7 research outputs found

    Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry

    Get PDF
    In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals

    Remote Sensing Observations of Tundra Snow with Ku- and X-band Radar

    Get PDF
    Seasonal patterns of snow accumulation in the Northern Hemisphere are changing in response to variations in Arctic climate. These changes have the potential to influence global climate, regional hydrology, and sensitive ecosystems as they become more pronounced. To refine our understanding of the role of snow in the Earth system, improved methods to characterize global changes in snow extent and mass are needed. Current space-borne observations and ground-based measurement networks lack the spatial resolution to characterize changes in volumetric snow properties at the scale of ground observed variation. Recently, radar has emerged as a potential complement to existing observation methods with demonstrated sensitivity to snow volume at high spatial resolutions (< 200 m). In 2009, this potential was recognized by the proposed European Space Agency Earth Explorer mission, the Cold Regions High Resolution Hydrology Observatory (CoReH2O); a satellite based dual frequency (17.2 and 9.6 GHz) radar for observation of cryospheric variables including snow water equivalent (SWE). Despite increasing international attention, snow-radar interactions specific to many snow cover types remain unevaluated at 17.2 or 9.6 GHz, including those common to the Canadian tundra. This thesis aimed to use field-based experimentation to close gaps in knowledge regarding snow-microwave interaction and to improve our understanding of how these interactions could be exploited to retrieve snow properties in tundra environments. Between September 2009 and March 2011, a pair of multi-objective field campaigns were conducted in Churchill, Manitoba, Canada to collect snow, ice, and radar measurements in a number of unique sub-arctic environments. Three distinct experiments were undertaken to characterize and evaluate snow-radar response using novel seasonal, spatial, and destructive sampling methods in previously untested terrestrial tundra environments. Common to each experiment was the deployment of a sled-mounted dual-frequency (17.2 and 9.6 GHz) scatterometer system known as UW-Scat. This adaptable ground-based radar system was used to collect backscatter measurements across a range of representative tundra snow conditions at remote terrestrial sites. The assembled set of measurements provide an extensive database from which to evaluate the influence of seasonal processes of snow accumulation and metamorphosis on radar response. Several advancements to our understanding of snow-radar interaction were made in this thesis. First, proof-of-concept experiments were used to establish seasonal and spatial observation protocols for ground-based evaluation. These initial experiments identified the presence of frequency dependent sensitivity to evolving snow properties in terrestrial environments. Expanding upon the preliminary experiments, a seasonal observation protocol was used to demonstrate for the first time Ku-band and X-band sensitivity to evolving snow properties at a coastal tundra observation site. Over a 5 month period, 13 discrete scatterometer observations were collected at an undisturbed snow target where Ku-band measurements were shown to hold strong sensitivity to increasing snow depth and water equivalent. Analysis of longer wavelength X-band measurements was complicated by soil response not easily separable from the target snow signal. Definitive evidence of snow volume scattering was shown by removing the snowpack from the field of view which resulted in a significant reduction in backscatter at both frequencies. An additional set of distributed snow covered tundra targets were evaluated to increase knowledge of spatiotemporal Ku-band interactions. In this experiment strong sensitivities to increasing depth and SWE were again demonstrated. To further evaluate the influence of tundra snow variability, detailed characterization of snow stratigraphy was completed within the sensor field of view and compared against collocated backscatter response. These experiments demonstrated Ku-band sensitivity to changes in tundra snow properties observed over short distances. A contrasting homogeneous snowpack showed a reduction in variation of the radar signal in comparison to a highly variable open tundra site. Overall, the results of this thesis support the single frequency Ku-band (17.2 GHz) retrieval of shallow tundra snow properties and encourage further study of X-band interactions to aid in decomposition of the desired snow volume signal.4 month

    Synthesizing Measurement, Modeling and Remote Sensing Techniques to Study Spatiotemporal Variability of Seasonal Snow

    Get PDF
    Mountain snowpacks vary drastically over length scales as small as 1—2 meters in complex terrain and require high resolution measurements to accurately quantify the spatial distribution of snow. This thesis explores this spatial distribution using remote sensing, modeling and ground-based observations. Snow depth estimates from airborne LiDAR at 5 m resolution over 750 km2 was compared to in situ observations and results from physically-based snow and wind redistribution models, and a new low cost method for continuous depth measurements at the slope scale was developed. Repeated airborne Light Detection And Ranging (LiDAR) surveys are capable of recording snow depth distributions at 1—5 meter resolution over very large geographic areas, while additionally providing information about vegetation, slope aspect and terrain roughness. During NASA\u27s second Cold Lands Processes eXperiment (CLPX-II) in the winter of 2006/07, two LiDAR surveys were flown nearly three months apart over a vast 750 km2 swath of the Rocky Mountains near Steamboat Springs, Colorado. Both flights took place well before any significant melt occurred, and the difference of the vegetation-filtered surfaces resulted in an estimate of the change in snow height across the survey area. An intensive manual measurement campaign was conducted to coincide with each LiDAR flight to provide ground truth information for the LiDAR dataset. Using the in situ measurements and the LiDAR-derived snow depth changes, an uncertainty study was performed to investigate errors in snow depth change for this high resolution remote sensing method due to elevation gradients and vegetation types. Secondly, this work leverages the large extent of the CLPX-II LiDAR dataset to validate more than 900 pixels, each at 30 arc-second resolution, of modeled snow depth from the SNOw Data Assimilation System (SNODAS) operational hydrologic model developed by the National Operational Hydrologic Remote Sensing Center (NOHRSC). Upscaling the high resolution LiDAR-derived snow depths to the much lower spatial resolution of the SNODAS estimates produced a statistically robust dataset of over 900 independent pixel comparisons for the first time, due to the difficulty in obtaining independent validation data at the 1 km scale. Results support the notion that sub pixel-scale slope, aspect, vegetation density and terrain rough- ness factors are important to consider for model predictions of snow distribution in mountain regions. To investigate the wind transport factor, a wind redistribution model based on terrain characteristics is implemented for a 1 km2 wind-affected sub region where high resolution snow depths have been supplied from three independent LiDAR flights taken during different winter seasons. The inter-annual consistency of snow depths at the site reveals a close correlation with the terrain parameters produced by the wind model for a known local prevailing wind direction. LiDAR currently remains the highest resolution large extent method for measuring snow depth, even though it is extremely costly to perform frequently and is primarily used only at intensive research sites. To monitor temporal variations of snow depth over more than a point, simple time-lapse photography is a promising and efficient way to obtain information about snowpack evolution at the slope scale. A robust and low power method to measure hourly changes in snow depth was developed that involves only three primary components: (1) an inexpensive, off-the-shelf time-lapse camera, (2) a weatherproof external battery box and (3) an array of secured, brightly painted depth markers. The camera is calibrated at the marker locations and a pixel counting algorithm automatically distinguishes the snow surface at each marker location after the images are captured. Results agreed closely with nearby standard ultrasonic depth sensors

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Field Measurements for Remote Sensing of the Cryosphere

    Get PDF
    Remote sensing observations of the cryosphere, like any other target of interest, require ground-based measurements for both calibration and validation, as inversion algorithms are usually underdetermined and uncertainties in the retrieval are needed for application. Field-based observations are performed in selected representative locations, and typically involve both direct in situ measurements of the physical properties of interest, as well as ground-based remote sensing techniques. New state-of-the-art modern techniques for measuring physical properties rapidly and at high spatial resolution have recently given us a new view of spatiotemporal variability. These are important, as large variability at scales below the typical footprint of spaceborne sensors often exists. Simulating remote sensing measurements using ground-based sensors provides the ability to perform both in situ and remote sensing measurements at the same scale, providing insight into the dominant physical processes that must be accounted for in inversion models and retrieval schemes. While direct in situ measurements provide the most accurate information about the properties of interest, they are time-consuming and expensive and are, therefore, only practical at relatively few locations, and often with low temporal resolution. Spatial sampling strategies, designed specifically for the remote sensing observation of interest, can reduce uncertainties in comparisons between ground-based and airborne/spaceborne estimates. Intensive remote sensing calibration and validation campaigns, often associated with an upcoming or recent satellite launch, provide unique opportunities for detailed characterization at a wide range of scales, and these are typically large international collaborative efforts. This chapter reviews standard in situmanual field measurements for snow and ice properties, as well as newer high-resolution techniques and instruments used to simulate airborne and spaceborne remote sensing observations. Sampling strategies and example applications from recent international calibration and validation experiments are given. Field measurements are a crucial component of remote sensing of the cryosphere, as they provide both the necessary direct observations of the variables of interest, as well as measurements that simulate the particular remote sensing technique at scales that can be characterized accurately. Ground-based observations provide the information needed to: improve and develop new retrieval algorithms; calibrate algorithms; and validate results to provide accurate uncertainty assessments

    POLSCAT Ku-Band Radar Remote Sensing of Terrestrial Snow Cover

    No full text
    Characteristics of the POLSCAT data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in the study site in north central Colorado. We observed about 0.15 to 0.5 dB increases in backscatter for every 1 cm of snow water equivalent (SWE) accumulation for areas with short vegetation. Based on a simplified radiative transfer model, the change detection technique is used to convert the temporal change of radar backscatter into SWE accumulation for dry snow conditions. The resulting SWE accumulation estimates are consistent with the in-situ SWE measurements, with about 2 to 3 cm Root-Mean-Square (RMS) difference for regions with sagebrush or pasture
    corecore