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ABSTRACT

Mountain snowpacks vary drastically over length scales as small as 1–2 meters in

complex terrain and require high resolution measurements to accurately quantify

the spatial distribution of snow. This thesis explores this spatial distribution using

remote sensing, modeling, and ground-based observations. Snow depth estimates from

airborne LiDAR at 5 m resolution over 750 km

2 was compared to in situ observations

and results from physically-based snow and wind redistribution models, and a new

low cost method for continuous depth measurements at the slope scale was developed.

Repeated airborne Light Detection And Ranging (LiDAR) surveys are capable of

recording snow depth distributions at 1–5 meter resolution over very large geographic

areas, while additionally providing information about vegetation, slope aspect, and

terrain roughness. During NASA’s second Cold Lands Processes eXperiment (CLPX-

II) in the winter of 2006/07, two LiDAR surveys were flown nearly three months apart

over a vast 750 km2 swath of the Rocky Mountains near Steamboat Springs, Colorado.

Both flights took place well before any significant melt occurred, and the di↵erence of

the vegetation-filtered surfaces resulted in an estimate of the change in snow height

across the survey area. An intensive manual measurement campaign was conducted to

coincide with each LiDAR flight to provide ground truth information for the LiDAR

dataset. Using the in situ measurements and the LiDAR-derived snow depth changes,

an uncertainty study was performed to investigate errors in snow depth change for

this high resolution remote sensing method due to elevation gradients and vegetation

types.

Secondly, this work leverages the large extent of the CLPX-II LiDAR dataset to
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validate more than 900 pixels, each at 30 arc-second resolution, of modeled snow

depth from the SNOw Data Assimilation System (SNODAS) operational hydrologic

model developed by the National Operational Hydrologic Remote Sensing Center

(NOHRSC). Upscaling the high resolution LiDAR-derived snow depths to the much

lower spatial resolution of the SNODAS estimates produced a statistically robust

dataset of over 900 independent pixel comparisons for the first time, due to the dif-

ficulty in obtaining independent validation data at the 1 km scale. Results support

the notion that sub pixel-scale slope, aspect, vegetation density, and terrain rough-

ness factors are important to consider for model predictions of snow distribution in

mountain regions.

To investigate the wind transport factor, a wind redistribution model based on

terrain characteristics is implemented for a 1 km

2 wind-a↵ected sub region where

high resolution snow depths have been supplied from three independent LiDAR flights

taken during di↵erent winter seasons. The interannual consistency of snow depths at

the site reveals a close correlation with the terrain parameters produced by the wind

model for a known local prevailing wind direction.

LiDAR currently remains the highest resolution large extent method for measuring

snow depth, even though it is extremely costly to perform frequently and is primarily

used only at intensive research sites. To monitor temporal variations of snow depth

over more than a point, simple time-lapse photography is a promising and e�cient

way to obtain information about snowpack evolution at the slope scale. A robust

and low power method to measure hourly changes in snow depth was developed

that involves only three primary components: (1) an inexpensive, o↵-the-shelf time-

lapse camera, (2) a weatherproof external battery box, and (3) an array of secured,
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brightly painted depth markers. The camera is calibrated at the marker locations

and a pixel counting algorithm automatically distinguishes the snow surface at each

marker location after the images are captured. Results agreed closely with nearby

standard ultrasonic depth sensors.
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CHAPTER 1:

INTRODUCTION

For millennia, the survival of human civilizations relied on the natural water cycle, but

relatively recent advancements in irrigation and storage technology have permitted

new settlements to abound within harsh, dry climates. Consequently, millions of

people depend on diverted water from mountain snowpacks, resulting in an increased

importance of observing and predicting the year-to-year magnitude of water stored

in the seasonal snowpack, termed the snow water equivalent (SWE). In fact, studies

have estimated that as much as one-sixth to over one-third of Earth’s population

relies on water that was previously stored as ice or snow upstream (Barnett et al.,

2005; Beniston et al., 2003), further illustrating the importance of SWE forecasts by

hydrologists and water managers during winter months.

The first step for developing accurate forecasts of mountain snowpacks is to an-

alyze historical observations, which have been painstakingly maintained by various

agencies for the past 50–75 years. Automated measurement stations are sparsely

located over vast mountain regions at index sites, but do not resolve the actual spa-

tial distribution and interpolation between sites is not possible. In spite of this fact,

hydrologists have made very good use of the resulting rich temporal datasets by

developing and distributing operationally viable prediction models of snowfall and

snowmelt over very large areas using various statistical methods. While these fore-

casts are often satisfactory for streamflow forecasting on average years, they are highly

uncertain in a changing climate and higher resolution spatial measurements are re-
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quired to capture the hillslope- and micro-scale processes that can considerably a↵ect

snow distribution.

New advances in remote sensing technology are enabling measurements at spa-

tiotemporal scales never before considered. Additionally, newly developed modeling

techniques are taking advantage of higher resolution data to produce much better

SWE estimates than ever before. This work synthesizes manual ground-based snow

measurements, remote sensing observations, and model predictions in order to better

quantify spatial and temporal variability in mountain snowpacks. Also addressed are

the factors driving uncertainty in both remote sensing techniques and model esti-

mates. The study is divided into three parts.

Part 1: Verifying measurements of snow depth with Light Detection and

Ranging (LiDAR) using in situ manual measurements

Previous studies have shown that repeated, multi-temporal Light Detection and Rang-

ing (LiDAR) acquisitions are a viable, albeit very costly and operationally intensive,

method for obtaining high resolution snow depth information over large areas. How-

ever, with survey costs rapidly decreasing, the technology is sure to be an important

component of future research of the seasonal snowpack. By performing one LiDAR

survey over a snow-free landscape, then another once the ground is snow-covered,

researchers can take a di↵erence of the two surfaces to determine snow depths at the

resolution of the original interpolated LiDAR elevation data.

LiDAR exhibits a certain amount of measurement uncertainty, as is the case with

any measurement technique. One way to constrain this uncertainty is to perform

ground-truth validation measurements during each acquisition to determine any bias
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present in the dataset due to elevation, slope, aspect, point cloud density, and vegeta-

tion density. Taking this into consideration, Chapter 2 details a performance analysis

of a large-scale LiDAR-derived snow accumulation dataset by comparing with co-

incident in situ manual measurements. Previous studies have necessarily upscaled

the manual measurement information to the resolution of the obtained remote sens-

ing data using various summary statistics (Yueh et al., 2009) resulting in a modest

number of well characterized locations for comparison, as many applications require

average values at the 500 m to km scale. However, the LiDAR-derived snow depth

data is at a su�ciently high resolution that a direct comparison can reasonably be

made to each individual in situ depth measurement, resulting in a large number of

data comparison points. This statistical comparison reveals information about the

uncertainty present in the LiDAR snow depth dataset.

Part 2: Using LiDAR to validate SNODAS and a hydrologic wind redis-

tribution model

Once the uncertainty of LiDAR snow depth change is quantified using ground-based

measurements, we employ the high resolution depth information to validate a physically-

based operational hydrologic model in Chapter 3. The SNOw Data Assimilation Sys-

tem (SNODAS) modeling framework operated by NOAAs National Hydrologic Re-

mote Sensing Center (NOHRSC) produces daily predictions of snow depth and SWE

at 30 arc second (e↵ectively 1km2) resolution over the continental United States.

Since both of the LiDAR acquisitions occurred early in the winter season well before

the seasonal maximum snow water equivalent, the assumption is made that minimal

melt occurred over the surveyed area thus allowing this work to focus solely on the
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accumulation aspect of SNODAS. The median of the LiDAR-derived snow depths

within pixels of archived concurrent SNODAS predictions are used to make a sta-

tistical comparison to assess the model performance for various degrees of terrain

complexity and vegetation density.

At the smaller scale, wind redistribution is an important factor influencing local

spatial variability of snow. Winstral and Marks (2002) presented an algorithm that

calculates terrain-break parameters as a first step in developing scaled precipitation

factors for corresponding pixels of an input DEM with known prevailing wind direc-

tions. Previous studies used 10–30 meter DEMs to accurately quantify wind’s e↵ect

on snow distribution in mountain catchments (Winstral et al., 2009). For this study,

using higher-resolution LiDAR DEMs, the wind model is executed for a 2km2 study

area within the CLPX-II LiDAR footprint known to exhibit high sustained winter

winds and preferential snow distributions that consist of large drifts up to 400%

deeper than the surrounding snow.

Part 3: Time-lapse cameras for monitoring snow accumulation and abla-

tion

Lastly, Chapter 4 addresses the need for higher resolution spatial and temporal ob-

servations unachievable by standard SNOTEL stations, SNODAS model output, or

infrequent LiDAR, by presenting a low-cost and low-power method to measure hourly

changes in snow depths at multiple locations at the slope scale over entire winter sea-

sons. Using simple time-lapse photography and image processing, this technique

provides a new way to obtain multiple hourly snow depth measurements at the slope

scale. While this approach is no substitute for the spatial resolution of repeated ter-
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restrial laser scans or the proven reliability of manufactured ultrasonic depth sensors,

its low cost and automation make it a suitable method for monitoring networks of

distributed snow depths.
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CHAPTER 2:

CONSTRAINING LIDAR UNCERTAINTY

WITH IN SITU MANUAL MEASUREMENTS

2.1 Summary

Utilizing large-scale multi-temporal LiDAR (Light Detection And Ranging) surveys,

we can develop high resolution snapshots of mountain snow distributions at distinct

moments during accumulation and ablation periods. As with any remote sensing

method, LiDAR exhibits a degree of measurement uncertainty, which is compounded

by the need for multiple surveys to detect changes in snow depth. In situ manual

snow depth measurements during “snow-on” surveys aid in limiting this uncertainty

and can discover LiDAR measurement bias due to absolute positioning di↵erences

between flights, forest canopy cover, elevation gradients, and snow surface albedo or

roughness.

We illustrate the importance of manual measurements for validating remote sens-

ing data and constraining the absolute error of large-scale LiDAR surveys using statis-

tical comparison techniques. Additionally, we present evidence of sampling shortcom-

ings with uniform manual measurement transects due to the high degree of variability

present in mountain snowpacks.
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2.2 Introduction

Modeling the Earth’s surface terrain from recorded elevation data is a mature tech-

nique and has been vital to geoscientists since the first elevation model was produced.

Over the last thirty years, 10–30 meter DEMs have been interpolated over much of

the Earth from various sources such as cartographic contours, geological survey topo-

graphical data, and remote sensing satellites such as the Shuttle Radar Topography

Mission (SRTM). However, increasing the resolution of the modeled Earth surface

has required a new method to more accurately measure elevations at higher spatial

resolutions.

Light Detection And Ranging (LiDAR) was initially developed in the early 1960’s

and was based on the same physics as sonar and radar sounding methods. Specif-

ically, pulsed light waves exhibit substantially shorter wavelengths than sound- and

micro-waves, allowing a more accurate measurement of distances from source to re-

ceiver. In the mid-1980’s, the first Global Positioning System (GPS) satellites were

deployed, enabling LiDAR scanners to be mounted on aircraft and produce large

airborne surveys of the Earth’s surface. With technological advances in optical sen-

sors and exponentially larger data storage capacities, LiDAR sensors are now able

to produce high resolution (<1–5m) DEMs over enormous geographic areas. Thus,

when LiDAR is used to examine seasonal snowpacks, high resolution measurements

of snow depth can be produced by simply subtracting the snow-free surface from the

snow-covered surface.

To conduct an airborne LiDAR survey, laser pulses are transmitted from an air-

craft and measurements are made of the time the pulses take to return to the receiving

sensor after reflecting o↵ ground-based objects. With an onboard high-precision GPS
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system and Inertial Measurement Unit (IMU) to correct for the roll, pitch, and yaw

onboard the aircraft, in addition to GPS base stations on the ground, the positions

of pulse reflection locations can be determined to centimeter relative accuracy using

di↵erential GPS triangulation methods.

Each of these components introduces a noticeable amount of error into a LiDAR

dataset for even the most ideally flat landscape with no vegetation. Error is fur-

ther exacerbated when considering complex mountain terrain with high slope angles

and dense forest canopy (Hodgson and Bresnahan, 2004). Furthermore, snow has

a relatively high volumetric scattering component when compared to other terrain

surfaces, resulting in a lower return intensity spectrum to the LiDAR receiver espe-

cially at steep grazing angles (Deems et al., 2013). And lastly, the requirement of

two separate scans for snow depth derivation can double snow depth measurement

uncertainties to as much as 40-50 cm. The consideration of these uncertainty factors

for remote sensing to capture spatial variability leads to the necessity of ground-based

manual measurements for error quantification.

The first major LiDAR survey campaign for seasonal snow applications was carried

out during the 2003 National Aeronautics and Space Administration (NASA) Cold

Lands Processes Experiment (CLPX-I) in Colorado, USA. Nine 1x1 km Intensive

Study Areas (ISAs) were chosen that represented various accumulation and ablation

patterns (Cline et al., 2009) ranging from heavily snow-covered prairies to high-alpine

forests and wind-scoured cirques. Aerial LiDAR surveys were conducted over the

ISA’s at the approximate time of peak snow water equivalent in early April 2003 and

then again over the same snow-free surface in September 2003 with average point

spacings of about 1.5 meters. The LiDAR return point clouds from each survey were
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then interpolated to grids of similar spatial extent and resolution, then di↵erenced

for a snow depth product over the extents of each ISA.

Previous studies of spatial variability using the CLPX-I LiDAR have shown that

snow depth distributions display fractal behavior in their spatial patterns (Deems

et al., 2006; Trujillo et al., 2007). Deems et al. (2008) used an additional April

2005 survey and showed that there exists an interannual consistency in the snow

depth distribution at two of every ISA, while Trujillo et al. (2007) found that spa-

tial distributions of snow depth are strongly controlled by both wind redistribution

and vegetation interception of snow over uneven surface topography in five of the

CLPX-I ISAs. The LiDAR data from the CLPX-I campaign is primarily presented

in Chapter 3.

Three years later, a similar tactic was implemented for the CLPX-II campaign

at a much larger scale, and the results of this second campaign are presented in this

chapter. Two airborne LiDAR surveys were flown over a large swath of Northern

Colorado in unison with coordinated in situ measurement campaigns on December

3rd, 2006 and February 22nd, 2007. The in situ snow surveys were designed by Kelly

Elder of the USDA Forest Service Rocky Mountain Research Station and carried out

by a large team of field researchers. Of particular note is that the December survey

does not necessarily represent a “snow-free’ survey as much of the area was already

blanketed in snow. However, for this study, it will be treated as such and therefore

any mention of LiDAR-derived snow depths from CLPX-II are actually the change in

total snow depth between the two surveys. This is the first comparison between the

LiDAR and in situ datasets of CLPX-II with the goal of determining a quantifiable

uncertainty to the LiDAR-derived snow depths for further modeling applications.
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2.3 Methods

2.3.1 Site Description

The second Cold Lands Processes Experiment (CLPX-II, 2006-2008) campaigns in

Colorado and Alaska, USA were multi-faceted missions over a much larger scale than

the previous CLPX-I campaign three years prior. The primary objective of the Col-

orado mission was the acquisition of snow volume backscatter measurements with

NASA’s POLSCAT (POLarimetric SCATterometer) airborne Ku-band radar system

and the necessary ground truth measurements for validation (Yueh et al., 2009) of

the proposed NASA SCLP and ESA CoreH2O approach to SWE estimation using

microwave radar from space. The airborne LiDAR portion of the campaign was an

ancillary dataset to be used as extra validation for the radar measurements. Flown

onboard a separate aircraft, the LiDAR acquisitions were designed to cover a much

larger geographic area than the CLPX-I ISAs and allow evaluation of the radar SWE

inversion over a larger range of conditions than possible with manual ground-truth

observations.

These large-scale LiDAR acquisition flights were conducted on December 3rd, 2006

and February 22nd, 2007 over a 750 km

2 rectangular area of northern Colorado (Fig-

ure 2.1). The average point spacing of the raw unfiltered point cloud delivered by the

vendor was approximately 1.75–2.0 meters depending on the terrain, resulting in a

slightly less dense dataset than the original CLPX-I acquisitions but covering many

more types of terrain, vegetation, and snowpacks. The LiDAR flight vendor, Fugro

Horizons, Inc., filtered vegetation returns from ground returns using a minimum block

mean algorithm and proprietary software to create vegetation filtered point clouds for



11

Steamboat Springs!

Coalmont!

Rand!

!H

!H

!H

!H

!H

!H

!H

!H!H

!H

!H!H

[_

[_[_

[_

[_

[_ Never!
Summer!

Willow Creek Pass!Arapaho Ridge!

Columbine!
Rabbit Ears!

Tower!

1! 5! 10! 20! 30! 40! 50!

Kilometers!

SNOTEL Sites!
In Situ Measurement Sites! N 

Intensive!
Rabbit Ears!
Oak Creek!
Gould!
Fancher!
North Park!

Observation!
Areas!

N 

 

 

3
.6

0
6

3
.6

0
7

3
.6

0
8

3
.6

0
9

3
.6

1
3

.6
1

1
3

.6
1

2
3

.6
1

3
3

.6
1

4
3

.6
1

5
3

.6
1

6
x
 1

0
5

4
.4

7
2

2

4
.4

7
2

3

4
.4

7
2

4

4
.4

7
2

5

4
.4

7
2

6

4
.4

7
2

7

4
.4

7
2

8

4
.4

7
2

9

4
.4

7
3

4
.4

7
3

1

4
.4

7
3

2
x
 1

0
6

2
9

0
0

2
9

1
0

2
9

2
0

2
9

3
0

2
9

4
0

2
9

5
0

2
9

6
0

2
9

7
0

2060! 3260!2660! 2960!2360!
meters!

Elevation!

Figure 2.1: Location of CLPX-II LiDAR footprint in Northern Colorado, USA

each flight with nominal point spacings of 2.5–3.0 meters depending on the terrain

and canopy cover. Various alternative filtering algorithms were explored during the

research for this thesis, but the decision was ultimately made to utilize the vendor-

filtered data in order to maintain consistency over the large variety of landscapes.

Next, the open-source Points2Grid interpolation tool, employing an inverse distance

weighting scheme, was used to produce a 5-meter Digital Elevation Model (DEM)

of each survey and the surfaces were di↵erenced to deliver the change in total snow

height at 5-meter resolution between December 3rd and February 22nd (Figure 2.2).

Finally, the vegetation-classified point clouds were also gridded for use in deriving

canopy height at the same 5-meter resolution.

2.3.2 In Situ Measurements

To help constrain the LiDAR uncertainty, twelve intensive observation sites of distinct

terrain and vegetation characteristics were pre-selected by researchers for in situ snow

depth measurements during each LiDAR acquisition. At each site, 45–50 manual
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samples of depth were made along a 500 m ⇥ 500 m hourglass-shaped transect to be

used to quantify the error in the simultaneous LiDAR measurements. The locations

of in situ measurement sites are shown in Figure 2.3.

Crews measured snow depths during both LiDAR surveys at waypoints loaded

onto mapping grade handheld GPS units to maintain the hourglass shape chosen

by the planning team. The resulting relative point-to-point horizontal uncertainty

is estimated to be less than 2 meters while the hourglass transect locations can be

approximated to 7 meters in absolute space (K. Elder, personal communication).

The sites were classified into broad study areas depending on varying elevations,

mean snow depths, terrain features and vegetation characteristics. Intensive measure-

ment sites were organized into larger encompassing areas representative of similar

environmental features (Table 2.1). To capture the horizontal uncertainty in both

the in situ measurements and LiDAR-interpolated snow depths, LiDAR depths were

averaged in a 10 meter radius around the reported in situ measurement location. Veg-

etation was also considered by utilizing the filtered non-ground point cloud returns

and creating a new gridded canopy surface at 5-meter resolution. Cells were classified

as having vegetation if the di↵erence between the snow-free DEM and vegetation dig-

ital terrain model (DTM) was greater than 50 cm, resulting in a vegetation density

map for the entire CLPX-II survey footprint.
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2.4 Results

Comparisons of five intensive observation sites, each representing a di↵erent desig-

nated area, are shown in Figures 2.5 – 2.9.1 The images of the in situ hourglass

transects overlaid upon the LiDAR-derived snow depths illustrate the di�culty of

manually sampling the scale of complexity present in mountain snow distributions.

On the other hand, the scatter plots reveal that the LiDAR-derived snow depths rou-

tinely underestimate corresponding measurements made by the fixed position probe

transects. For the twelve in situ measurement transects, the LiDAR-derived depth

dataset underestimated manual measurements by 5–30 cm. By comparing the mean

in situ-measured and LiDAR-derived snow depth change within each site (Figure 2.4),

the underestimation o↵set of the LiDAR dataset is quickly apparent; however, the

two estimates are highly correlated and the RMS di↵erence of 12 cm is well within

the expected LiDAR uncertainty.

Located in a flat, heavily wind-scoured region, which only saw very slight accu-

mulation totals between survey dates, the Arapahoe site (Figure 2.5) demonstrated

a very low correlation between in situ and LiDAR measurements. This can be ex-

plained by the fact that the mean in situ depth change measurement is well within the

accepted uncertainty of airborne LiDAR. Yet, this error is certainly compounded by

the tendency of uniform in situ measurement transects to bypass large accumulation

areas that are observed by LiDAR. Figure 2.5b shows that the LiDAR interpolations

observed negative changes in snow depth between the two flights, which the manual

transects did not.
1
Most literature estimates the uncertainty of multi-temporal LiDAR change-detection surveys

to approximately 30 centimeters. Therefore, the pink squares on each site scatter plot display the

magnitude of approximate LiDAR error in relation to the range of in situ snow depths.
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Figure 2.4: Comparison of mean LiDAR-derived vs. mean in situ-measured snow
depth change (Dec. 3rd – Feb. 22nd) over each of the twelve Intensive Observation
Period sites.

The DeLine site (Figure 2.6) in the North Park area, with a slightly higher mean

snow total, displayed a higher correlation between the manual and remote measure-

ments. The landscape of this site is largely similar to the Arapahoe site with flat

terrain and low, dense sagebrush mostly lower than 50 cm tall.

Next, within the Gould area lies the Whistling Elk site (Figure 2.7) which pre-

sented the highest correlation between LiDAR and manual measurements. This site

is also substantially bare of vegetation and displays barely any terrain undulation.
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These factors likely explain the high correlation.

The Brenner site (Figure 2.8) within the Oak Creek area to the far western end of

the CLPX-II LiDAR swath is somewhat of an anomaly to the other twelve sites. The

correlation between manual and remotely-observed changes in snow depth appears

almost random, similar to the Arapahoe site, but the mean snow depth change is

much higher. The image of LiDAR-derived snow depth change exhibits some drifting

patterns and variability, but the manual measurements were consistently higher.

To the northwest of Rabbit Ears Pass along U.S. Highway 40 lies the Dumont

Lake intensive site (Figure 2.9). Situated just 1 km east of the Walton Creek study

site from the CLPX-I campaign, the site displays a great deal of variability in the

form of large accumulation areas due to nearly constant west to east winter winds. A

much higher correlation value exists between the LiDAR and in situ measurements at

the site, but the root-mean-square di↵erence between the datasets is much higher due

to the larger range of changes in snow depth throughout. This site will be revisited

in Chapter 3 for a more comprehensive study.
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2.5 Discussion

LiDAR is a helpful tool for those researching the seasonal snowpack, adding a vast

amount of information about spatial variability that was previously very di�cult to

quantify with manual measurement surveys and snow courses. For water managers

and snow hydrologists, however, it is important to have firm confidence in remote

sensing data by constraining any absolute error sources. LiDAR vendors are pri-

marily in charge of eliminating relative error sources stemming from swath overlap

and GPS triangulation, but for snow applications the end-user is often responsible

for understanding possible sources of absolute error within the survey footprint such

as dense vegetation, steep slopes, and albedo e↵ects. This can be accomplished by

performing coincident manual measurement surveys during each LiDAR acquisition.

The exhaustive CLPX-II in situ measurement campaign provided an ideal dataset

for limiting uncertainty in the large-scale LiDAR surveys of December 3rd, 2006 and

February 22nd, 2007. Statistical comparisons found that LiDAR-derived snow depths

were regularly 5–30 centimeters lower than the probe-measured snow depths, likely

due to a variety of factors. One viable explanation would be the di↵erence in mea-

surement support between LiDAR and in situ measurements. Where the manual

depth measurement support was less than a centimeter (the size of the depth probe

tip), the LiDAR-derived snow depth change was averaged over all the 5-meter pixels

within a 10-meter radius of the reported in situ measurement location. This smooth-

ing of the snow height change would naturally result in a lower value than the point

measurement.

On the other hand, the high resolution LiDAR data reveals the extent of variabil-

ity that goes without being sampled by standard manual measurement transects in
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complex terrain. A plausible solution for eliminating absolute error within a LiDAR-

derived snow depth dataset would be to add a vertical shift determined by the inten-

sive manual measurement comparison, and then to trust the observed relative spatial

variability to be representative of the actual snow distribution.

Other sources of uncertainty include vegetation filtering and absolute positioning.

Manual observations have uncertainties related to absolute positioning and measure-

ment error due to the probe penetrating the soil or not reaching the ground due to ice

layers. We believe the most likely source of di↵erences between LiDAR and manual

observations are due to the di↵erences in support, geolocation errors, and vegetation

filtering / LiDAR penetration in dense vegetation and shallow snowpacks.
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CHAPTER 3:

USING LIDAR SNOW DEPTH INFORMATION

TO VALIDATE SNODAS AND FORCE A WIND

REDISTRIBUTION MODEL

3.1 Summary

Using CLPX-II LiDAR-derived snow depth information over complex mountain ter-

rain, we explore the ability of the SNODAS operational hydrologic model to predict

and update snow depth values between LiDAR acquisitions. We upscale high resolu-

tion LiDAR-derived changes in snow depth to the spatial resolution of daily SNODAS

estimates while assuming that no ablation occurred over the study area between Li-

DAR flights, in order to compare a robust dataset of more than 900 coincident pixels

of measured and modeled data for various elevations, terrain types, and vegetation

densities. Then, we turn to a hydrologic wind redistribution model to develop a tool

for determining sub-kilometer variability over large geographic areas. Using high res-

olution elevation data, we execute the wind model at two sites within the LiDAR

swath to calculate terrain parameters based on the maximum upwind slope. At each

site, the distribution of model terrain parameters reveals evidence of spatial trends

with the drifting and scouring patterns observed by repeated LiDAR surveys.
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3.2 Validating SNODAS

3.2.1 Introduction

Each year water managers and snow hydrologists use various hydrologic models to

make important predictions of the amount of water stored in mountain snowpacks

based on myriad forcing factors. Model input sources include the network of SNOw

TELemetry (SNOTEL) stations, weather forecasts, global climate models, and satel-

lite imagery of snow covered area. These predictions of snow water equivalent are

vitally important to downstream communities that rely on snow melt to subsist. The

SNOw Data Assimilation System (SNODAS), developed and operated by the Na-

tional Weather Service’s National Operational Hydrologic Remote Sensing Center

(NOHRSC), is updated each day at 30 arc-second (nominally 1km2) resolution to

provide a tool for water managers to plan for surpluses and shortages in the water

supply, energy production, fish habitat maintenance, and flood mitigation.

The SNOw Data Assimilation System

First implemented in 2004, SNODAS estimates various snow properties by merg-

ing satellite, airborne, and ground-based snow data with modeled approximations of

snow cover (Barrett, 2003). The physically-based energy- and mass-balance NOHRSC

Snow Model is the primary component of SNODAS, but the assimilation step gives

analysts the ability to decide every day whether to augment the model estimates with

any available remote sensing or SNOTEL measurements. Ultimately, the downscaled

products have a spatial resolution of 30 arc-seconds (nominally ⇡ 1km2) over the

contiguous United States. The National Snow and Ice Data Center (NSIDC) archives
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and makes daily estimates available to the public of:

1. Snow water equivalent (SWE)

2. Snow depth

3. Snow melt runo↵ from the base of the snowpack

4. Sublimation from the snowpack

5. Sublimation of blowing snow

6. Solid precipitation

7. Liquid precipitation

8. Snowpack average temperature

Only the first and second SNODAS daily estimates (SWE and snow depth) are

examined with this comparison study. This is because the February LiDAR survey

that produced the observations of snow depth change occurred well before the date

of annual maximum SWE and the start of the primary melt season.

The special report describing the SNODAS data assimilation scheme and the

available products (Barrett, 2003) mentions a noticeable lack of objective validation

of SNODAS simply due to the fact that e↵ectively all available automated remote

sensing and ground-based data is inherently assimilated into the model framework.

However, independent studies are the only method for obtaining impartial comparison

metrics to properly validate SNODAS. As of 2013, only two studies have focused on

validation of SNODAS using external independent datasets.
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The first study by Anderson (2011) consisted of a comparison and validation study

over two winter seasons after taking thousands of depth measurements with a Snow

Magnaprobe and hundreds of SWE measurements using a Federal Snow Sampler

just to the north of Boise, Idaho in the Dry Creek Experimental Watershed. Results

concluded that SNODAS under-predicted both SWE and depth within the three study

pixels most likely due to sub-kilometer spatial variability that cannot be considered

by the modeling framework, and due to the sites having a predominantly southern

aspect, while the nearest SNOTEL station is sheltered by a nearby north facing slope.

Then, Clow et al. (2012) used 45 ground-based snow survey transects located

around the state of Colorado and within separate SNODAS pixels to study the

SWE and snow depth estimation ability of the model. Their findings found that

the model framework performs well in the sampled forested regions, but underesti-

mates SWE and depth in leeward (wind-sheltered) alpine terrain while overestimating

in windward-sloping (scoured) areas.

Thus, for the first time, a dataset of large spatial extent is used to analyze the

e↵ectiveness of SNODAS in estimating changes in snow depths during the accumula-

tion season. The CLPX-II 750 km2 LiDAR acquisitions sampled snow depths over a

wide span of elevations (2070–3260 m.s.l.), slopes, and vegetation types while covering

980 individual SNODAS pixels, providing a large database of comparisons between

measurements and model estimates.

As mentioned previously, this study primarily evaluates SNODAS for accumula-

tion events by the assumption that a negligible amount of snowmelt occurred between

December 3rd, 2006 and February 22nd, 2007 — the dates of each CLPX-II airborne

LiDAR survey. Also, by December 3rd, many locations within the survey area had
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received a perceptible amount of snow. Therefore, the di↵erence between the bare-

Earth surfaces of each survey date represents only the change in snow height and

does not take into account any changes in depth due to ablation or sublimation that

occurred between the flight dates. Since the LiDAR depth change is compared to the

SNODAS depth change, this should not be an issue even if there was significant ab-

lation, or sublimation. However, as these components of the mass balance were likely

small, this study primarily evaluates the accumulation and densification components

of SNODAS.

3.2.2 Methods

The second Cold Lands Processes Experiment (CLPX-II), as previously described,

was conducted over the 2006-07 winter season and was designed primarily to validate

the ability of the airborne POLSCAT (Polarimetric Scatterometer) sensor to measure

radar backscatter components from the snowpack for SWE estimation. Flown in con-

junction with two of the POLSCAT acquisitions and manual measurement campaigns

described in Chapter 2, the CLPX-II LiDAR was intended to be a radar instrument

validation dataset by supplying direct measurements of snow height changes at high

spatial resolutions.

SNODAS estimates of SWE and depth were downloaded from the National Snow

and Ice Data Center (NSIDC) for the two dates of the LiDAR acquisitions, then

converted to raster form and spatially referenced to the UTM coordinate projection

using ArcGrid software. The resulting estimate of the snow height change between

December 2006 and February 2007 is shown in Figure 3.1 along with the boundary

of the coincident LiDAR surveys as well as all nearby SNOTEL stations. Figure 3.2
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Figure 3.1: SNODAS estimates of snow depth change from December 3rd, 2006 –
February 22nd, 2007.

then displays the model estimated snow water equivalent present in the vicinity of

the LiDAR footprint on February 22nd, 2007. The SNODAS daily estimated snow

melt between LiDAR acquisitions was then summed to bolster the assumption that

minimal melt occurred over the study region. Figure 3.3 shows that only in the North

Park region 10–20% of the total snow precipitation was estimated to have melted away

due to solar radiation and air temperature. Everywhere else within the survey swath

experienced a negligible percentage of snow melt.

3.2.3 Results

The manual measurement campaign detailed in the preceding chapter produced twelve

hourglass snow depth measurement sites over a wide range of physiographically dis-

tinctive areas. The mean measured change in snow depth at each site was found

with an associated interquartile range, similar to Clow et al. (2012). Then, a coin-

cident 30 arc-second pixel estimate of depth change was created over each hourglass
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Figure 3.2: SNODAS estimates of snow water equivalent on February 22nd, 2007.
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b) The di↵erence between the SNODAS estimation and mean manual measurement
as a function of measured depth at the same twelve hourglass sites.

transect site from the areal percent of coverage by nearby SNODAS pixels. This

provided an area-weighted average of the SNODAS predictions centered over each in

situ measurement site.

Figure 3.4a shows the relationship between the SNODAS-estimated and mean

manually-measured changes in snow depth at each of the sites from the CLPX-II

hourglass transects. The trend of this limited dataset appears to suggest that as the

overall snow depth increases, the ability of SNODAS to estimate the amount of total

snow depth change decreases. Of special note is the considerable di�culty it took to

coordinate an in situ campaign as extensive as the CLPX-II manual measurements

while additionally making them all within one day of the LiDAR observations. The

validation dataset presented by Clow et al. (2012) was painstakingly gathered as well,

though each site was sampled on di↵erent days throughout the winter. Most impor-

tantly, each of these coordinated e↵orts required thousands of field research hours
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Figure 3.5: Mean LiDAR-derived 5-meter snow accumulation value [cm] within each
SNODAS 30 arc-second pixel from December 3rd, 2006 – February 22nd, 2007.

to yield twelve and forty-five data points, respectively, for independent validation of

SNODAS. The large extent, high resolution LiDAR observations of changes in snow

depth from the CLPX-II campaign naturally provide an ideal dataset to determine

where SNODAS performs well and where it has di�culty making estimates.

Interpolated to a 5-meter grid, the di↵erence of the two bare-Earth CLPX-II

LiDAR surveys provided over 100 million snow depth change values (Figure 2.2).

However, since SNODAS provides estimates at a much coarser spatial scale, the high

resolution values were necessarily binned into their corresponding SNODAS 30 arc-

second pixels in order to compute summary statistics and make a comparison to model

estimates. Additionally, the interpolated December survey vegetation and elevation

surfaces were calculated at 5-meter resolution and also stored in the SNODAS pixels.

The LiDAR mean snow depth change, mean elevation, and percentage of vegetation

cover within each SNODAS pixel are shown in Figures 3.5, 3.6, and 3.7, respectively.
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Figure 3.6: Mean LiDAR-derived 5-meter elevations [m] within each SNODAS 30
arc-second pixel.

Figure 3.7: LiDAR-derived vegetation density as a percentage within each SNODAS
30 arc-second pixel.
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3.2.4 Discussion

The comparison between the estimated and observed snow depth change, shown in

Figure 3.8, results in an r

2 = 0.72, signifying a reasonably strong correlation between

the model estimates and measurements. Also, since snow melt between the LiDAR

flights seemed to be an insignificant portion of the snowpack evolution (Figure 3.3),

the measured and estimated changes in snow depth over the study area are influenced

only by accumulation, densification, and redistribution (given that this work is not

considering sublimation e↵ects).

To determine the main cause of disagreement between the SNODAS estimates

and LiDAR observations of changes in snow height, seven potential physiographic

parameters were culled from the LiDAR data to perform a regression analysis. The

independent variables within each SNODAS pixel that were analyzed for their corre-

lation to the model-observation discrepancies included:

1. Vegetation density [%]

2. Median vegetation height [cm]

3. Inter-quartile range of vegetation height [cm]

4. Median snow depth change [cm] (Dec. 3rd – Feb. 22nd)

5. Inter-quartile range of snow depth change [cm]

6. Median elevation [m]

7. Inter-quartile range of elevation [m]
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The variable that was found to best correspond to the di↵erences in the two

datasets was the median LiDAR depth change. Figure 3.9 is a plot of the SNODAS-

LiDAR di↵erence as a function of the LiDAR change in snow depth. Three regions

have been highlighted in the figure, each corresponding to portions of the di↵erence

dataset that were found to be outside the uncertainty levels of the LiDAR-derived

changes in snow depth found in Chapter 2.

Each of the circled regions represent distinct geographic areas where specific fac-

tors cause relatively higher discrepancies between the modeled and remotely-sensed
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changes in snow depth. The blue horizontal stripe in the figure represents the ±15 cm

that the uncertainty in LiDAR can reasonably account for in the SNODAS-LiDAR

comparison.

Region #1 is comprised of pixels that SNODAS estimated to have a larger positive

change in snow depth between LiDAR acquisitions. However, the LiDAR snow depth

changes within these pixels are well below the trusted LiDAR uncertainty level (the

pink vertical stripe). These pixels are located in the North Park region of the survey

area, where the flat landscape is densely populated by low sagebrush (⇡ less than

30 cm) and high winds frequently scour the snow above and near the height of the

sage throughout the winter (HP Marshall, personal communication). The snow that

remains is therefore packed between the low vegetation and the snow height changes

very little throughout the year once it has reached a height similar to the sagebrush.

SNODAS does incorporate a sublimation factor due to wind into the accumulation

model, but the SNOTEL stations that are used in the assimilation step are located

a good distance from the North Park area, and so wind speeds and directions are

not well-represented in the area. The locations of the region #1 pixels are roughly

delineated in Figure 3.10.

Pixels that comprise region #2 in Figure 3.9 are where snow depths are similarly

estimated by SNODAS to have changed more than observed by the LiDAR. However,

the geographic location of the pixels are in a region with higher snow accumulation

totals, which are above the lower LiDAR uncertainty level of 15 cm. Again delineated

in Figure 3.10, these pixels are nestled directly to the east of Rabbit Ears Pass where

the Columbine SNOTEL station provides assimilation data for SNODAS. Since the

relative error of the LiDAR observations is small and a large gradient can be seen
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Figure 3.10: Pixel by pixel SNODAS-LiDAR di↵erences of changes in snow depths.
Hot colors are where SNODAS estimated a larger change in snow depth, while cold
colors show where LiDAR observed a larger change.

in the LiDAR changes in snow depth (Figure 3.5), this discrepancy can likely be

attributed to SNODAS over-distributing the SNOTEL information to areas of lower

elevations and vegetation types.

Finally, the region #3 pixels represent an area where the upscaled LiDAR changes

in snow depth are significantly larger than the SNODAS estimates. These pixels occur

primarily in topographically complex areas with exceptionally high snow totals and

dense coniferous forests, once again outlined in Figure 3.10. The probable controlling

factor of underestimation by SNODAS in this region is the sub-kilometer scale het-

erogeneity of snow distribution caused by both vegetation and topography. SNODAS

has been found to underestimate snow depths in similar forested alpine terrain (An-

derson, 2011), so this result is not unexpected. The next section delves further into

the issue of hillslope- and micro-scale variability by applying a wind redistribution

model to a portion of the survey area.
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Of special note is that NASA’s Airborne Snow Observatory (ASO) mission will

be collecting weekly high resolution LiDAR snow depth data for the 2012-13 – 2015-

16 winter seasons over the Tuolumne Basin in California’s Sierra Nevada Mountains

as well as large regions of the Rocky Mountains in Colorado and Wyoming. These

large-scale datasets will be able to provide additional validation for SNODAS, to say

nothing of the other myriad hydrological questions that will be addressed by the

campaign.
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3.3 High-Resolution Wind Redistribution

Modeling

3.3.1 Introduction

In seasonal snowpacks, many factors actually a↵ect the spatial variability of snow

depth at the hillslope scale, including short- and long-wave radiation, vegetation

density, and topography. But it has previously been shown that the largest cause of

snow depth variability in treeless environments is wind during storm events (Elder

et al., 1991; Seyfried and Wilcox, 1995; Luce et al., 1998). Strong winds transport

loose snow from windward to leeward slopes, preferentially depositing much of the

airborne grains into drifts.

The findings presented in Clow et al. (2012) reveal a large dependence on wind

transport processes of snow for accurate prediction of SWE by SNODAS. Therefore,

the second section of this chapter analyzes the wind redistribution component of

the Isnobal energy balance snowmelt and runo↵ prediction model suite described in

Winstral and Marks (2002) by studying a small wind-scoured portion of the CLPX-II

5-meter LiDAR DEM from the December “early season” acquisition. Previous work

with this wind model has considered the wind’s e↵ect on turbulent heat fluxes, which

in turn influence sublimation and snow melt, in addition to accumulation patterns

from redistribution. But due to the timing of the CLPX-II LiDAR surveys, this work

only considers wind redistribution e↵ects during the accumulation period.

Modeling how wind a↵ects snow redistribution in heterogeneous terrain from first

principles is computationally intensive and requires knowledge of the forcings at a

resolution that is typically not available. Complex physics-based models have been
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developed to predict where drift and scour zones develop using meteorological and to-

pographical data (Lehning et al., 2006; Liston and Sturm, 1998), but operational use

of such models at scales needed for water resource planning and avalanche forecasting

is not currently practical. Conversely, the wind model described in Winstral et al.

(2009) requires merely an input DEM and calculates terrain parameters for given up-

wind directions in order to predict areas of drift and scour due to wind redistribution.

Meteorological information is added at a later step for incorporation into the Isnobal

mass- and energy-balance snow model (Winstral and Marks, 2002).

Even though the complexity and computational e�ciency of these models have

varied significantly, the resolutions of the model input DEMs have typically been 10–

30 meters. But topography and vegetation can change dramatically in complex alpine

terrain in length scales much less than 10 meters. To account for this complexity,

the portions of the CLPX-I and -II high resolution LiDAR DEMs are input into

the wind model to observe small-scale changes in terrain, which are then compared

with the LiDAR-derived snow depth data. A similar method was implemented by

Schirmer and Lehning (2011), which concluded that the output parameters from the

wind model are comparably significant to snow depth measurements from repeated

terrestrial LiDAR scans.

Finally, of the nine ISAs surveyed during CLPX-I only the Walton Creek site was

revisited during CLPX-II, thereby providing three independent measurements of the

snow depth distribution at di↵erent times during the winter accumulation season at

this site. These high resolution datasets, all timed before the onset of the melt season,

furnish evidence of the interannual consistency of snow depth discussed in Deems et al.

(2008) and Sturm and Wagner (2010). The observed consistency patterns of drifting
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and scouring at Walton Creek are compared to the patterns obtained by the wind

redistribution model terrain parameters.

3.3.2 Study Area

This study focused on a heavily wind-a↵ected area near Rabbit Ears Pass in the

southern portion of the Park Range of Northern Colorado. The area is split into two

1 km2 subareas that have been separately examined as components of the CLPX-I and

CLPX-II campaigns (Figure 3.11) as well as in previous studies of spatial variability

(Erxleben et al., 2002; Deems et al., 2006; Trujillo et al., 2007).

For the CLPX-I campaign, the Walton Creek Intensive Study Area (ISA) was

selected to represent an environment with a very deep, wind-a↵ected snowpack with

sparse conifer groves, dense underbrush, and easy accessibility (Cline et al., 2009).

Airborne LiDAR surveys were performed twice for the CLPX-I mission; once on

September 19th, 2003 to supply the snow-free surface and again on April 9th, 2003,

the approximate date of maximum snow water equivalent.

Located just a few hundred meters to the east of the Walton Creek ISA lies the

Dumont Lake study area, which was intensively sampled for snow depth during the

CLPX-II campaign in conjunction with the two LiDAR surveys of December 3rd,

2006 and February 22nd, 2007. These manual measurements helped constrain remote

sensing uncertainty for the LiDAR surveys but also revealed the di�culty for in situ

measurements to e↵ectively sample snow depths in complex terrain like that of the

Rabbit Ears Pass area. This is true because manual measurement transects will never

be able to sample at a spatial resolution similar to that of LiDAR, and at a resolution

required to resolve snow drift features in this environment over a reasonable extent.
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Due to their proximity, both the Dumont Lake and Walton Creek study areas

portray similar physiographic features of terrain, slope, and vegetation density. But

because the Walton Creek LiDAR dataset incorporates three high resolution images

of snow depth at di↵erent times and in di↵erent years, we can test the correlations

between the three acquisitions to predict areas of drift and scour within the study

area. After applying the wind model to derive terrain parameters within the Walton

Creek site, we will execute the wind model at the Dumont Lake site to predict drifting

and scouring given only a snow-free DEM.

3.3.3 The Wind Redistribution Model

The wind redistribution model described by Winstral et al. (2013) uses a simple slope-

finding algorithm to determine the maximum upwind slope, Sx, over a user-defined

search vector, dmax. This directional search calculation is performed beginning from

each grid cell of a DEM in every upwind direction provided to the model, warranting

a bu↵er zone surrounding the study area.

Sx,d
max

= max

 

tan

�1

(
vertical distance

horizontal distance

)!

(3.1)

The maximum upwind slope value calculated from Equation 3.1 is then assigned

to a corresponding cell position in a newly defined grid, Sx. This parameter describes

the relative exposure of that cell for a given upwind direction.

Next, the model calculates the di↵erence, Sb, between a newly calculated pa-

rameter, Sx,Local (defined by a shorter search vector, sepdist) and Sx,Outlying (again

constrained by dmax but now beginning from the last pixel of the sepdist vector).

This parameter determines if any topographical features exist upwind that may sep-
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break (Sb) angle, while b) has a much lower terrain break value.
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arate wind flow, and thus allow drift formation over the cell of interest. A sample

calculation is depicted in Figure 3.12 using dmax = 1000m, sepdist = 100m, and a

hypothetical 20-meter resolution DEM.

Then, the parameters are averaged for each upwind direction in 5� increments

over an encompassing 30� window to account for changes in wind direction due to

small terrain features. The window-averaged terrain-break, Sb, and maximum upwind

slope, Sx, parameters are calculated over each grid cell of a DEM and stored in a new

gridded raster library for all user-defined upwind directions.

3.3.4 Results

The Walton Creek December LiDAR-derived 5-meter DEM was used as input for the

redistribution model to produce maximum upwind slope and terrain break parame-

ters. The prevailing winds for the site are very predominantly out of the West, as

shown in Figure 3.13, so the terrain parameters derived for the 270� upwind direction

were used for comparison with LiDAR-derived snow depths.

The image of the calculated 270� Sb parameter for the Walton Creek ISA is de-

picted in Figure 3.15, while the LiDAR-derived change in snow depth from December

to February is shown in Figure 3.16. The circled drift areas in the images signal

qualifiable trends between the two datasets. Certain portions of the terrain-modeled

image reveal large values of Sb that do not represent areas of drift formation (e.g., the

northwest and southwest corners), but these may be explained by other factors such

as incoming solar radiation and upstream vegetation that blocks the wind, calling for

further investigation.
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Figure 3.14: Walton Creek maximum upwind slope parameter, Sx (in degrees), from
5-meter DEM using the 270� upwind direction and dmax = 150m.
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Figure 3.16: LiDAR-derived, 5-meter resolution snow accumulation between Decem-
ber 3rd, 2006 and February 22nd, 2007.

Interannual Consistency

LiDAR acquisitions are the only method currently available to observe snow accumu-

lation at such a high spatial resolution and extent. Manual sampling transects are

helpful for estimating average snow depth and SWE in areas with similar topogra-

phy, but cannot realistically sample at the same point density as a LiDAR survey.

However, the major downside of acquiring LiDAR-derived snow accumulations is the

high cost and di�culty of gathering accurate data. Though costs for LiDAR sur-

veys are quickly falling, to only have a need to survey a particular location two times

(the snow-free and snow-covered surface) for predicting the relative year-to-year snow

distribution would be a great advantage for snow researchers, water managers, and

avalanche practitioners.
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Figure 3.17: LiDAR-derived, 5-meter resolution snow depths at Walton Creek as of
December 3rd, 2006.
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Figure 3.18: Snow depths at Walton Creek as of February 22nd, 2007.



52

False Easting [km]

Fa
ls

e 
N

or
th

in
g 

[k
m

]

 

 

  23 23.2 23.4 23.6 23.8   23 23.2 23.4 23.6 23.8

8.7

8.8

8.9

  9

9.1

9.2

9.3

9.4

9.5

9.6

100

150

200

250

300

350

400

450

23.9!23.0! 23.1! 23.2! 23.3! 23.4! 23.5! 23.6! 23.7! 23.8!
False Easting [km]!

9.6!

9.5!

9.4!

9.3!

9.2!

9.1!

9.0!

8.9!

8.8!

8.7!

Fa
ls

e 
N

or
th

in
g 

[k
m

]!

[cm
]!

False Easting [km]

Fa
ls

e 
N

or
th

in
g 

[k
m

]

 

 

  23 23.2 23.4 23.6 23.8   23 23.2 23.4 23.6 23.8

8.7

8.8

8.9

  9

9.1

9.2

9.3

9.4

9.5

9.6

100

150

200

250

300

350

400

450

Figure 3.19: Snow depths at Walton Creek as of April 9th, 2003.

Fortunately, four LiDAR flights were flown in di↵erent years over the Walton Creek

ISA as a component of the CLPX-I and CLPX-II campaigns, resulting in three sep-

arate observations of the snow distribution at distinct moments of the accumulation

season. Designated as the December, February, and April surveys (Figures 3.17–

3.19), the distributions have been rigorously compared to one another to detect any

quantifiable correlations between the observations.

First, snow depths were standardized by subtracting the mean and dividing by

the standard deviation of the depth distribution for each survey. Next, three sets

of correlations were obtained by multiplying the standardized depths for December

to February, December to April, and February to April, respectively. Finally, the

cube-root of the product of the three correlation sets resulted in a final metric for

interannual consistency of snow distribution (Figure 3.20). This method worked to
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Figure 3.20: Statistically-determined drift and scour locations at the Walton Creek
study area from three separate winter LiDAR acquisitions.

expose all snow depth pixels that were persistently much higher or much lower than

the overall mean snow depth for the study area (Figure 3.21). The fact that the

method located many of the drifting and scouring grid cells indicates an existing

interannual trend for the snow depth distribution at Walton Creek.

Distribution Consistency and Wind Modeled Terrain Parameters

The drifting and scouring locations developed in the previous section using multi-

temporal LiDAR datasets can also be used to determine the e↵ectiveness of the Sb

and Sx terrain parameters for predicting drift and scour locations in similar ter-

rain. It must be mentioned, however, that the interplay between vegetation and

spatial variability at Walton Creek is not investigated in this work because only the
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Figure 3.21: Histograms of snow depth after applied classification scheme for each
‘Snow-On’ LiDAR survey. Classification separates the persistently drifted and scoured
pixels (extreme values) from other values that remain nearer to the mean of each
survey.
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vegetation-filtered DEM has so far been applied to the wind model. Future work will

look into the proportional amount of vegetation and terrain e↵ects on wind-blown

snowpacks.

The pixels representing neither consistent scouring nor drifting in Figure 3.20

were removed from both the modeled Sx and Sb parameters. The distributions of

Sx and Sb were then plotted in Figure 3.22, where the point of intersection between

the drift and scour cell peaks can be considered the optimal cuto↵ values for Sb

and Sx for predicting drifting and scouring in similar environments. For all cells,

if Sb � �0.4� and Sx � 3.4�, then that particular cell has the possibility of drift

formation. Similarly, if Sx < 3.4�, then that cell is likely a scoured location.

Because of their close proximity, the Dumont Lake study area was used to test

the applicability of the optimal terrain parameter cuto↵ values determined at Walton

Creek. Shown in Figure 3.23, the LiDAR-observed snow depth change distribution at

Dumont Lake exhibits similar patterns to the Walton Creek site. The parameter cuto↵

values of Sx = 3.4� and Sb = �0.4� were used to trim predicted drift (Figure 3.24)

and scour (Figure 3.25) locations from the true observed snow distribution.

The results qualitatively show that when the correct wind redistribution model

cuto↵ values are known for a particular area, the terrain parameters can e↵ectively

determine high and low snow accumulation cells. The areal extent could easily be

increased while remaining at a high 5-meter resolution in order to determine fine-scale

spatial variability over very large regions, given that the landscapes for the determined

parameter cuto↵ values remain somewhat similar.
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Figure 3.22: Probability density functions of Sb and Sx at Walton Creek for known
drift and scour cells from interannual consistency study.
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Figure 3.23: LiDAR-observed changes in snow depth at Dumont Lake study area for
December 3rd, 2006 – February 22nd, 2007. The lake can be seen in the northeastern
corner.

3.3.5 Discussion

Micro-scale terrain features significantly a↵ect the spatial distribution of snow in

seasonal snowpacks. Using high resolution, LiDAR-derived snow-free DEMs, a wind

redistribution model developed by Winstral and Marks (2002) has the potential to

accurately predict where drifts will form and scouring will occur over complex terrain.

Using one snow-free and three snow-covered LiDAR surveys over a small 1km2

study area, we were able to statistically analyze the spatial snow depth distributions

to determine areas of drifting and scouring. With these locations known, the wind

redistribution model was implemented to calculate the Sx and Sb terrain parameters

over the site. The locations of confirmed drifts and scour cells were used to discover

cuto↵ values of the model terrain parameters where below or above drifting and
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Figure 3.24: Regions from the Dumont Lake LiDAR-derived change in snow depth
raster where the terrain break parameter Sb � �0.4�, and the maximum upwind slope
parameter Sx > 3.4�
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Figure 3.25: Regions from the Dumont Lake LiDAR-derived change in snow depth
raster where the maximum upwind slope parameter Sx < 3.4�
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scouring was likely to occur.

Then, at a nearby site, the wind model was again executed and the terrain param-

eter cuto↵ values used to designate drift and scour cells. Because we also know the

spatial snow distribution at this site from LiDAR, we were able to qualitatively check

the ability of the wind model to predict drifting and scouring. The results encourage

a larger study of this method in regions where LiDAR-derived distributions of snow

depths are known.
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CHAPTER 4:

MEASURING SNOW DEPTHS WITH

TIME-LAPSE PHOTOGRAPHY

4.1 Summary

Previous chapters considered the measurement and modeling of seasonal snow’s spa-

tial variability at a single moment in time, but now we will turn to addressing the

di�culty of making high resolution, spatially-distributed temporal measurements of

snow depth over broad mountain regions. We introduce a lightweight, inexpensive

technique to record hourly snow depths at multiple locations using time-lapse pho-

tography and image processing techniques. Preliminary results are presented that

agree closely with nearby standard ultrasonic sensors and encourage a wider imple-

mentation to make point depth measurements over a wide spatial scale and at a high

temporal resolution. Finally, we detail the drawbacks of using photography to mea-

sure snow depth during cold and dark winter months and outline plans to increase

measurement capabilities at night and during fierce weather.

4.2 Introduction

Remote sensing measurement techniques such as LiDAR are beginning to emerge as

viable methods to observe snow depths at extremely high spatial resolutions over

large areas. However, the evolution of mountain snowpacks over time is an equally
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important problem to consider. In order to ideally model seasonal snow accumulation

and ablation, researchers would need information about snow depth and density at

all times and over all space. While this is impossible in practice, advances in tech-

nology are slowly allowing us to answer certain questions about spatial and temporal

variability of snow with more and more confidence.

To better understand hillslope-scale snow processes, researchers necessarily began

by studying instantaneous glimpses of the snowpack’s spatial distribution with co-

ordinated in situ measurement campaigns (Elder et al., 1991; Erxleben et al., 2002)

and later repeated airborne (Deems et al., 2006; Trujillo et al., 2007) and terres-

trial (Prokop, 2008; Schirmer and Lehning, 2011) LiDAR surveys. But the complex

information given by these snapshots of spatial distribution come with a very high

monetary cost of instrumentation and are not yet easily automated at an hourly time-

step, thus losing any ability to observe high resolution temporal snowpack evolution,

which this work aims to capture.

Knowledge of meteorological conditions during accumulation events allows an ap-

proximation of the snow’s grain size, density and water content; all factors that are im-

portant for snow hydrology and avalanche forecasting applications. The first systems

for obtaining high temporal resolution weather data in addition to snow measure-

ments were developed in the mid-1970s with the installation of the first continually

monitoring SNOw TELemetry (SNOTEL) stations in the Rocky Mountains. Main-

tained by the Natural Resources Conservation Service (NRCS) and still in widespread

use today, these systems are able to make automated measurements for entire winter

seasons, resulting in rich historical datasets used nationwide by snow hydrologists,

water forecasters, and avalanche practitioners. Snow water equivalent (SWE) is mon-
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itored by snow pillows, essentially large bags filled with liquid for measuring the

hydrostatic pressure of the overlying snow. Additionally, most SNOTEL sites incor-

porate an ultrasonic sensor to automatically measure snow depth.

Nonetheless, SNOTEL information is merely a point measurement and stations

are typically installed in sheltered forest glades where micro-scale weather can be

relatively calm compared to the surrounding storm-scale conditions. Capturing pro-

cesses that a↵ect spatial variability of snow over extended time periods would require

a network of standard ultrasonic sensors, implementation that would be di�cult due

to power and telemetry constraints. An alternative for observing spatial and tempo-

ral variability would be to employ time-lapse photography methods and a network of

a�xed snow depth markers.

Time-lapse photography has been used extensively in cold regions research to

examine gradually evolving processes ranging from glacier and ice sheet retreat (Har-

rison et al., 1992; Ahn and Box, 2010) to snow crystal metamorphism (Pinzer and

Schneebeli, 2009). Post-processing for these methods can be laborious and di�cult

when an object is far from the camera due to slight shifts in camera position and or-

thorectification error. However, accurate measurements can be more easily obtained

when distances to the objects of consideration are limited to the near-field.

Over the 2012/2013 winter season, two rugged, low power prototype time-lapse

camera systems were deployed at easily accessible study sites to verify a new method

of measuring hourly snow depths at point locations. The primary goals of this initial

deployment were to test an inexpensive measurement system and to subsequently

develop a pixel-counting algorithm to calculate snow depth at multiple locations for

each image captured by the camera. A pair of ordinary ultrasonic depth sensors, one
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located in a NRCS-maintained SNOTEL site, were used as measurement validation

for the method.

Since photography can be considered a passive optical remote sensing method,

there are naturally drawbacks for using it to measure snow depths: primarily an

inability to capture images at night or during poor visibility conditions. Despite

these limitations, the results of the method presented here were well-correlated to the

ultrasonic depth measurements, presenting a new tool for researchers interested in the

temporal evolution of mountain snowpacks. The main advantages of this method are

the portability and low cost of the camera setup, potentially allowing several cameras

to make automated depth measurements at dozens of points over entire accumulation

and ablation seasons.

4.3 Methods

4.3.1 Study Sites

A prototype measurement system was installed in November 2012 at a study plot

maintained by the Boise State University Center for Geophysical Investigation of the

Shallow Subsurface (CGISS) within the ski area boundary of Bogus Basin Recreation

Area, 16 miles northwest of Boise, ID. Located at 43� 45’ 31” N, 116� 5’ 24” W

(Figure 4.1), the study plot has an elevation of 2,100 m.s.l. and is primarily south-

southeast-facing with 20�–30� slopes. Validation of the system was made possible with

two nearby ultrasonic snow depth sensors manufactured by Judd Communications,

LLC. The first ultrasonic sensor is located within the Bogus Basin SNOTEL site 3
/4 km

to the northwest and the other just 20 meters away along a nearby ridge, maintained
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Figure 4.1: Locations of time-lapse snow depth cameras in Idaho, USA

by the Boise State University Hydrology group. As a fully functional snow study

plot, the site’s primary goals are to investigate snow stratigraphy evolution, spatial

variability, soil moisture and resistivity, and lateral flow of melt water through the

snow pack using resistivity methods, various radar systems, and an array of snowmelt

lysimeters (Figure 4.2). Terrestrial LiDAR surveys of the study site were conducted

on October 12th, 2012 and March 13th, 2013, respectively, using a Riegl VZ-1000 3D

laser scanner to provide reference surfaces of spatial snow depth distribution.

The second camera was planned to be installed adjacent to a frequent avalanche

starting zone 530 meters above State Highway 21 and three miles south of Banner

Summit in the Sawtooth Mountains of Central Idaho (44� 14’ 20” N, 115� 12’ 9” W,
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Figure 4.2: Bogus Basin study site layout showing location of the time-lapse camera
with field-of-view and snow depth markers as well as snow pits and upward-looking
radar. Snow-free (brown) and snow-covered (white) 20 cm digital surface models were
obtained from repeated terrestrial laser scans.

Figure 4.1). A 5-meter steel depth post was to be secured with cement and guy-

wires and depth would be monitored all winter long. However, weather conditions

worsened before completion of the site installation and the decision was made to

relocate the prototype across the canyon to a heavily wind-scoured ridge site that

would remain more accessible throughout the winter. Though the site location has

a similar elevation to the Bogus Basin study plot at 2,150 msl, the local weather is

much more severe and wind speeds can routinely surpass 35 m/s during winter storms.

Storms over the area also exhibit large variations in temperature and wind directions,

resulting in a transitional snowpack with average snow depths of 2–3 meters and large

drifts and ridge cornices.
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4.3.2 Instrumentation

The most cost-e↵ective time-lapse cameras currently on the market are manufac-

tured for game-monitoring and birdwatching photography. Variously manufactured

by Moultrie and Wingscapes, subsidiaries of EBSCO Industries, Inc., these cameras

have limited features but are lightweight, easily secured to stationary objects such

as trees or rocks, and most importantly have very low power consumption. Between

timed startups the camera draws merely 1–2 mV and therefore only requires two 12

volt, 9 Ah batteries to capture ten images a day for at least six months. Before

deployment, the pixel size as a function of distance is calculated for each camera by

taking images of fixed 10cm and 50cm orange strips from measured ranges of 10–100

meters away. Factors such as ambient air temperature and relative humidity may

have a small distortion e↵ect on the correlation, but are not considered at this time.

After all the connections have been sealed and epoxied with the batteries fixed

within a waterproof electrical junction box, a complete camera system weighs in at

less than fifteen pounds, allowing for distribution in remote mountain areas. Captured

images are output to a high-capacity SD card that does not need to be replaced for

the season duration. Finally, a bright orange depth marker is secured in the nearby

soil and the distance is measured from the camera to the top, dT, and base, dG, of

the marker to determine the viewing angle to limit error from pixel size distortion

(Figure 4.3). At the Bogus Basin site, two depth markers were anchored into the soil

to test the system’s ability to make measurements at multiple points simultaneously

within one image (Figure 4.4).
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Figure 4.3: Typical time-lapse snow depth camera system arrangement. dT, dG and
h are measured and pixel size as a function of distance is predetermined, permitting
the calculation of snow depth, Q, for every hourly image.
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Figure 4.4: Sample images captured by the Bogus Basin study site camera with
calculated snow depths displayed for both markers. Upper image was taken the day
of installation.
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4.3.3 Algorithm

Each camera was programmed to wake from sleep every daylight hour to capture a

single image. Because the camera and depth markers were in fixed locations, it was

possible to automatically track the snow surface if a large gradient existed between

the pixel intensity of the white snow and an orange depth maker. The distance from

the camera lens to the top and bottom of each marker was measured before the

accumulation season began, to provide an estimate of horizontal error due to snow

creep upon the marker and subtle camera shifts. Finally, a pixel counting process

was developed to track the snow surface throughout the season.

Essentially, the algorithm clips each image to small rectangle around the last-

known vertical pixel location of the marker base (Figure 4.5a), then separates and

smooths the blue channel of the RGB image for ultimate consideration (Figure 4.5b).

This is done because snow’s spectral albedo causes the most light to be reflected in the

near ultraviolet and blue visible spectrum (Wiscombe and Warren, 1980), resulting

in a large intensity gradient between depth marker and snow surface. Next, row-wise

minimums are calculated to create a column vector (Figure 4.5c) and the di↵erence

between subsequent elements are found (Figure 4.5d).

Because the first step of the algorithm is to clip each image to the base of the depth

marker, eliminating all other portions of the image where high intensity gradients

exist, the greatest change between the blue channel row minimums can be classified

as the snow surface pixel row. After this row is determined, the depth conversion is

performed by subtracting the pixel row of the snow-free marker base and dividing by

the number of pixels per centimeter for the depth marker’s predetermined distance

from the camera.



70

W
SC

T0
92

5

50
10

0
15

0

50 10
0

15
0

20
0

25
0

30
0

Sm
oo

th
ed

, m
ea

n 
R

G
B 

im
ag

e

17
00

17
50

18
00

11
00

11
50

12
00

12
50

13
00

13
50

0
10

0
20

0

11
00

11
50

12
00

12
50

13
00

13
50R

ow
 M

in
im

um
s 

of
 m

ea
n 

R
G

B

−1
0

0
10

20

11
00

11
50

12
00

12
50

13
00

13
50

D
iff

er
en

ce
 b

et
w

ee
n 

ea
ch

 ro
w

 m
in

im
um

50
!

10
0!

15
0!

50
!

10
0!

15
0!

20
0!

25
0!

30
0!

C
lip

pe
d 

R
G

B 
Im

ag
e!

8:
00

 a
m

 - 
2/

27
/2

01
3!

Relative Y [pixels]!

R
el

at
iv

e 
X 

[p
ix

el
s]
!

a)
!

W
SC

T0
92

5

50
10

0
15

0

50 10
0

15
0

20
0

25
0

30
0

Sm
oo

th
ed

, m
ea

n 
R

G
B 

im
ag

e

17
00

17
50

18
00

11
00

11
50

12
00

12
50

13
00

13
50

0
10

0
20

0

11
00

11
50

12
00

12
50

13
00

13
50R

ow
 M

in
im

um
s 

of
 m

ea
n 

R
G

B

−1
0

0
10

20

11
00

11
50

12
00

12
50

13
00

13
50

D
iff

er
en

ce
 b

et
w

ee
n 

ea
ch

 ro
w

 m
in

im
um

17
00
!

17
50
!

18
00
!

11
00
!

11
50
!

12
00
!

12
50
!

13
00
!

13
50
!

Sm
oo

th
ed

 B
lu

e!
C

ha
nn

el
!

Absolute Y [pixels]!

Ab
so

lu
te

 X
 [p

ix
el

s]
!

b)
!

W
SC

T0
92

5

50
10

0
15

0

50 10
0

15
0

20
0

25
0

30
0

Sm
oo

th
ed

, m
ea

n 
R

G
B 

im
ag

e

17
00

17
50

18
00

11
00

11
50

12
00

12
50

13
00

13
50

0
10

0
20

0

11
00

11
50

12
00

12
50

13
00

13
50R

ow
 M

in
im

um
s 

of
 m

ea
n 

R
G

B

−1
0

0
10

20

11
00

11
50

12
00

12
50

13
00

13
50

D
iff

er
en

ce
 b

et
w

ee
n 

ea
ch

 ro
w

 m
in

im
um

11
00
!

11
50
!

12
00
!

12
50
!

13
00
!

13
50
!

R
ow

 M
in

im
um

 o
f !

Sm
oo

th
ed
!

Bl
ue

 C
ha

nn
el
!

Absolute Y [pixels]!
0!

10
0!

20
0!

G
ra

y 
sc

al
e 

in
te

ns
ity
!

c)
!

W
SC

T0
92

5

50
10

0
15

0

50 10
0

15
0

20
0

25
0

30
0

Sm
oo

th
ed

, m
ea

n 
R

G
B 

im
ag

e

17
00

17
50

18
00

11
00

11
50

12
00

12
50

13
00

13
50

0
10

0
20

0

11
00

11
50

12
00

12
50

13
00

13
50R

ow
 M

in
im

um
s 

of
 m

ea
n 

R
G

B

−1
0

0
10

20

11
00

11
50

12
00

12
50

13
00

13
50

D
iff

er
en

ce
 b

et
w

ee
n 

ea
ch

 ro
w

 m
in

im
um

In
te

ns
ity

 d
iff

er
en

ce
!

d)
! -1

0!
0!

10
!

20
!

11
00
!

11
50
!

12
00
!

12
50
!

13
00
!

13
50
!

D
iff

er
en

ce
 B

et
w

ee
n!

R
ow

 M
in

im
um

s 
!

Absolute Y [pixels]!

F
ig
u
re

4.
5:

P
ix
el
-p
ic
ki
n
g
p
ro
ce
ss

of
S
n
ow

D
ep
th
C
am

d
ep
th

m
ea
su
re
m
en
t.

T
h
e
th
ic
k
re
d
li
n
e
in

(a
)
re
p
re
se
nt
s
th
e

ap
p
ro
xi
m
at
e
m
ea
su
re
m
en
t
u
n
ce
rt
ai
nt
y.



71

4.4 Results

Each day from November 27th, 2012 until the last measurable snow melted on April

25th, 2013, the Bogus Basin time-lapse camera continuously captured hourly images

from 8 a.m. to 5 p.m., resulting in 1,500 measurements at two positions spaced

4 meters apart. The high-capacity SD cards that stored the images had plenty of

room to spare and the batteries remained dry and in good condition, carrying an

11-Volt load at the conclusion of the season. The ability of the camera to measure

hourly snow depths at multiple marker locations proved to be successful. The winter

2012-13 accumulated snow depths for both the near and far marker are shown in

Figure 4.6 alongside the depths recorded by the Bogus Basin SNOTEL and Boise

State University ultrasonic sensors. The Boise State sensor was not operational until

February 26th, within a week of the annual maximum SWE period, and solely captured

the melt season evolution. Also, the camera measurements between December 8th–

21st were obscured by a large snow-covered tree branch, which was later cleared.

Results of the time-lapse method were also compared to the corresponding LiDAR-

derived snow depths obtained from the snow-covered TLS survey on March 13th, 2013.

The day was unseasonably warm reaching 13�C at 11am and snow depths obtained by

the camera ranged between 81 cm at 8am to 74 cm at 4pm, while the LiDAR-derived

snow depth at marker #1 was 70 cm and marker #2 was 74 cm (Figure 4.7).

The motivation for this experiment was to quantify depths of wind drifts at point

locations to aid in validation of a wind redistribution model (described in Winstral

and Marks (2002) and Chapter 4) in unstable avalanche starting zones. The Canyon

Creek camera was installed with the intent to capture the formation of a large drift

throughout the winter. Unfortunately, there was no prior information for the sheer
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extent of the drift that would end up obscuring the depth marker by early January.

Moreover, exceptionally strong winds that frequented the measurement site caused ice

to encapsulate the power connections. As the ice melted, the batteries were shorted

and their charge was lost causing the camera to stop working in late January.

4.5 Future Work

As previously mentioned, recording snow depths with time-lapse cameras requires a

light source to capture the distributed markers. Up to this point, measurements were

only able to be taken during daylight hours, but for the upcoming 2013-2014 winter

season two infrared cameras will be tested at the Bogus Basin study site. These will be

installed in addition to four standard time-lapse cameras that will be installed along

the perimeter of the site and trained upon an array of eight secured depth markers.

Another drawback that will be addressed is the lack of real-time data telemetry. The

site has an extensive solar power supply in addition to internet access that will be

able to transmit images to a central CPU that will process and transmit the snow

depth for each marker to a university server.

This time-lapse method holds enormous potential for both avalanche and snow

hydrology applications due to the ratio of the low instrumentation cost to the capa-

bility to record high resolution snow depth information over distributed spatial scales.

Further work will ideally bring about even more portability to make the measurement

technique deployable in both locations without year-round power and in dangerous

avalanche terrain to monitor accumulation patterns of persistent starting zones.

Method development was funded in part by a research grant from the American

Avalanche Association.
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CHAPTER 5:

SUMMARY AND CONCLUSIONS

Over the past two decades, the ability to model characteristics of the seasonal snow-

pack has been drastically enhanced by higher resolution remote sensing methods,

weather forecasts, and automated measurements. The primary goal of this research

has been to follow in such a way by using a high spatial resolution LiDAR snow ac-

cumulation dataset to analyze the e↵ectiveness of an operational hydrologic model.

However, using LiDAR to obtain snow depth measurements is not a straightforward

process and therefore the data should be validated by manual measurements per-

formed in conjunction with the airborne acquisitions.

Chapter 2 presented a comparison study between the CLPX-II manually-measured

and LiDAR-derived snow height changes between Dec. 3rd, 2006 and Feb. 22nd, 2007.

Results showed that in shallow snowpacks LiDAR has di�culty resolving changes in

snow depth. This occurs because the desired snow depth measurements happen to

be at the same scale as the inherent noise (or uncertainty) of the combined LiDAR-

interpolated surfaces. In particular, the in situ site with the lowest mean measured

change in snow depth (Arapahoe - Figure 2.5) illustrated the inability of LiDAR to

correlate with the manual measurements. This has the e↵ect of placing an uncertainty

limit of ⇡ 15cm on the LiDAR observations, which was used in the Chapter 3 model

analysis.

Elsewhere in deeper snowpacks the LiDAR tended to under-predict changes in

snow depth in comparison to the manual measurements. The best explanation for
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this phenomenon is that there exists a large disparity in support between the two

measurement techniques. The LiDAR surfaces were interpolated to 5-meter grid

cells and then averaged in a 10-meter radius around each reported manual measure-

ment location, whereas the manual measurements are taken by a depth probe with

a millimeter-sized tip. This averaging of the LiDAR product, necessarily performed

to account for the positional uncertainty of the in situ transects, also has the e↵ect

of smoothing out sub-meter scale variations in depth, which are actually sampled by

the manual measurements. Yet, when the LiDAR-derived changes in snow depth are

viewed as a nearly continuous surface, the sampling shortcomings of manual depth

measurements become starkly apparent (Figures 2.5–2.9). A high correlation was

ultimately found between mean snow depth changes observed by LiDAR and at all

twelve intensive in situ sites. The underestimation of depth changes from the LiDAR

observation tended to increase progressively as in situ sites’ total average depth and

small-scale terrain roughness increased, again likely due to smoothing from taking the

mean of previously averaged points around each manual measurement (Figure 2.4).

The CLPX-II LiDAR change in snow depth dataset is so spatially rich and ex-

tensive that we next used it for validation of an operational hydrologic modeling

data assimilation system. SNODAS, as the model framework is known, assimilates

all available snow data to adjust for model shortcomings on a daily time step and

at a 30 arc-second (nominally ⇡ 1km2) resolution. Accordingly, validation datasets

must be made independent of readily available automated systems (e.g., SNOTEL

and weather station networks), and at the same time cover su�ciently large spatial or

temporal scales to match the resolution of model estimates. The comparison of 980

individual SNODAS pixels presented specific areas of higher disagreement between
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the model and the LiDAR data.

The area of highest disagreement was in very low accumulation prairie regions.

First of all, these environments are notoriously di�cult to estimate with hydrological

modeling techniques due to myriad physical processes, but also in this case due to

a lack of nearby forcing data. Secondly, LiDAR remote sensing uncertainties are on

the same order as the total snow depth in these prairie regions, making it impossible

to closely resolve absolute snow depths.

In areas where snowpacks are very deep, SNODAS has been found to have some

di�culty predicting snow depth and SWE during the accumulation season. Subkilometer-

scale spatial variability due to wind redistribution, incident solar radiation, and vege-

tation interception play an important role in complex mountain terrain, and in these

areas SNODAS tends to have increased error in estimates of snow depths. Account-

ing for hillslope-scale spatial variability in hydrologic models would require a priori

knowledge of yearly snow distributions. The wind redistribution component of the

Isnobal snow model provided an accurate method of locating drift and scour regions

over a site on the same scale as SNODAS estimate pixels. Future work will distribute

the wind redistribution modeling method over larger alpine areas to further study the

e↵ect of small-scale variability on the SNODAS modeling method.

Lastly, for the exposed, wind-blown prairie of the North Park region, standard

measurement techniques used at SNOTEL stations are not able to capture the spa-

tial variability of snow depths around the site. A new method that may be more

suitable in such terrain is to use time-lapse photography for continuous snow depth

measurements. A single camera is able to make multiple spatially distributed and

non-destructive observations of a snowpack’s temporal evolution in landscapes where
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ordinary ultrasonic sensors would have considerable di�culty.

The time-lapse photography method for measuring snow depths presented in

Chapter 4 can help bridge a data gap for independent validation of hydrologic mod-

els like SNODAS. But they will also help researchers study snowpack evolution in

dangerous avalanche terrain and remote areas due to their low cost and portability.

In closing, the remote sensing methods presented here (airborne LiDAR and time-

lapse photography), though very di↵erent in scope and implementation, can be used

in concert to quantify spatiotemporal variability of the seasonal snowpack. Future

work will focus on the ability to distribute hourly time-lapse measurements of snow

depth at multiple locations over vast areas using stored libraries of wind redistribution

parameters obtained with airborne LiDAR and meteorological data.
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