166 research outputs found

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    PILEP: a contribution to PCE-based interdomain path computation

    Get PDF
    The process of computing routes that network traffic must follow throughout Internet has become more complex in the last years. Nowadays, this process is subject to the application of several constraints related to traffic engineering, resources management, quality of the offered services, security or robustness. The application of all these constraints has caused an increase of complexity of those nodes in charge of path computation. Sometimes, the amount of time and resources spent to compute routes is superior to resources used in the main task of these nodes: traffic classification and forwarding. PCE (Path Computation Element) architecture is being developed to diminish that problem in the context of constraint-based path computation for MPLS (Multiprotocol Label Switching). Although research work in relation to this topic is making progress quickly, there are still some unsolved aspects. As a contribution to PCE development, in this work we present a mechanism called PILEP (Procedure for Interdomain Location of External PCEs) that allows the dynamic discovery of routes computation elements in interdomain environments, making use of the existing routing protocols.Postprint (author’s final draft

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Coordinated Computation of Multi-layer Paths via Inter-layer PCE Communication: Standards, Interoperability and Deployment

    Get PDF
    The Path Computation Element (PCE) is positioned nowadays as one of the solutions that almost every carrier will eventually deploy. The PCE architecture as well as a number of components, including the PCE Communication Protocol (PCEP), have been standardized by the IETF. However, a number of challenges remain to be solved on its way from standards to deployment. In particular, the existing proposals for multilayer path computation within the PCE framework need to be further developed and tested, before considering their possible integration into operational networks. This is especially true for the interoperability of the various PCE implementations and the extensions such as the Virtual Network Topology Manager (VNTM) which cannot be taken for granted. This paper presents a functional implementation of coordinated computation of multilayer paths supported through inter-layer PCE communication, where one PCE is developed by industry and the other as an open-source effort. To this end, we consider an IP/MPLS network deployed over a Wavelength Switched Optical Network (WSON), each of which deploying its own PCE, in an attempt to create an inter-operable multilayer solution. We discuss the key challenges that the research community will face in this area, which in turn will drive a considerable part of the upcoming efforts in terms of standardizationPostprint (published version

    Experimental Demonstration of Segment Routing

    Get PDF

    Investigation on PCE-based multi-domain optical networks

    Get PDF
    The last decade has seen many advances in high-speed networking technologies. However, many issues are still open for the development of next generation optical transport networks in order to optimize the resources; this is especially true in the context of multi-domain optical networks. In this context, the IETF entity introduces the Path Computation Elements (PCE) module to improve the network resources occupation. In multi-domain networks, each network domain is usually owned by a different operator/administrator and it entails the reluctant behavior from some operators concerning the dissemination of intra-domain information. The purpose of this work is to present and compare different Traffic Engineering (TE) information dissemination strategies between PCEs in multi-domain optical networks. In such network context, recent studies have found that path computation only with local domain visibility yields poor network performance. Accordingly, certain visibility between domains seems necessary. Aiming to fit the confidentiality requirements of the composing domains and to improve the final network blocking probability, novel link aggregation techniques have been proposed. These techniques summarize the state of network domains resources efficiently. Besides, this aggregated link information is afterwards disseminated to all the remainder domains in the network. In order to fulfill this requirement, we introduce different update triggering policies to make a good trade-off between routing information scalability and inaccuracy. On the other hand, the IETF entity has defined several mechanisms (BRPC and H-PCE) for establishing inter-domain paths to compute routes through cooperation between PCEs. This master thesis proposes a hybrid path computation procedure based on the H-PCE and BRPC. It is important to highlight that the performance of all contributions has been supported by illustrative simulation results

    Multi-Layer Architektur und System Design von Internet Protocol (IP) und Optischen Netzwerken

    Get PDF
    The modeling of multi-layer networks is well-researched problem, but existing models for IP-optical integration do not consider technology specific capabilities and operational aspects for employing dynamic optical circuits in IP networks. This thesis presents an ILP-based model which identifies and incorporates novel constraints for numerous technology specific aspects, such as IP forwarding capabilities and behavior of routing protocols. Novel solutions for critical operational aspects of IP-optical integration, such as optical circuit decommissioning and computation under unknown traffic conditions, are also proposed in this thesis. The thesis identifies changes in routing as a major deterrent for employing dynamic optical circuits in IP networks, and proposes the new Optical Bypass approach to address the same. Quantitative studies presented indicate that the introduction of an optical circuit under this approach significantly reduces the effect on IP routing, while lowering optical capacity requirements as compared to the traditional SPF based approaches. The proposed solution can also compute near-optimal solutions under unknown IP traffic matrix conditions, making it ideal for application in dynamic network scenarios. The thesis also addresses specific management challenges with IP-optical integration, and outlines solutions to address the same. The solutions are built around enabling coordination of management subsystems in the two network layers. The thesis presents the general architecture to facilitate coordination between management subsystems in a programmable fashion and demonstrates the capability of the architecture to be used in legacy as well as SDN-capable infrastructure. The thesis also outlines the design and implementation of the first open-source PCE, which is a critical management subsystem for enabling multi-layer path computation in IP-optical networks.Grundsätzlich ist die Modellierung von Multilayer-Netzen ein bekanntes Problem, dennoch lassen die vorhandenen Modelle für IP-optische Integration viele technologiespezifische Eigenschaften und kritische Aspekte bei Einrichtung und Betrieb dynamischer optischer Verbindungen in IP-Netzwerken außer Acht. Hierzu gehören vor allem die Eigenheiten des Forwarding, sowie das Verhalten von Routingprotokollen. Die vorliegende Dissertation präsentiert ein ILP Modell, dass solche Aspekte und Bedingungen identifiziert und integriert, sowie die Notwendigkeit hierfür anhand numerischer Evaluierung nachweist. Die Modellierungsaspekte der IP-optischen Integration umfassen bezüglich des Netzbetriebs vor allem Probleme wie die optimale Berechnung im Falle einer unbekannten Verkehrsmatrix sowie deren Verbindungsabbau. Ein wesentliches Hindernis in dynamische IP-optischen Netzwerken sind die aus ihrer Einrichtung resultierenden protokollspezifischen Änderungen im Routing. Als Lösung wird der optische Bypass vorgeschlagen. Die Untersuchungen zeigen, dass der Einsatz optischer Bypässe die Auswirkungen auf das IP-Routing stark reduziert und gleichzeitig die dafür notwendigen Kapazitätsanforderungen verringert. Damit sind optische Bypässe ebenfalls für Anwendungsszenarien geeignet, in denen die IP-Verkehrsmatrix nicht bekannt ist. Im Weiteren werden noch Probleme aus dem Bereich Netzwerkmanagement behandelt, die sich spezifisch aus der IP-optischen Integration entwickeln, und es werden entsprechende Lösungsansätze vorgestellt. Diese basieren auf der Abstimmung und dem koordinierten Betrieb der Management-Subsysteme in den beiden betroffenen Netzschichten. Gezeigt wird dann eine allgemeine Architektur, die eine Koordination von Management-Subsystemen (auch für SDN), in programmierbarer Form ermöglicht. Außerdem wird der Entwurf und die Implementierung des Open Source PCE beschrieben, welches die Berechnung von Multilayer Verbindungswegen in IP-optischen Netzwerken ermöglicht

    Next Generation Network Routing and Control Plane

    Get PDF
    corecore