12 research outputs found

    Are We Ready for Smart Transport? Analysis of Attitude Towards Public Transport in Budapest

    Get PDF
    In every case of serious development that concerns the majority of society, it is vital to analyze the current social opinion on the particular service and to analyze the possible effects, that the elements of the system being developed, could have. This is no different, when it comes to smart cities, more specifically smart traffic systems, even if these developments are to serve the improvement of peopleโ€™s living conditions. It is essential to determine what the decisive factors are for the man of today in choosing a mode of transport; which attributes influence that decision; what sort of opinion that individual has about different urban modes and whether he/she is ready to utilise smart means of transport. Furthermore,it is inevitable to explore, what would make people choose smart solutions (e.g. autonomous vehicles). Current article is to showcase the responses to the above questions of people living in the Hungarian capital, Budapest. The article begins with an overview of the international literature on smart cities and their transport system. Afterwards, the results of a research sponsored by the Hungarian Ministry of Human Capacities are presented, followed by the conclusions based on the results obtained

    Game Theoretic Analysis of Road User Safety Scenarios Involving Autonomous Vehicles

    Full text link
    Interactions between pedestrians, bikers, and human-driven vehicles have been a major concern in traffic safety over the years. The upcoming age of autonomous vehicles will further raise major problems on whether self-driving cars can accurately avoid accidents; on the other hand, usability issues arise on whether human-driven cars and pedestrians can dominate the road at the expense of the autonomous vehicles which will be programmed to avoid accidents. This paper proposes some game theoretical models applied to related traffic scenarios. In the first two games the reciprocal influence between a pedestrian and a vehicle (either autonomous or not) is analyzed, while the third game investigates the intersection of two vehicles, possibly autonomous. The games have been simulated in order to demonstrate the theoretical analysis and the predicted behaviors. These investigations can shed new lights on how novel urban traffic regulations could be required to allow for a better interaction of vehicles and a general improved management of traffic and communication vehicular networks.Comment: Accepted at 'IEEE International Symposium on Personal, Indoor and Mobile Radio Communications' 9-12 September 2018 - Bologna, Italy. Special Session on 'Wireless Technologies for Connected and Autonomous Vehicles'. 7 pages, 5 figure

    The Challenges Facing Autonomous Vehicles and The Progress in Addressing Them

    Get PDF
    Autonomous vehicles are an emerging technology that faces challenges, both technical and socioeconomic. This paper first addresses specific technical challenges, such as parsing visual data, communicating with other entities, and making decisions based on environmental knowledge. The technical challenges are to be addressed by the fields of image processing, Vehicle to Everything Communication (V2X), and decision-making systems. Non-technical challenges such as ethical decision making, social acceptance, and economic pushback are also discussed. Ethical decision making is discussed in the framework of deontology vs utilitarianism, while social acceptance of utilitarian autonomous vehicles is also investigated. Last, the likely economic impact is described

    Look Both Ways: Intersections Of Past And Present In The Shaping Of Relations Between Cyclists, Pedestrians, And Driverless Cars

    Get PDF
    Driverless cars are expected to transform society in many ways. Since nowadays most collisions are due to human error, safety is among the most anticipated benefits of the technology. The promise of near zero fatalities on roads appears in many industry statements and government reports. Because of that, every collision, especially involving fatalities, receives much attention from the media and public. That kind of scrutiny resembles the early days of the conventional automobiles. In those days, automobiles โ€“ also called โ€œhorseless carriagesโ€ โ€“ were not well received by the majority of the population. Cars brought conflicts and fatalities on roads to a level never seen before. The automobile industry, using public relations, shifted societyโ€™s perception about who belongs to the roads, and who should be blamed for the rise of fatalities. That shift influenced legislation and tort law in motor-vehicle centric ways. It also created cities with infrastructure focused on the automobile at the expense of other means of transportation. Today, one of the most difficult challenges for driverless cars is the unpredictability of pedestrian and cyclist behaviour. To accelerate the deployment of the technology, some are considering the necessity of law enforcement against pedestrians and other street users. Centred on urban environments, pedestrians and cyclists, and with an interdisciplinary and advocacy-oriented approach, this thesis seeks to contribute to the debate about the safety and deployment of driverless cars, its influence on law and legislation, and how a car-centred view of the technology may limit its potentialities

    The social perspective on policy towards local shared autonomous vehicle services (LSAVS)

    Get PDF
    The transport policy discourse posits Shared Autonomous Vehicles (SAVs) as a more sustainable solution for the implementation of road automation technology. A successful implementation of SAV services strongly depends on being able to meet user's needs, as well as responding to their expectations. For this reason, the public has a central role in the definition of appropriate and realistic policies for the design, regulation and adoption of new automated mobility services. However, whilst there has been considerable attention to individuals' attitudes towards road transport automation, few have applied participatory or co-design methods to help define new SAV services. Moreover, most of the existing studies have also been hypothetical rather than examining vehicles in real service settings. This paper addresses these imbalances through reporting a two-stage research initiative. Initially a local shared automated vehicle service (LSAVS) concept was examined in a co-design workshop (Stage 1), leading to the development of a conceptual framework for social acceptance. This was then applied (Stage 2) in qualitative empirical research into the experiences of participants who rode in two different live prototype LSAVS. It was found that social considerations such as equity in access to mobility services, social inclusion, environmental protection, and concerns about control over interpersonal interactions emerged as strong acceptance factors within participants' construction of the conceptual services and responses to exposure to actual services. However, broad socio-political aspirations beyond transport policy were also important. It is concluded that achieving high levels of social acceptance where these utopian expectations meet commercial realities and public-sector constraints will be a major policy challenge facing any attempt to introduce an LSAVS with strong sustainable mobility credentials

    Assessing Pedestrian Safety Conditions on Campus

    Get PDF
    Pedestrian-related crashes are a significant safety issue in the United States and cause considerable amounts of deaths and economic cost. Pedestrian safety is an issue that must be uniquely evaluated in a college campus, where pedestrian volumes are dense. The objective of this research is to identify issues at specific locations around UCF and suggest solutions for improvement. To address this problem, a survey that identifies pedestrian safety issues and locations is distributed to UCF students and staff, and an evaluation of drivers reactions to pedestrian to vehicle (P2V) warning systems is studied through the use of a NADS MiniSim driving simulator. The survey asks participants to identify problem intersections around campus and other issues as pedestrians or bicyclists in the UCF area. Univariate probit models were created from the survey data to identify which factors contribute to pedestrian safety issues, based off the pedestrian\u27s POV and the driver\u27s POV. The models indicated that the more one is exposed to traffic via walking, biking, and driving to campus contributes to less safe experiences. The models also show that higher concerns with drivers not yielding, unsafety of crossing the intersections, and the number of locations to cross, indicate less safe pedestrian experiences from the point of view of pedestrians and drivers. A promising solution for pedestrian safety is Pedestrian to Vehicle (P2V) communication. This study simulates P2V connectivity using a NADS MiniSim Driving Simulator to study the effectiveness of the warning system on drivers. According to the results, the P2V warning system significantly reduced the number of crashes in the tested pre-crash scenarios by 88%. Particularly, the P2V warning system can help decrease the driver\u27s reaction time as well as impact velocity if the crash were to occur

    ๋„์‹ฌ ๊ต์ฐจ๋กœ์—์„œ์˜ ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ ์ฃผ๋ณ€ ์ฐจ๋Ÿ‰ ๊ฒฝ๋กœ ์˜ˆ์ธก ๋ฐ ๊ฑฐ๋™ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๊ฒฝ์ˆ˜.์ฐจ๋ž‘์šฉ ์„ผ์‹ฑ ๋ฐ ์ฒ˜๋ฆฌ๊ธฐ์ˆ ์ด ๋ฐœ๋‹ฌํ•จ์— ๋”ฐ๋ผ ์ž๋™์ฐจ ๊ธฐ์ˆ  ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์—์„œ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ๋กœ ์ดˆ์ ์ด ํ™•์žฅ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ, ์ฃผ์š” ์ž๋™์ฐจ ์ œ์ž‘์‚ฌ๋“ค์€ ๋Šฅ๋™ํ˜• ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์ œ์–ด, ์ฐจ์„  ์œ ์ง€ ๋ณด์กฐ, ๊ทธ๋ฆฌ๊ณ  ๊ธด๊ธ‰ ์ž๋™ ์ œ๋™๊ณผ ๊ฐ™์€ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์ด ์ด๋ฏธ ์ƒ์—…ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ์ง„๋ณด๋Š” ์‚ฌ์ƒ๋ฅ  ์ œ๋กœ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์ˆ  ์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์„ ๋„˜์–ด์„œ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์œผ๋กœ ํ™•์žฅ์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋„์‹ฌ ๋„๋กœ๋Š” ์ธ๋„, ์‚ฌ๊ฐ์ง€๋Œ€, ์ฃผ์ฐจ์ฐจ๋Ÿ‰, ์ด๋ฅœ์ฐจ, ๋ณดํ–‰์ž ๋“ฑ๊ณผ ๊ฐ™์€ ๊ตํ†ต ์œ„ํ—˜ ์š”์†Œ๋ฅผ ๋งŽ์ด ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์†๋„๋กœ๋ณด๋‹ค ์‚ฌ๊ณ  ๋ฐœ์ƒ๋ฅ ๊ณผ ์‚ฌ์ƒ๋ฅ ์ด ๋†’์œผ๋ฉฐ, ์ด๋Š” ๋„์‹ฌ ๋„๋กœ์—์„œ์˜ ์ž์œจ์ฃผํ–‰์€ ํ•ต์‹ฌ ์ด์Šˆ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ํ”„๋กœ์ ํŠธ๋“ค์ด ์ž์œจ์ฃผํ–‰์˜ ํ™˜๊ฒฝ์ , ์ธ๊ตฌํ•™์ , ์‚ฌํšŒ์ , ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œ์  ์ธก๋ฉด์—์„œ์˜ ์ž์œจ์ฃผํ–‰์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๊ฑฐ๋‚˜ ์ˆ˜ํ–‰ ์ค‘์— ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์œ ๋Ÿฝ์˜ AdaptIVE๋Š” ๋‹ค์–‘ํ•œ ์ž์œจ์ฃผํ–‰ ๊ธฐ๋Šฅ์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ๊ตฌ์ฒด์ ์ธ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋˜ํ•œ, CityMobil2๋Š” ์œ ๋Ÿฝ ์ „์—ญ์˜ 9๊ฐœ์˜ ๋‹ค๋ฅธ ํ™˜๊ฒฝ์—์„œ ๋ฌด์ธ ์ง€๋Šฅํ˜• ์ฐจ๋Ÿ‰์„ ์„ฑ๊ณต์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์˜€๋‹ค. ์ผ๋ณธ์—์„œ๋Š” 2014๋…„ 5์›”์— ์‹œ์ž‘๋œ Automated Driving System Research Project๋Š” ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ๊ณผ ์ฐจ์„ธ๋Œ€ ๋„์‹ฌ ๊ตํ†ต ์ˆ˜๋‹จ์˜ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์— ๋Œ€ํ•œ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ๊ตํ†ต ์ฐธ์—ฌ์ž๋“ค์˜ ์•ˆ์ „๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ๊ตํ†ต ํ˜ผ์žก์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ์šด์ „์ž ํŽธ์˜์„ฑ์„ ์ฆ์ง„์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ฆ๋ช…๋˜์—ˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ธ์ง€, ๊ฑฐ๋™ ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์ œ์–ด์™€ ๊ฐ™์€ ๋„์‹ฌ ๋„๋กœ ์ž์œจ์ฃผํ–‰์ฐจ์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋งŽ์€ ์ตœ์‹ ์˜ ์ž์œจ์ฃผํ–‰ ์—ฐ๊ตฌ๋“ค์€ ๊ฐ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์„ ๋ณ„๊ฐœ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ง„ํ–‰ํ•ด์™”๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉ์ ์ธ ๊ด€์ ์—์„œ์˜ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ  ์„ค๊ณ„๋Š” ์•„์ง ์ถฉ๋ถ„ํžˆ ๊ณ ๋ ค๋˜์–ด ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๋„์‹ฌ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ๋ผ์ด๋‹ค, ์นด๋ฉ”๋ผ, GPS, ๊ทธ๋ฆฌ๊ณ  ๊ฐ„๋‹จํ•œ ๊ฒฝ๋กœ ๋งต์— ๊ธฐ๋ฐ˜ํ•œ ์™„์ „ ์ž์œจ์ฃผํ–‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์ž์œจ์ฃผํ–‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋น„ํ†ต์ œ ๊ต์ฐจ๋กœ๋ฅผ ํฌํ•จํ•œ ๋„์‹ฌ ๋„๋กœ ์ƒํ™ฉ์„ ์ฐจ๋Ÿ‰ ๊ฑฐ๋™ ์˜ˆ์ธก๊ธฐ์™€ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด ๊ธฐ๋ฒ•์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋™์ , ์ •์  ํ™˜๊ฒฝ ํ‘œํ˜„ ๋ฐ ์ข…ํšก๋ฐฉํ–ฅ ๊ฑฐ๋™ ๊ณ„ํš์„ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋„์‹ฌ ๋„๋กœ ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ ๊ฑฐ๋™ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ์š”๋ฅผ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์‹ค์ œ ๊ตํ†ต ์ƒํ™ฉ์—์„œ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ๊ณผ์„ฑ๊ณผ ์šด์ „์ž ๊ฑฐ๋™๊ณผ์˜ ์œ ์‚ฌ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์‹ค์ฐจ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋น„ํ†ต์ œ ๊ต์ฐจ๋กœ๋ฅผ ํฌํ•จํ•œ ๋„์‹ฌ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ์˜ ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.The foci of automotive researches have been expanding from passive safety systems to active safety systems with advances in sensing and processing technologies. Recently, the majority of automotive makers have already commercialized active safety systems, such as adaptive cruise control (ACC), lane keeping assistance (LKA), and autonomous emergency braking (AEB). Such advances have extended the research field beyond active safety systems to automated driving systems to achieve zero fatalities. Especially, automated driving on urban roads has become a key issue because urban roads possess numerous risk factors for traffic accidents, such as sidewalks, blind spots, on-street parking, motorcycles, and pedestrians, which cause higher accident rates and fatalities than motorways. Several projects have been conducted, and many others are still underway to evaluate the effects of automated driving in environmental, demographic, social, and economic aspects. For example, the European project AdaptIVe, develops various automated driving functions and defines specific evaluation methodologies. In addition, CityMobil2 successfully integrates driverless intelligent vehicles in nine other environments throughout Europe. In Japan, the Automated Driving System Research Project began on May 2014, which focuses on the development and verification of automated driving systems and next-generation urban transportation. From a careful review of a considerable amount of literature, automated driving systems have been proven to increase the safety of traffic users, reduce traffic congestion, and improve driver convenience. Various methodologies have been employed to develop the core technology of automated vehicles on urban roads, such as perception, motion planning, and control. However, the current state-of-the-art automated driving algorithms focus on the development of each technology separately. Consequently, designing automated driving systems from an integrated perspective is not yet sufficiently considered. Therefore, this dissertation focused on developing a fully autonomous driving algorithm in urban complex scenarios using LiDAR, vision, GPS, and a simple path map. The proposed autonomous driving algorithm covered the urban road scenarios with uncontrolled intersections based on vehicle motion prediction and model predictive control approach. Mainly, four research issues are considered: dynamic/static environment representation, and longitudinal/lateral motion planning. In the remainder of this thesis, we will provide an overview of the proposed motion planning algorithm for urban autonomous driving and the experimental results in real traffic, which showed the effectiveness and human-like behaviors of the proposed algorithm. The proposed algorithm has been tested and evaluated using both simulation and vehicle tests. The test results show the robust performance of urban scenarios, including uncontrolled intersections.Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Previous Researches 4 1.3. Thesis Objectives 9 1.4. Thesis Outline 10 Chapter 2 Overview of Motion Planning for Automated Driving System 11 Chapter 3 Dynamic Environment Representation with Motion Prediction 15 3.1. Moving Object Classification 17 3.2. Vehicle State based Direct Motion Prediction 20 3.2.1. Data Collection Vehicle 22 3.2.2. Target Roads 23 3.2.3. Dataset Selection 24 3.2.4. Network Architecture 25 3.2.5. Input and Output Features 33 3.2.6. Encoder and Decoder 33 3.2.7. Sequence Length 34 3.3. Road Structure based Interactive Motion Prediction 36 3.3.1. Maneuver Definition 38 3.3.2. Network Architecture 39 3.3.3. Path Following Model based State Predictor 47 3.3.4. Estimation of predictor uncertainty 50 3.3.5. Motion Parameter Estimation 53 3.3.6. Interactive Maneuver Prediction 56 3.4. Intersection Approaching Vehicle Motion Prediction 59 3.4.1. Driver Behavior Model at Intersections 59 3.4.2. Intention Inference based State Prediction 63 Chapter 4 Static Environment Representation 67 4.1. Static Obstacle Map Construction 69 4.2. Free Space Boundary Decision 74 4.3. Drivable Corridor Decision 76 Chapter 5 Longitudinal Motion Planning 81 5.1. In-Lane Target Following 82 5.2. Proactive Motion Planning for Narrow Road Driving 85 5.2.1. Motivation for Collision Preventive Velocity Planning 85 5.2.2. Desired Acceleration Decision 86 5.3. Uncontrolled Intersection 90 5.3.1. Driving Phase and Mode Definition 91 5.3.2. State Machine for Driving Mode Decision 92 5.3.3. Motion Planner for Approach Mode 95 5.3.4. Motion Planner for Risk Management Phase 98 Chapter 6 Lateral Motion Planning 105 6.1. Vehicle Model 107 6.2. Cost Function and Constraints 109 Chapter 7 Performance Evaluation 115 7.1. Motion Prediction 115 7.1.1. Prediction Accuracy Analysis of Vehicle State based Direct Motion Predictor 115 7.1.2. Prediction Accuracy and Effect Analysis of Road Structure based Interactive Motion Predictor 122 7.2. Prediction based Distance Control at Urban Roads 132 7.2.1. Driving Data Analysis of Direct Motion Predictor Application at Urban Roads 133 7.2.2. Case Study of Vehicle Test at Urban Roads 138 7.2.3. Analysis of Vehicle Test Results on Urban Roads 147 7.3. Complex Urban Roads 153 7.3.1. Case Study of Vehicle Test at Complex Urban Roads 154 7.3.2. Closed-loop Simulation based Safety Analysis 162 7.4. Uncontrolled Intersections 164 7.4.1. Simulation based Algorithm Comparison of Motion Planner 164 7.4.2. Monte-Carlo Simulation based Safety Analysis 166 7.4.3. Vehicle Tests Results in Real Traffic Conditions 172 7.4.4. Similarity Analysis between Human and Automated Vehicle 194 7.5. Multi-Lane Turn Intersections 197 7.5.1. Case Study of a Multi-Lane Left Turn Scenario 197 7.5.2. Analysis of Motion Planning Application Results 203 Chapter 8 Conclusion & Future Works 207 8.1. Conclusion 207 8.2. Future Works 209 Bibliography 210 Abstract in Korean 219Docto
    corecore