Figure 4.2: Word alignment performance of baseline HMM and HMM+Type+Gen model
for two test sentences; #: HMM+Type+Gen, 4: HMM and 2: gold alignment. Numbers in
the circles show the IDs of the predicted alignment types by the HMM+Type+Gen model,
where ids are given in Table 4.1. The incorrectly predicted alignment types are shown with
the ∗ symbol.

In both examples, the HMM+Type+Gen model identifies difficult alignments over long
distances better than the baseline HMM. For example, Figure 4.2(a) illustrates how our
baseline HMM makes a mistake by aligning the Chinese word “。” to “with” possibly
because the transition probabilities were dominant in the baseline HMM. HMM+Type+Gen
model however avoids this mistake by making use of the alignment type information. The
model takes into account the fact that “。” and “.” are function words and should be aligned
to each other with a FUN tag. Figure 4.2(b) shows that the HMM+Type+Gen model favors
aligning 见面 (meet) to “meet”, whereas the baseline HMM incorrectly aligns 见面 (meet)
to “jintao”. We hypothesize that this occurs because p(SEM| 见面, meet) has a high value.

To give a detailed analysis of the precision of the generative model in alignment type
prediction, we present a confusion matrix on the test data in Table 4.11 where the vertical
axis represents the actual alignment type and the horizontal axis represents the predicted
alignment type. From the confusion matrix, we found that our model works well in predicting
SEM, FUN, GIS, GIF, MDE and CDE alignment types since the numbers on the diagonal
are the largest in the row. PDE is hard to be distinguished from MDE. COI and TIN can
be easily mis-predicted by the model. NTR and MTA are omitted from this table as all the
predictions for these alignment types are zero. For MTA, it is probably because this type
rarely occurs in our training data. An alignment type is NTR if either Chinese or English
list of tokens for that alignment is empty. In other words, the NTR alignment type is used
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SEM FUN GIS GIF MDE PDE CDE COI TIN
SEM 11374 136 2002 10 0 0 0 14 3
FUN 196 8172 21 16 2 0 0 1 1
GIS 2790 31 3312 18 2 1 2 8 0
GIF 16 118 26 772 0 0 0 0 2

MDE 0 0 1 0 293 26 2 0 0
PDE 1 0 1 2 40 55 0 0 0
CDE 0 5 0 0 0 0 79 0 0
COI 91 2 48 0 0 0 0 38 0
TIN 22 12 11 3 0 0 0 0 5

Table 4.11: Confusion matrix of the HMM+Type+Gen model on the LDC test data. The
vertical axis represents the actual alignment type and the horizontal axis represents the
predicted alignment type.

when some words are dropped during the translation process. We could predict NTR for the
Chinese words that are aligned to NULLs. However, predicting NTR for such cases worsened
the F-score of the generative model (2.0 points drop for HMM+Type+Gen model). Hence,
we do not predict the NTR alignment type for any Chinese words. In total, just for the
confusion matrix, 10,216 alignments (or 25.54% of all alignments) are not included in Table
4.11 which shows the alignment type predictions for the word pairs that were correctly
aligned by HMM+Type+Gen.4

4.7 Related Work

There has been several studies on semi-supervised word alignment models. Callison-Burch
et al. (2004) improve alignment and translation quality by interpolating hand-annotated,
word-aligned data and automatic sentence-aligned data. They showed that a much higher
weight should be assigned to the model trained on word-aligned data. Fraser and Marcu
(2006) propose a semi-supervised training approach to word alignment, based on IBMModel
4, that alternates the EM step which is applied on a large training corpus with a discrimi-
native error training step on a small hand-annotated sub-corpus. The alignment problem is
viewed as a search problem over a log-linear space with features (sub-models) coming from
the IBM Model 4. In the proposed algorithm, discriminative training controls the contribu-
tion of sub-models while an EM-like procedure is used to estimate the sub-model parame-
ters. Unlike previous approaches (Och and Ney, 2003; Fraser and Marcu, 2006, 2007a) that
use discriminative methods to tune the weights of generative models, Gao et al. (2010b)
proposes a semi-supervised word alignment technique that integrates discriminative and
generative methods. They propose to use a discriminative word aligner to produce high
precision partial alignments that can serve as constraints for the EM algorithm. The dis-

4We should note that these incorrectly predicted alignments are only kept out of the confusion matrix.
All alignments, correct or incorrect, are included in all the results we show in the other tables.
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criminative word aligner uses the generative aligner’s output as features. This feedback loop
iteratively improves the quality of both aligners. Niehues and Vogel (2008) propose a dis-
criminative model that directly models the alignment matrix. Although the discriminative
model provides the flexibility to use manually word-aligned data to tune its weights, it still
relies on the model parameters of IBM models and alignment links from GIZA++ as fea-
tures. Gao et al. (2010a) present a semi-supervised algorithm that extends IBM Model 4
by using partial manual alignments. Partial alignments are fixed and treated as constraints
into the EM training.

DeNero and Klein (2010) present a supervised model for extracting phrase pairs under
a discriminative model by using word alignments. They consider two types of alignment
links, sure and possible, that are extracted from the manually word-aligned data. Possible
alignment links dictate which phrase pairs can be extracted from a sentence pair.

Among the unsupervised methods, (Toutanova et al., 2002) utilizes additional source
of information apart from the parallel sentences. Part-of-speech tags of the words in the
sentence pair are incorporated as a linguistic constraint on the HMM-based word alignment.
The part-of-speech tag translation probabilities in this model are then learned along with
other probabilities using the EM algorithm. POS tags as used in Toutanova et al. (2002)
were also utilized to act similarly to word classes in (Och and Ney, 2000a,b); however, the
improvements provided by the HMM with POS tag model over HMM alignment model of
Och and Ney (2000b) was for small training data sizes (<50K parallel corpus).

Neural approaches to word alignment have been explored in the literature. Yang et al.
(2013) introduce feed-forward neural network based models for translation and alignment
probabilities. Their model was trained on GIZA++ alignments. Tamura et al. (2014) pro-
pose an RNN-based alignment model. They apply noise-contrastive estimation (Gutmann
and Hyvärinen, 2010; Mnih and Teh, 2012) to generate negative samples for unsupervised
training of their RNN-based model. Legrand et al. (2016) presented a neural network align-
ment model which computes alignment scores as dot products between representations of
windows around source and target words. Garg et al. (2019) present an approach to train a
Transformer model to extract alignments and translations in a multitask setup. Zenkel et al.
(2019) extend the Transformer with an alignment layer on top of the decoder sub-network
and directly optimize its activations towards predicting the given target word.

All previous studies on word alignment have assumed that word alignments are untyped.
To our knowledge, the alignment types for word alignment provided by the LDC as anno-
tations on word alignment links, have never been used to improve word alignment. Our
work differs from the previous works as it proposes a new task of jointly predicting word
alignment and alignment types. A semi-supervised learning algorithm is presented to solve
this task. Our method is semi-supervised as it combines LDC data, which is annotated with
alignment and alignment types, with sentence aligned (but not word aligned) data from
the HK Hansards corpus. Our generative algorithm makes use of the gold alignment and
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alignment types data to initialize the alignment type parameters. The EM training is then
used to re-estimate the parameters of the model in an unsupervised manner. We also use
POS tags to smooth the alignment type parameters, unlike the approach in Toutanova et al.
(2002).

4.8 Conclusion

In this chapter, we introduced new probabilistic models for augmenting word alignments
with linguistically motivated alignment types. Our proposed HMM-based aligners with
alignment types achieved up to 13.9% improvement in the alignment F1-score over the
baseline. The BLEU score improved by 1.2 points over the standard GIZA++ aligner. The
proposed method can also be used for the more recent release of LDC i.e. GALE Arabic-
English word alignment dataset. In the future, we plan to use alignment type information
as a feature function for feature rich word alignment models and explore how alignments
types can improve attention models for neural MT models. The alignment types we predict
can also be used for other tasks such as projecting part-of-speech tags and dependency trees
from a resource-rich language to a resource-poor language.
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Chapter 5

Unsupervised Neural Hidden
Markov Model for Word Alignment

Despite the rapid rise of neural approaches in different areas of NLP, neural word align-
ment approaches have not matured enough, and traditional unsupervised statistical models
remain the most widely used approaches for word alignment. We present an unsupervised
neural Hidden Markov Model for word alignment, where emission and transition probabil-
ities are modeled using neural networks. We investigate the effect of incorporating BERT
representation into our model in order to include the full target context for the emission
model. In the experiments, we demonstrate improvements over GIZA++ IBM4 model,
which is still a strong baseline, on Romanian-English and Chinese-English datasets.

5.1 Introduction

Word alignment is the task of discovering a word-to-word correspondence in a pair of sen-
tences that are translations of each other. Even though neural machine translation (NMT)
does not use explicit alignments, word alignment is still essential for analysis of translation
errors (Ding et al., 2017), guiding NMT models during training (Chen et al., 2016; Liu
et al., 2016; Alkhouli and Ney, 2017; Alkhouli et al., 2018) and improving NMT decod-
ing (Alkhouli et al., 2016). Apart from machine translation, word alignment is essential
to many NLP tasks including projecting linguistic annotations (Yarowsky and Ngai, 2001;
Hwa et al., 2005) and creating multilingual embeddings (Faruqui and Dyer, 2014b; Guo
et al., 2016; Dufter et al., 2018).

Generative word alignment models, IBM models 1-5 (Brown et al., 1993) and HMM
(Vogel et al., 1996) are the most widely used word alignment approaches. Neural network-
based alignment models have been explored in the literature, including the early works
(Yang et al., 2013; Tamura et al., 2014; Legrand et al., 2016) and the more recent ones
(Zenkel et al., 2019; Garg et al., 2019).
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In this work, we show how we can neuralize the HMM-based word alignment model
(Vogel et al., 1996). The emission and transition probabilities in the HMM are modeled
using feed-forward neural networks. We then extend this basic neural HMM, such that
the emission model take the full target sentence into account. A combination of forward-
backward algorithm and backpropagation is used for training. This framework can be used
in an end-to-end neural network unlike statistical models (e.g. those in GIZA++) that can
only be used as a point estimate (using Viterbi).

We apply our neural HMM aligners on three different language pairs. We provide a
comparison of our word alignment models with GIZA++ IBM4 and attention-based NMT.
Our results demonstrate improvements over GIZA++ IBM4 model in terms of F1-score,
for two language pairs.

5.2 Word Alignment

Given a source sentence fJ1 = f1, f2, . . . , fJ , and a target sentence eI1 = e1, e2, . . . , eI , the
alignment sequence aJ1 = a1, a2, . . . , aJ describes a mapping between source and target
words, where aj = i denotes that fj is aligned to ei. Without loss of generality, Pr(fJ1 |eI1)
can be decomposed into a product of alignment probabilities and translation probabilities:

Pr(fJ1 |eI1) =
∑
aJ

1

J∏
j=1

Pr(aj |f j−1
1 , aj−1

1 , eI1)Pr(fj |f j−1
1 , aj1, e

I
1) (5.1)

In the Hidden Markov alignment model, we assume a first order dependence for the align-
ments aj and that the translation probability depends only on the aligned target word. The
HMM-based model has the following form:

Pr(fJ1 , aJ1 |eI1) =
J∏
j=1

p(aj |aj−1, I) · p(fj |eaj ) (5.2)

where p(aj |aj−1, I) are the alignment probabilities (transition probabilities) and p(fj |eaj )
are the translation probabilities (emission probabilities).

5.3 Neural Hidden Markov Model for Word Alignment

We present a Neural Hidden Markov alignment model, where the emission and transition
probabilities are modeled using feed-forward neural networks. We extend the neural HMM
for unsupervised POS tag induction (Tran et al., 2016) to the task of unsupervised word
alignment, a non-trivial extension just as extending an HMM (Rabiner, 1989) to handle
word alignment (Vogel et al., 1996) was non-trivial.
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5.3.1 Emission Architecture

For the emission model, we assume a similar dependence as in the original HMM-based
model:

Pr(fj |f j−1
1 , aj1, e

I
1) = p(fj |ei) (5.3)

For an input target word ei, the emission model gives a probability distribution over possible
source words fj . This can be implemented by a simple feed-forward neural network with an
embedding matrix of Ve ×D following by a non-linear activation (tanh). We then apply a
hidden layer of size D followed by a tanh. Finally, an output linear layer of size Vf will be
applied. The softmax function will be applied to provide p(fj |ei) probabilities:

p(fj |ei) = exp(vTi v̄j)∑Vf

k=1 exp(vTi v̄k)
(5.4)

where vi ∈ RD is the vector embedding of word ei, and v̄j is the weight of unit j in the
output layer. Vf and Ve are the vocabulary sizes of source and target languages, respectively.

5.3.2 Transition Architecture

Our feed-forward transition model has the same conditional dependence as the one in the
original HMM-based model:

Pr(aj |f j−1
1 , aj−1

1 , eI1) = p(aj |aj−1) (5.5)

We employ a Multi-Layer Perceptron (MLP) for the transition model. Given a hidden layer
vector h ∈ RD and a weight matrix W ∈ RImax

2×D, where Imax is the maximum target
sentence length, we compute the un-normalized transition matrix as follows:

T = W h (5.6)

We reshape T to an Imax × Imax matrix. A softmax layer per row is then applied to
produce transition probabilities p(aj |aj−1).

5.4 Contextual Emission Model

The model explained in the previous section, was a baseline neural HMM for word alignment,
which closely follows the conditional assumptions of (Vogel et al., 1996)’s. Using neural
networks, however, allows for seamless integration of additional context. We augment the
emission model with the target word context:

Pr(fj |f j−1
1 , aj1, e

I
1) = p(fj |eI1) (5.7)
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We use BERT (Devlin et al., 2018) to obtain contextual representations of the subwords in
the target sentence which can be fed into our network when producing emission probabilities.
The emission model has the same architecture as the one explained in section 5.3.1 except
that the embedding layer is replaced with BERT.

We leverage the pre-trained BERTBASE cased model which has 12 layers. To pool across
these layers, we use the scalar mixing technique introduced by the ELMo model (Peters
et al., 2018) where we learn a weighted sum of all the layers.

5.5 Training Neural HMM

Similar to the training procedure described in Berg-Kirkpatrick et al. (2010); Tran et al.
(2016), we can apply the EM algorithm where the E-step is similar to a standard HMM, but
the M-step involves a gradient-based training. For the baseline neural HMM, the gradient
update rule is as follows:

J(θ) =
∑
aJ

1

p(aJ1 |fJ1 , eI1)∂ ln p(fJ1 , aJ1 |eI1, θ)
∂θ

=
∑
j

∑
i

p(i|fJ1 , eI1)∂ ln p(fj |ei, α)
∂α

+

∑
j

∑
i′

∑
i

p(i′, i|fJ1 , eI1)∂ ln p(i|i′, β)
∂β

where p(i|fJ1 , eI1) and p(i′, i|fJ1 , eI1) are the posterior probabilities that can be computed
using the Baum-Welch algorithm; α and β are the parameters of the emission and tran-
sition models, respectively. The gradient terms come from the backpropagation algorithm.
To enhance the computational efficiency, we have applied the Direct Marginal Likelihood
(Salakhutdinov et al., 2003) optimization.

During training, for a given batch, we compute the posterior probabilities using the
neural-network based emission and transition models, perform backpropagation, and update
the parameters of the networks. This procedure is repeated for a fixed number of epochs.

5.6 Experiments

We conducted our experiments on three language pairs, French-English (Fr-En), Romanian-
English (Ro-En) and Chinese-English (Cn-En). These languages represent a range of align-
ment difficulties. For example, Romanian introduces a significant morphological complexity.
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For Fr-En and Ro-En, we have used the trial (dev) sets and test sets provided in the
2003 NAACL shared task (Mihalcea and Pedersen, 2003).1 For Fr-En, we have trained our
models on 100K parallel sentences from Europarl, validated on 37 sentence trial set, and
tested on 447 sentence test set. For Ro-En, our models are trained on WMT’16 data with
612K sentence pairs.2 The validation and test is performed on a 17 sentence trial set and a
248 test set, respectively. For Cn-En, we used 1M sentences of the Hong Kong parliament
proceedings for training, 1K dev-set and a 2K test set, both taken from the GALE Chinese-
English Word Alignment and Tagging corpus.3

We measure the performance of our models using precision, recall, and F1-score, as
suggested by Fraser and Marcu (2007b). To evaluate the models with subword units, we
need to make the produced alignment and reference alignment comparable. To convert
subword alignment to word alignment, we align a source word to a target word if any of
their subwords were aligned together.

5.6.1 Experimental Setup

We closely follow the setting used in Tran et al. (2016). We considered the vocabularies
to be the top 50K frequent words for both languages. Following Bahdanau et al. (2015),
sentences of length 50 or lower were used for training. Hence, for the transition model, Imax
is set to 50. The emission model of our baseline Neural HMM (NHMM) has an Embedding
layer of size 512. Both emission and transition models have 512 hidden units, as it was the
largest we could fit into memory.

NHMM+BERT uses pre-trained BERTBASE cased model for English (∼30K vocab size).
This model works on subword level. For the source side, we used the cased multilingual
BERT tokenizer which is based on the WordPiece model (∼120K vocab size). The BERT
model’s weights were frozen and the pre-trained representations were used in our model
similar to classic feature-based approaches.

We used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001. Our
batch size is set to 64 due to GPU memory limitation. All the models were trained for 5
epochs, and the model with the best F1-score on the dev-set was picked to be evaluated on
the test data.

1http://web.eecs.umich.edu/~mihalcea/wpt/index.html

2https://www.statmt.org/wmt16/translation-task.html

3Catalog number for training: LDC2000T50; catalog numbers for development and test sets:
LDC2012T16, LDC2012T20, LDC2012T24, LDC2013T05, LDC2013T23 and LDC2014T25.
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5.6.2 Results

We compare our models against two baselines: GIZA++ IBM Model 4, and attention-based
NMT. For GIZA++, we add the test data to the training, and use Moses (Koehn et al.,
2007) with its default parameters to obtain word alignments.4 We report its performance
on the test data. Unlike GIZA++, our models are not trained on the train and test data.
For attention baseline, we used Open-NMT (Klein et al., 2017) to train our attention-based
NMT systems. To obtain the F1-score of attention models, we follow Luong et al. (2015)
to produce hard alignments from attentions by selecting the most attended source word for
each target word.

Tables 5.1-5.3 show the models’ performance for the GIZA++ baseline, attention-based
NMT, and the proposed models for Fr-En, Ro-En and Cn-En language pairs, respectively.
In these tables, NHMM refers to the proposed neural HMM baseline, while NHMM+BERT
is the neural HMM with a contextual emission model.

In most cases, NHMM outperforms the GIZA++ baseline. NHMM outperforms the
attention model in all language pairs. As expected, NHMM+BERT improves over the base-
line NHMM, making good use of the additional context. NHMM+BERT achieves a no-
table gain of 8.2% F1-score for Cn-En. It is noted that during the tuning experiments,
NHMM+BERT got 79.5 F1-score while GIZA++ got 77.2 F1-score on the dev-set. The
superiority of GIZA++ for Fr-En, as seen from Table 5.1, is most likely because it uses the
test set in the training.

As discussed in section 5.3.2 and unlike Wang et al. (2017); Ngo-Ho and Yvon (2019),
our transition model depends on the absolute positions and not on the jump width. We have
performed some experiments with the distance-based model where Pr(aj |f j−1

1 , aj−1
1 , eI1) =

p(∆j). For example, in the experiments on the dev-set, our model improves over the distance-
based model F1-score from 75.9 to 76.5 for Fr-En and from 63.3 to 67.9 for Ro-En.

Our code is implemented in pytorch. When running on a single GPU of NVIDIA Quadro
P6000, we achieve an average speed of 1212, 1543 and 650 target words per second for Fr-
En, Ro-En and Cn-En, respectively. NHMM has 53.1M parameters while NHMM+BERT
has 70.5M parameters.

5.7 Related Work

Neural approaches to word alignment have been explored in the literature. Yang et al. (2013)
introduced feed-forward neural network based models for translation and alignment prob-
abilities. Their model was trained on GIZA++ alignments. Tamura et al. (2014) proposed
an RNN-based alignment model. They applied noise-contrastive estimation (Gutmann and

4Moses tokenizer was used for tokenization.

66



Model Prec. Rec. AER F1
GIZA++ 75.2 90.7 19.3 82.3
Attention 64.6 62.1 36.3 63.3
NHMM 74.4 83.2 22.6 78.5
NHMM+BERT 75.5 86.2 21.0 80.5

Table 5.1: Word alignment results for Fr-En.

Model Prec. Rec. AER F1
GIZA++ 65.0 55.7 40.0 60.0
Attention 59.0 54.1 43.6 56.4
NHMM 65.3 58.2 38.5 61.5
NHMM+BERT 63.1 63.6 36.6 63.4

Table 5.2: Word alignment results for Ro-En.

Model Prec. Rec. AER F1
GIZA++ 54.9 43.4 51.5 48.5
Attention 42.4 44.1 56.8 43.2
NHMM 56.9 45.7 49.3 50.7
NHMM+BERT 58.3 55.2 43.3 56.7

Table 5.3: Word alignment results for Cn-En.

Hyvärinen, 2010; Mnih and Teh, 2012) to generate negative samples for unsupervised train-
ing of their RNN-based model.

Alkhouli et al. (2016) and Wang et al. (2017) applied the hidden Markov model decom-
position using feed-forward translation and alignment models. Training of alignment-based
NMT (Alkhouli et al., 2016) relies on GIZA++ alignments. The two models are trained
separately and combined during decoding. Alkhouli and Ney (2017) used a modified atten-
tion model as a translation model and an RNN-based alignment model. Wang et al. (2017)
employed an HMM with end-to-end training. The HMM is used for re-ranking n-best lists
created by a phrase-based decoder. The training algorithm is a combination of forward-
backward and backpropagation. This is similar to the training procedure of Tran et al.
(2016) who proposed a general unsupervised neural HMM which can be used for models
with latent variables and tractable inference. They demonstrated their method for part-
of-speech induction task. We propose an unsupervised neural HMM for word alignment.
Unlike in Tran et al. (2016), our emission model leverages the full target sentence context,
using the pre-trained BERT model (Devlin et al., 2018). Ngo-Ho and Yvon (2019) present
neural baselines for word alignment models, including IBM1 and HMM. They looked at
various neuralizations. Their contextual translation model depends on a window context
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of size 1 around the aligned target word, which is similar to the window context concept
used in Alkhouli et al. (2016); Wang et al. (2017). Unlike the jump-based transition model
of Wang et al. (2017); Ngo-Ho and Yvon (2019), our transition model is position-based.
We leverage full sentence context using BERT embeddings unlike their work. Zenkel et al.
(2019); Garg et al. (2019); Zenkel et al. (2020) extend the transformer architecture to ob-
tain word alignments. Garg et al. (2019) present an approach to train a Transformer model
to extract alignments and translations in a multitask setup. Zenkel et al. (2019) extend
the Transformer with an alignment layer on top of the decoder sub-network and directly
optimize its activations towards predicting the given target word. These methods do not
use posterior probabilities in contrast to our approach.

5.8 Conclusion

We have presented a neural HMM for word alignment. Using pre-trained BERT embeddings,
we have shown how to augment the emission model with the full target sentence context. Our
results show improvements for Chinese-English and Romanian-English. Our NHMM+BERT
achieved up to 8.2% improvement in the alignment F1-score over GIZA++ IBM4 baseline
for Chinese-English. In the next chapter, we use our neural aligner for projecting part-of-
speech tags from a resource-rich language to a resource-poor language.
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Chapter 6

Cross-lingual Annotation
Projection with Neural HMM for
Low-resource Languages

We tackle the part-of-speech tagging task for the zero-resource scenario where no POS an-
notated training data is available. We present a cross-lingual projection approach where
neural HMM aligners, discussed in Chapter 5, are used to obtain high quality word align-
ments between low-resource languages and high-resource language. Moreover, high quality
neural POS taggers are used to provide annotations for the resource-rich language side of the
parallel data, as well as to train a tagger on the projected data. Our experimental results
on truly low-resource languages show that our methods outperform their corresponding
baselines.

6.1 Introduction

Part-of-speech (POS) tagging is a crucial task in Natural Language Processing (NLP).
Supervised POS taggers have shown state-of-the-art accuracies for many well-resourced
languages which is close to the level of inter-annotator agreement. However, state-of-the-art
approaches for POS tagging only scale to a small fraction of the world’s 6900 languages.
The main bottleneck is the lack of annotated data for the vast majority of these languages.

Although it is not feasible to acquire manually annotated data for the majority of
low-resource languages, finding a parallel data between the low-resource language and the
high-resource language is much easier. Previous studies on low-resource NLP has primarily
focused on leveraging parallel corpora to project annotations from a resource-rich language
to a resource-poor language (Yarowsky and Ngai, 2001; Guo et al., 2015; Buys and Botha,
2016). POS tags are projected via word alignments, and the projected POS data is then
used to train a model in the low-resource language (Das and Petrov, 2011; Täckström et al.,
2013; Fang and Cohn, 2016).
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Majority of the previous works in the cross-lingual transfer learning for low-resource lan-
guages assume that linguistic resources are available for the low-resource languages. This
assumption does not hold for truly low-resource languages. On the other hand, these ap-
proaches are biased toward Indo-European languages. Cross-lingual learning between these
languages are easier due to the large volume of translated texts between these languages,
easier tokenization and segmentation for these languages, and word order similarity which
makes the word alignments more reliable.

We present an approach to learn POS taggers for truly low-resource languages, making
minimum assumptions about the available linguistic resources. These assumptions do in fact
hold for truly low-resource languages. Therefore, we consider zero-resource scenario for the
target languages i.e. we assume no labeled data, tag dictionaries, typological information,
etc. is available for these languages. We, however, need a parallel corpus for annotation
projection. Therefore, we have to rely on low-resource languages for which we can find par-
allel corpora between those languages and a resource-rich language (preferably a related
one). For this reason, we found two real low-resource languages from the Universal Depen-
dencies (UD) treebanks (Nivre et al., 2016), Kazakh and Breton, which could fit into our
assumption. We have also simulated the zero-resource scenario for French by not using any
POS-annotated French training data.

Our approach follows Yarowsky and Ngai’s original annotation projection approach.
However, we used our proposed neural HMM aligners to obtain high quality word alignments
between our low-resource languages and English. Moreover, we used a high quality BiLSTM-
CRF tagger (Rei and Yannakoudakis, 2016; Rei et al., 2016) to tag the English side of the
parallel data, and to train a tagger on the target language after projection. Our experimental
results demonstrates the effectiveness of our approach for low-resource languages.

6.2 Part-of-Speech Tagger Induction

The lack of annotated data for the vast majority of languages is a major obstacle to the devel-
opment of statistical part-of-speech taggers for these languages. Although hand-annotated
data for low-resource languages are scarce, parallel data between a low-resource language
and a high-resource language is easier to obtain. Yarowsky and Ngai (2001) pioneered the an-
notation projection approach where they use word-aligned data to project annotations from
a resource-rich language to an arbitrary language. The resulting projected data can then
serve as training data for developing applications in the arbitrary (probably low-resource)
language. We closely follow Yarowsky and Ngai (2001) for cross-lingual POS tag projection.
Their approach is explained for a cross-lingual transfer from English to French. However,
the proposed method is language-independent and can be applied to any language-pair as
long as we have a parallel data between the two languages and a high quality POS tagger
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for the resource-rich language. Throughout this chapter, we assume that the source of the
projection (resource-rich side of the parallel data) is English.

6.2.1 POS projection

We present our cross-lingual projection approach here. First, we tag the English side of the
parallel data using a BiLSTM-CRF tagger (Section 6.5.3). We use our Neural HMM align-
ers (Chapter 5) to induce word alignments on the parallel data. Following the prior works
(Lacroix et al., 2016), we ignore unaligned words as well as many-to-many alignments by
using one directional alignments where one target token can never be aligned to multiple
English tokens. Note that, we allow many-to-one projection from one English token to mul-
tiple target tokens. By doing this, annotation projection becomes straightforward. Although
using all the alignments (i.e. many-to-many and one-to-many) result in more POS-tagged to-
kens, it also introduces considerable noise. The NHMM+BERT model presented in Chapter
5 produces many-to-many alignments. For the experiments in this chapter, we use the first
subword representation as the input to our network when producing emission probabilities.

To reduce the noise in the projected data, following Yarowsky and Ngai (2001), we de-
velop a re-estimation technique based on the assumption that words have a strong tendency
to exhibit only one core POS tag and very rarely have more than two. Finally, We learn a
BiLSTM-CRF tagger on the target side of the parallel data.

6.2.2 Yarowsky and Ngai (2001)’s Approach

The goal is to use a state-of-the-art POS tagger to annotate the English side of the parallel
corpus, and then project the annotations to the second language using the word alignment,
and generalize from this noisy projection in a robust way. Figure 6.1 shows the different
scenarios in the projection of English POS tags via word alignments to French. For a one-
to-one alignment, the projection can be done easily by copying the source side tag to the
target side. However, for the many-to-one alignment cases such as the alignment between
the English word Croissants and French phrase Les croissants, the challenge is to assign the
English plural noun (NNS) tag to which of the French words. Yarowsky and Ngai (2001)
suggested to assign tags to the words in the compound considering their relative position in
the compound (a, b, c, etc.). For example, NNSa which corresponds to the first many-to-one
alignment position in a French compound will have a tendency to have a high probability
of corresponding to a French determiner while the second position NNSb tend to have a low
probability of corresponding to a French determiner.

Direct projection introduces noisy and unreliable annotations. Supervised POS tagging
algorithms perform poorly on the noisy projected annotations. Here, we will give the noise-
robust techniques for dealing with the challenging raw projection data. To this end, we
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Croissants
NNS

Les
NNSa

croissants
NNSb

the
DT NNS

croissants

les croissants
DT NNS

Figure 6.1: An alignment between a French sentence and its translation in English.

remove the sentences that are poorly aligned, train a bigram tagger by learning the lexical
prior model P (T ) and tag-sequence model P (W |T ) separately.

Lexical Prior Estimation

Given a sequence of words W with length n, let T be the corresponding sequence of tags of
W . A bigram tagger finds the best tag sequence:

arg max
T

P (T |W ) = P (W |T )P (T ) (6.1)

where P (T ) can be approximated using chain rule and Markov assumption:

P (T ) = P (t1 . . . tn) ≈ P (t1)P (t2|t1) . . . P (tn|tn−1) (6.2)

and P (W |T ) can be estimated using independence assumptions:

P (W |T ) = P (w1 . . . wn|t1 . . . tn) ≈
n∏
i=1

P (wi|ti) (6.3)

To estimate p(wi|ti), using Bayes rule we have:

P (wi|ti) = P (ti|wi)P (wi)∑
j P (ti|wj)P (wj)

(6.4)

where P (wi) can be estimated from the French data, and P (ti|wi) is estimated based on
their frequency in the corpus:

P (ti|wi) = c(ti, wi)
c(wi)

(6.5)

However, the distributions of tags per word in the manually tagged corpora in French and
English show that words in French and English usually have a unique POS tag, and very
rarely have more than 2. We therefore apply an aggressive re-estimation in favor of this bias,
amplifying the model probability of the most frequent POS tag, and reducing the model
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probability of the 2nd most frequent core tags and zeroing the probability for the rest of
the tags. Let t(i) be the ith most frequent tag for w, we smooth the lexical prior model as
follows:

P̂ (t(2)|w) = λ1P (t(2)|w) where λ1 < 1.0

P̂ (t(1)|w) = 1− P̂ (t(2)|w)

P̂ (t(c)|w) = 0 for all c > 2 (6.6)

It is worth noting that for many-to-one alignment cases as shown in Figure 6.1 even though
it might seem that function words get substantial probability mass through such alignments
(eg. Croissants/NNS → Les/NNSa croissants/NNSb), because of the frequent correct one-
to-one alignments (eg. The/DT → Les/DT) and the aggressive smoothing toward the most
frequent POS tag, the model does not suffer from an incorrect assignment for function words.
Yarowsky and Ngai (2001) also performs a linear interpolation of the tags distributions from
one-to-one alignments, and from the many-to-one alignments as follows:

P (t|w) = λ2P1-to-1(t|w) + (1− λ2)Pn-to-1(t|w) (6.7)

Tag Sequence Model Estimation

The tag sequence bigram model is estimated over a chosen filtered set of aligned sentences
in the corpus. The sentences are chosen based on two measures: 1) The alignment score
of the sentence which indicates the overall alignment confidence and 2) The tag sequence
model score which is computed after the lexical prior models have been trained. A sentences
of length k is scored by a pseudo-divergence weighting as follows:

1
k

k∑
i=1

logP̂ (projected-tagi|wi) (6.8)

where a sentence is penalized for those words whose projected tags do not match the most
frequent tag. Sentences are sorted and filtered based on their score, and the tag model is
estimated over a confident subset of the data. Note that since there is a high probability
for function words in a many-to-one alignment to get an incorrect tag from raw projections,
we correct the tags before training the tag sequence model by simply replacing their raw
projection tag with the most frequent tag for the word.

6.3 Universal Tagset

The projection method requires a common tagset between the source and target languages.
This way, projected tags can be used as target labels. However, any two languages exhibit
mismatch in their POS tagset. It is uncommon for languages to be annotated with the same
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tagset. The universal POS tagset (Petrov et al., 2012) has been widely used as a solution to
this issue. This tagset consists of 12 common part-of-speech tags. Petrov et al. (2012) also
provide a mapping from 25 different treebank tagsets to this universal tagset.

6.3.1 Universal Dependencies

Universal Dependencies (UD) is another effort to create cross-linguistically consistent tree-
bank annotation for many languages. The annotation scheme is a combination of the Stan-
ford dependencies (De Marneffe et al., 2006; De Marneffe and Manning, 2008; De Marneffe
et al., 2014) and the Google universal part-of-speech tags (Petrov et al., 2012). Table 6.1
shows the 17 universal core POS tags which are divided into open class words, closed class
words, and other symbols.

Open class words Closed class words Other
ADJ adjective ADP preposition/postposition PUNCT punctuation
ADV adv AUX auxilary SYM symbol
INTJ interjection CCONJ coordinating conjunction X unspecified POS
NOUN noun DET determiner
PROPN proper noun NUM numerals
VERB verb PART particle

PRON pronoun
SCONJ subordinating conjunction

Table 6.1: Universal Dependencies part-of-speech tags (Nivre et al., 2016).

6.4 Neural Part-of-Speech Tagger

To perform the annotation projection, we use a high quality supervised neural POS tagger
(Rei and Yannakoudakis, 2016; Rei et al., 2016) to tag the English side of the bitext, and to
train a tagger on the projected data. The details of this model will be given in the following
sections.

6.4.1 Bidirectional LSTM for Sequence Tagging

Given a sequence of words (w1, . . . , wT ) as input, the goal of a neural sequence tagger is to
predict a tag for each word in the input sequence. The words are first mapped to a sequence
of word embeddings (x1, . . . , xT ). The embeddings are then fed into a bidirectional LSTM
to create context-specific representations for each word:
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−→
ht = LSTM(−→h t−1,xt)
←−
ht = LSTM(←−h t+1,xt)

ht = [−→htT ;←−htT ]T (6.9)

where a representation for each source word wt is obtained by concatenating the forward
hidden state −→ht (forward representation) and the backward hidden state ←−ht (backward
representation).

Rei and Yannakoudakis (2016) use an extra hidden layer on top of the LSTM to detect
higher-level feature combinations:

dt = tanh(Wdht) (6.10)

where Wd is the weight matrix. The softmax layer is applied to produce a probability
distribution over all possible tags for each word:

P (yt = k|dt) = eWo,kdt∑
k̃∈K e

Wo,k̃dt
(6.11)

where P (yt = k|dt) is the probability of yt being tagged as k, and K is the set of all possible
tags. Wo,k is the kth row of the weight matrix Wo between the hidden layer and the output
layer. During training, we minimize the negative log-probability of the correct tags:

E = −
T∑
t=1

log(P (yt|dt)) (6.12)

Huang et al. (2015) proposed a BiLSTM with a Conditional Random Field (CRF) layer,
denoted as BiLSTM-CRF, for the sequence tagging task. In BiLSTM-CRF, given a sequence
of output tag predictions y = (y1, y2, . . . , yn), the CRF score of this output sequence can be
calculated as

s(y) =
T∑
t=1

At,yt +
T∑
t=0

Byt,yt+1 (6.13)

At,yt = Wo,ytdt (6.14)

where At,yt is the probability of yt being the tag of t and Byt,yt+1 is the probability of transi-
tioning from tag yt to tag yt+1; these values are optimized during training. In the decoding,
the tag sequence with the largest s(y) score is computed using the Viterbi algorithm. To
optimize the CRF model, the loss function maximizes the score for the correct tag sequence,
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while minimizing the scores for all the other sequences:

E = −s(y) + log
∑
ỹ∈Ỹ

es(ỹ) (6.15)

where Ỹ is the set of all possible tag sequences.

6.4.2 Character-level Sequence Tagging

Word embeddings treat words as atomic units and cannot capture the morphological and
orthographic similarity between different words. By incorporating the character-level infor-
mation, we can benefit from these regularities. This is especially helpful in handling unseen
words. Rei et al. (2016) proposed two methods for incorporating the character-based repre-
sentations into their sequence tagger. In the first method, each word is broken down into its
characters. These characters are mapped to a sequence of character embeddings (c1, . . . , cR)
which are then fed into a BiLSTM. The last hidden states of the forward and the backward
LSTMs are concatenated and then passed to a non-linear layer to form a character-based
representation of the word. This representation can be concatenated with the word-level
representation x to form a new word-level representation.

6.4.3 Attention over Characters

We now briefly explain the second approach of Rei et al. (2016) for incorporating the
character-level information into the sequence tagger model. In this approach, given an input
word, a BiLSTM is applied over its characters and the last hidden states are used to form
a vector m for the word. Instead of concatenating m with x (as in section 6.4.2), these two
vectors are combined using a weighted sum:

z = σ(W (3)
z tanh(W (1)

z x+W (2)
z m)) (6.16)

where
x̃ = z � x+ (1− z)�m (6.17)

where σ and � are the logistic sigmoid function and the element-wise multiplication func-
tion, respectively. W (1)

z ,W
(2)
z and W (3)

z are the weight matrices. The vector z controls how
much information to use from the word embedding or the character-level component. This
modelling allows unknown words to benefit from the character-level regularities whenever
possible.
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6.5 Experiments

We have performed our experiments for three languages. A simulation experiment for French
and two real-world low-resource languages, Kazakh and Breton. For all the experiments, we
used English as the source language and each of the three languages as the target language.

6.5.1 Data

We used Universal Dependencies (UD) v2.3 dataset (Nivre et al., 2018)1 which covers 76
languages. The annotated data that we used to train the English POS tagger is taken from
UD English Web Treebank (UD-EWT) corpus. Our test data for all three languages also
comes from UD. It consists of 416, 1047 and 888 test sentences for French, Kazakh and
Breton, respectively. For French, we used the test data of the UD_French-GSD treebank.

Parallel Corpora: For French-English, we have trained our word alignment models
on 100K parallel sentences from Europarl (Koehn, 2005).2 For Kazakh-English, our models
are trained on 70K parallel Kazakh-English data provided by (Zhumanov et al., 2017). For
Breton-English, OpenSubtitles2018 (Lison et al., 2019), an 18K sentence-aligned parallel
data from the OPUS corpus (Tiedemann, 2012) 3 was used. We have tokenized our parallel
training data with UDPipe 1.2 tokenizer (Straka and Straková, 2017).

6.5.2 Word Alignment Experimental Setup

We used both of our proposed neural HMM aligners, NHMM and NHMM+BERT, with
the same setting that was given in Section 5.6.1. Our code is implemented in pytorch.
When running on a single GPU of NVIDIA Quadro P6000, we achieve an average speed
of 1891, 1624 and 2510 target words per second for French-English, Kazakh-English and
Breton-English, respectively.

6.5.3 BiLSTM Tagger

We used a BiLSTM-CRF (with character level component) sequence tagger provided by
(Rei and Yannakoudakis, 2016; Rei et al., 2016) 4 to tag the English side of the parallel
data; see Section 6.4 for the details of the model. Because of the high accuracy of the
tagger we can treat these tags as gold POS tags, and project the labels using the robust
techniques (discussed in section 6.2) to the target side of the parallel data. Once we obtained

1http://hdl.handle.net/11234/1-2895

2https://www.statmt.org/europarl

3http://opus.nlpl.eu/

4https://github.com/marekrei/sequence-labeler
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the projected annotations on the target side, we trained our BiLSTM-CRF tagger on each
target dataset, and finally evaluated the accuracy on the corresponding test treebank.

Experimental Setup. The word embeddings were initialized with the gloves 300-
dimensional word embeddings and then fine-tuned during the training. The size of character
embeddings was set to 50. The sizes of the word-level LSTM and the character-level LSTM
were 300 and 100, respectively. The hidden layer size was set to 50. Parameters were opti-
mized using AdaDelta (Zeiler, 2012) with the default learning rate of 1.0. The batch size of
32 was used. For the English tagger, performance on the development set was measured af-
ter each epoch and training was stopped if the performance had not improved for 7 epochs.
The model with the best performance on the development set was used for evaluation on
the test set.

Result. Using the UD_English-EWT train/dev/test split, the neural part-of-speech
tagger achieved an accuracy of 0.956 on the test set.

6.5.4 Baselines

We compare our models with several baselines:
Unsupervised: the unsupervised neural HMM POS tagger (Tran et al., 2016) discussed

in Chapter 3. We used 17 tag clusters, the number of POS tags that appear in the UD
treebanks. We evaluated the performance of POS tagging with One-to-One (1-1), Many-
to-One (M-1) accuracy (Johnson, 2007) and V-Measure (VM) (Rosenberg and Hirschberg,
2007). However, we have reported the 1-1 accuracy in order to provide a fair comparison to
the accuracy of our projection methods. Our baselines are trained on the target side of the
parallel data using NHMM+Conv+LSTM model, the best performing model presented in
(Tran et al., 2016), which is the model with convolutional neural network-based emission,
and LSTM-based transition model (Section 3.6). We used a three layer LSTM as it worked
well in their experiments. We set the hidden layer size to be 512 as this was the largest we
could fit into the memory.

Supervised: A supervised model trained on a small amount of annotated data. For this
baseline, we trained a BiLSTM-CRF tagger (Rei and Yannakoudakis, 2016) on a small (500
tokens) annotated data from the resource-poor language. This baseline gives a comparison
between the low-resource and zero-resource scenario. Note that this baseline can only be
evaluated for French and Kazakh. For Breton, there is no training or development data
available in UD.

Cross-lingual Transfer with GIZA++ Word Alignments: This baseline gives a
comparison between the performance of our neural HMM aligners against GIZA++ IBM4 in
the POS projection task. For GIZA++, we used Moses (Koehn et al., 2007) with its default
parameters to obtain word alignments. The unaligned words are tagged with NOUN which
is the most frequent tag in the corpora.
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Model French Kazakh Breton
Unsupervised (Tran et al., 2016) 43.5 32.7 51.9
GIZA++ +DP 77.5 59.0 42.9
GIZA++ +NR 81.9 59.5 48.9
Attention+DP 73.9 56.1 31.9
Attention+NR 84.2 61.6 37.5
Supervised (500 tokens) 74.9 59.8 -
NHMM+DP 75.6 56.2 57.8
NHMM+NR 81.2 53.4 56.9
NHMM+BERT+DP 75.5 61.7 56.9
NHMM+BERT+NR 82.0 62.4 57.8

Table 6.2: POS tagging accuracy on French, Kazakh and Breton.

Cross-lingual Transfer with Word Alignments Extracted from Attention: Sim-
ilar to the previous baseline, this baseline is also based on the annotation projection ap-
proach, but with a different alignment model. It relies on the alignments that are extracted
from attention-based NMT systems. We used Open-NMT (Klein et al., 2017) to train our
attention-based NMT systems. We follow Luong et al. (2015) to produce hard alignments
from attentions by selecting the most attended source word for each target word. To be con-
sistent with our aligners (in producing many-to-one alignments), we trained English-French,
English-Kazakh and English-Breton NMT models, keeping 1k from the data as the dev set
and the rest for training. We tested on the whole training data to obtain word alignments.

6.6 Results

Table 6.2 presents the results for all our proposed methods and their corresponding baselines
for all the languages. We experimented with two different transfer methods, i.e. direct
projection (DP) and noise robust (NR) projection. In Table 6.2, MODEL+DP denotes the
direct projection method that uses MODEL word alignment and BiLSTM-CRF tagger on
the English and the target side while MODEL+NR denotes the noise robust transfer method
with MODEL word alignment and BiLSTM-CRF tagger.

From the table, we observe that our model generally works best for truly low-resource
languages. Our best performing model, NHMM+BERT+NR, makes good use of the addi-
tional context by using NHMM+BERT aligner. NHMM+BERT performs better than the
GIZA++ baseline. The difference is especially substantial for Breton for which we have
a smaller parallel data. The unsupervised NHMM POS tagger is the weakest baseline for
French and Kazakh, but the strongest for Breton. Noise reduction techniques are most ef-
fective when used for French. The limited effectiveness of these techniques for Breton and
Kazakh are possibly due to the dissimilarity between these languages and English, and also
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NOUN VERB ADJ ADV ADP AUX PRON PROPN INTJ DET CCONJ NUM PART SCONJ PUNCT SYM X
NOUN 1617 59 96 22 9 4 7 9 0 1 0 27 1 0 0 0 0
VERB 64 628 14 1 1 115 3 2 0 0 0 0 0 0 0 0 0
ADJ 218 23 339 6 0 0 0 3 0 3 0 0 0 0 0 0 3
ADV 11 11 20 288 13 76 6 0 1 0 6 0 54 11 0 0 0
ADP 1 11 0 7 1442 3 1 0 0 0 0 0 6 13 0 0 0
AUX 2 15 0 0 0 338 0 0 0 0 0 0 0 0 0 0 0

PRON 7 31 7 14 7 73 368 0 0 24 0 3 1 12 0 0 0
PROPN 365 10 50 1 0 3 14 60 0 0 0 11 0 0 0 0 2

INTJ 2 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
DET 0 1 4 1 48 0 73 0 0 1369 0 0 0 0 0 0 0

CCONJ 0 0 0 0 0 0 0 0 0 0 238 0 0 7 0 0 0
NUM 8 0 1 0 1 0 1 0 0 4 0 214 0 0 0 0 0
PART 0 1 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0

SCONJ 0 0 0 7 0 4 0 0 0 0 0 0 0 120 0 0 0
PUNCT 13 1 0 0 0 1 1 0 0 2 0 3 0 0 1174 0 0

SYM 2 0 1 2 0 0 2 0 0 0 0 3 0 0 1 19 0
X 5 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1

Table 6.3: Confusion matrix on the French test data. The vertical axis represents the actual
POS tag and the horizontal axis represents the predicted POS tag.

NOUN VERB ADJ ADV ADP AUX PRON PROPN INTJ DET CCONJ NUM PART SCONJ PUNCT SYM X
NOUN 2110 153 127 33 16 8 35 319 0 89 0 51 0 1 15 4 0
VERB 376 826 27 13 93 25 7 9 0 24 4 0 0 0 106 0 0
ADJ 204 33 372 12 9 43 5 25 0 34 0 2 0 0 48 0 0
ADV 56 19 20 83 7 12 14 4 0 14 3 0 0 0 59 0 0
ADP 42 33 5 23 41 0 0 1 0 3 0 0 0 0 14 0 0
AUX 31 164 3 0 45 11 2 2 0 8 11 0 0 0 115 0 0

PRON 95 21 4 33 0 1 209 7 0 83 18 0 0 0 3 0 0
PROPN 260 20 13 7 0 0 8 183 0 26 0 1 0 0 1 0 0

INTJ 3 10 0 0 0 0 2 2 0 1 1 0 0 0 4 0 0
DET 58 0 15 11 0 1 40 3 0 80 7 0 0 0 0 0 0

CCONJ 11 1 1 1 0 0 11 1 0 2 132 0 0 0 13 0 0
NUM 22 1 6 2 3 0 2 4 0 35 0 266 0 0 3 0 11
PART 3 3 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0

SCONJ 7 1 0 3 0 0 2 3 0 0 0 0 0 2 2 0 0
PUNCT 13 0 2 0 0 0 0 15 0 14 0 2 0 0 1936 0 0

SYM 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
X 52 33 4 3 4 0 2 2 0 6 1 0 0 0 6 0 0

Table 6.4: Confusion matrix on the Kazakh test data. The vertical axis represents the
actual alignment type and the horizontal axis represents the predicted alignment type.

their lower alignment quality. Attention-based methods provide surprisingly competitive
results for French and Kazakh while their tagging accuracies are very poor for Breton.

To give a detailed analysis of the performance of our best model (NHMM+BERT+NR)
in POS prediction, we present confusion matrices on the test data for all three languages
in Tables 6.3, 6.4 and 6.5. In these tables, the vertical axis represents the actual POS tag
while the horizontal axis represents the predicted POS tag. We found that our model works
well in predicting most of the POS tags since the numbers on the diagonal are the largest
in their corresponding rows. Our model, in most cases, confuses PROPN with NOUN for
French and Kazakh, which is a common error to occur. Our model fails to capture X and
PART POS tags. INTJ is hard to predict probably because there is very few examples in
the projected data to learn this POS tag.
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NOUN VERB ADJ ADV ADP AUX PRON PROPN INTJ DET CCONJ NUM PART SCONJ PUNCT SYM X
NOUN 1487 192 41 9 24 24 88 125 0 0 0 0 0 0 0 0 0
VERB 205 861 1 9 28 463 245 21 0 0 0 0 0 0 0 0 0
ADJ 235 43 58 3 5 4 70 17 0 0 0 0 0 0 0 0 0
ADV 178 26 2 110 11 9 131 5 1 1 0 0 76 0 0 0 0
ADP 41 71 1 1 523 62 390 3 0 8 0 0 1 0 1 0 0
AUX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRON 81 17 0 3 1 27 112 0 0 0 0 0 0 0 0 0 0
PROPN 25 38 0 3 0 0 10 232 0 0 0 0 0 0 0 0 0

INTJ 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
DET 72 24 8 2 2 14 233 0 0 849 0 0 0 0 1 0 0

CCONJ 0 1 1 0 0 0 4 0 0 0 200 0 0 0 0 0 0
NUM 29 9 15 1 1 5 6 5 0 1 0 155 0 0 5 0 0
PART 2 64 0 0 0 311 215 2 0 9 0 0 0 0 0 0 0

SCONJ 0 0 0 10 1 0 26 0 0 0 2 0 0 0 0 0 0
PUNCT 27 1 0 0 2 2 6 0 0 0 0 0 0 0 1113 0 0

SYM 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X 31 13 7 4 34 1 28 3 0 22 2 7 1 0 0 0 0

Table 6.5: Confusion matrix on the Breton test data. The vertical axis represents the actual
alignment type and the horizontal axis represents the predicted alignment type.

6.7 Related Work

Yarowsky and Ngai (2001) pioneered the annotation projection approach where they use
word-aligned data to project annotations from a resource-rich language to an arbitrary
language. They used the projected partial target annotation to estimate the parameters of
an HMM. However, Because of the nature of the word alignments and the POS tags, direct
tag projection introduces a considerable noise. To conquer this noise, they used aggressive
smoothing techniques when training their HMM.

Fossum and Abney (2005) extended the work of Yarowsky and Ngai (2001) by projecting
from multiple source languages into a target language to filter out the systematic transfer
errors that arise from differing source languages. Agić et al. (2015) also combined annotation
projection with multi-source transfer to learn POS taggers for 100 languages.

Using a tag dictionary has proven to be helpful for learning POS taggers (Smith and
Eisner, 2005; Goldberg et al., 2008; Ravi and Knight, 2009). This is because words have a
limited number of possible tags. A dictionary that constrains the allowable tags for a word
helps restrict the search space. However, these approaches rely on tag dictionaries which
are extracted directly from the underlying treebank data. Such dictionaries has a broad
coverage of the test domain which is difficult to obtain for resource-poor languages.

Das and Petrov (2011) used graph-based label propagation to project syntactic informa-
tion from one language to another. In their approach, the graph has two kinds of vertices;
a trigram type on the target language side, and individual word types on the English side.
The edge weights are the similarity between the middle words of the trigram types. In the
first stage, some vertices received a label from direct label projection, and then labels were
propagated to the rest of the graph. The projected labels were treated as features in an unsu-
pervised model (Berg-Kirkpatrick et al., 2010). Tagging dictionaries were extracted from the
graph and were used as the constraints for a feature-based HMM tagger (Berg-Kirkpatrick
et al., 2010).
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Täckström et al. (2013) combined token constraints (from direct projected data) and
type constraints (from Wiktionary’s dictionary) to induce multilingual POS taggers for
resource-poor languages. For each sentence in the training data, they constructed a lat-
tice and used these token and type constraints to prune it. The best tagging accuracies
were obtained with a partially observed CRF model that integrates these complementary
constraints.

Li et al. (2012) employed tag dictionaries from the Wiktionary. They incorporated type
constraints from Wiktionary into the feature-based HMM of (Berg-Kirkpatrick et al., 2010).

An alternative approach for tagging low-resource languages is to assume a small corpus
of manually annotated data is available. Xi and Hwa (2005) proposed an approach inspired
by backoff language modeling techniques in which the parameters of their two POS tagging
models (one trained on manually annotated data and the other one trained on projected
data) are combined to achieve a higher quality final model. Their best results were obtained
when 3000 manually annotated tokens (approximately 100 sentences) were used.

Duong et al. (2014) proposed an approach that takes advantage of parallel data to
do the cross-lingual projection and a small amount of annotated data, (1000 tokens) in
the target language, to learn to correct the errors from the projected approach such as
tagset mismatch between the two languages. Their model was trained in two stages: First,
a maximum entropy classifier T was trained on the noisy projected data. A supervised
classifier P was then trained on the small annotated data, using a minimum divergence
technique to incorporate the first model (T).

Fang and Cohn (2016) presented a model that learns when and how much to trust
the distant supervision in the cross-lingual projection. They used parallel data to obtain
projected tags as distant annotations. They proposed a joint BiLSTM model trained on the
distant data and 1000 gold annotated data. Their model learns to correct the errors from
cross-lingual projection using an explicit debiasing layer.

Our approach follows Yarowsky and Ngai’s (2001) original annotation projection ap-
proach. However, we used our proposed neural HMM aligners to perform word alignment.
Moreover, we leverage a neural sequence tagging model (Rei and Yannakoudakis, 2016; Rei
et al., 2016) to tag the English side, and to train POS taggers on the projected data. We
learn POS taggers for truly low-resource languages for which no training data is available
in the universal dependencies treebanks.

6.8 Conclusion

We have presented a method for building part-of-speech taggers for resource-poor languages.
We considered the zero-resource scenario and did not use any additional information. The
only assumption is the availability of a parallel data between the resource-poor language
under study and a resource-rich language. Our approach performs cross-lingual annota-
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tion projection using our proposed neural HMM word aligner. We used high quality neural
sequence taggers for tagging the source side of the parallel. Our results show the overall su-
periority of our approach over unsupervised neural HMM POS taggers baseline, supervised
BiLSTM-CRF tagger trained on a small amount of annotated data, cross-lingual projection
methods that use GIZA++ alignments and cross-lingual projection methods that use align-
ments extracted from attention-based NMT, for low-resource languages. The best results
were obtained with the model that used NHMM+BERT aligner and applied noise robust
techniques.
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Chapter 7

Conclusion

In this thesis, we have investigated new models for the unsupervised word alignment. We
introduced new probabilistic models for augmenting word alignments with linguistically
motivated alignment types. We proposed a novel task of joint prediction of word alignment
and alignment types. we proposed two models, a generative and a discriminative one, to
solve the joint prediction task. We augmented the classic generative IBMModel1 and HMM-
based word alignment model with alignment types. Our generative models outperform their
corresponding baseline. We showed that the proposed joint model (alignment-type-enhanced
model) improved word alignment and translation quality.

We presented an unsupervised neural HMM for word alignment. Our proposed neural
HMM consists of neural-network based emission and transition models which are trained
jointly. This modelling allows us to introduce additional dependencies into each of these
models. We investigated the effect of incorporating BERT representation into our model in
order to include the full target context for the emission model. We demonstrated improve-
ments over GIZA++ IBM4 model, which is still a strong baseline, on Romanian-English
and Chinese-English datasets.

We proposed a method that induces part-of-speech taggers for low-resource languages
using cross-lingual tag projection. The proposed method relies on our proposed neuralHMM
aligners to obtain high quality word alignments between low-resource languages and the
high-resource language. Moreover, high quality neural POS taggers were used to provide
annotations for the resource-rich language side of the parallel data, as well as to train a
tagger on the projected data. Our experimental results on truly low-resource languages
showed that our methods consistently outperformed their corresponding baselines.

7.1 Future Work

There are several research directions that could be explored in the future:

84



• Latent alignment types: For the joint prediction of word alignment with alignment
types, we would like to further extend this work to a case where alignment types are
latent i.e. there is no training data for alignment types.

• Improving attention for RNN-based NMT: Word alignment is still essential for
the analysis of translation errors in the attention-based neural machine translation
systems. It has been shown to be helpful in guiding NMT models during training and
improving NMT decoding. Our proposed Neural HMM aligner can be used in the
attention-based NMT to improve attention.

• Improving transformer-based attention: Alignment-enhanced transformer meth-
ods have been proposed recently. These methods use FastAlign or GIZA++ to obtain
word alignments which can be used for the supervision during the training. We would
like to leverage our proposed aligner in the transformer-based NMT instead. As better
alignment leads to better constrained translation, we would like to investigate whether
our aligner can be helpful in improving the transformer-based NMT.

• Projection-based transfer approach for tasks other than POS tagging: We
have used our neural HMM aligner for building POS taggers for low-resource lan-
guages. Cross-lingual dataset creation using our aligner can be explored for a variety
of tasks in NLP beyond part-of-speech tagging, including named-entity recognition
(NER), parsing, information extraction (IE) and semantic role labeling.
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