291 research outputs found

    Identificação de aplicações de vídeo em canais protegidos com aprendizagem automática

    Get PDF
    As encrypted traffic is becoming a standard and traffic obfuscation techniques become more accessible and common, companies are struggling to enforce their network usage policies and ensure optimal operational network performance. Users are more technologically knowledgeable, being able to circumvent web content filtering tools with the usage of protected tunnels such as VPNs. Consequently, techniques such as DPI, which already were considered outdated due to their impracticality, become even more ineffective. Furthermore, the continuous regulations being established by governments and international unions regarding citizen privacy rights makes network monitoring increasingly challenging. This work presents a scalable and easily deployable network-based framework for application identification in a corporate environment, focusing on video applications. This framework should be effective regardless of the environment and network setup, with the objective of being a useful tool in the network monitoring process. The proposed framework offers a compromise between allowing network supervision and assuring workers’ privacy. The results evaluation indicates that we can identify web services that are running over a protected channel with an accuracy of 95%, using low-level packet information that does not jeopardize sensitive worker data.Com a adoção de tráfego cifrado a tornar-se a norma e a crescente utilização de técnicas de obfuscação de tráfego, as empresas têm cada vez mais dificuldades em aplicar políticas de uso nas suas redes, bem como garantir o seu bom funcionamento. Os utilizadores têm mais conhecimentos tecnológicos, sendo facilmente capazes de contornar ferramentas de filtros de conteúdo online com a utilização de túneis protegidos como VPNs. Consequentemente, técnicas como DPI, que já estão ultrapassadas devido à sua impraticabilidade, tornam-se cada vez mais ineficazes. Além disso, todos os regulamentos que têm vindo a ser estabelecidos por governos e organizações internacionais sobre a privacidade dos cidadãos tornam a tarefa de monitorização de uma rede cada vez mais difícil. Este documento apresenta uma plataforma escalável e facilmente instalável para identificação de aplicações numa rede empresarial, focando-se em aplicações de vídeo. Esta abordagem deve ser eficaz independentemente do contexto e organização da rede, com o objectivo de ser uma ferramenta útil no processo de supervisão de redes. O modelo proposto oferece um compromisso entre a capacidade de supervisionar uma rede e assegurar a privacidade dos trabalhadores. A avaliação de resultados indica que é possível identificar serviços web em ligações estabelecidas sobre canais protegidos com uma precisão geral de 95%, usando informações de baixo-nível dos pacotes que não comprometem informação sensível dos trabalhadores.Mestrado em Engenharia de Computadores e Telemátic

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page

    The dark side of I2P, a forensic analysis case study

    Get PDF
    © 2017 The Author(s). File sharing applications, which operate as a form of Peer-to-Peer (P2P) network, are popular amongst users and developers due to their heterogeneity, decentralized approach and rudimentary deployment features. However, they are also used for illegal online activities and often are infested with malicious content such as viruses and contraband material. This brings new challenges to forensic investigations in detecting, retrieving and examining the P2P applications. Within the domain of P2P applications, the Invisible Internet Project (IP2) is used to allow applications to communicate anonymously. As such, this work discusses its use by network node operators and known attacks against privacy or availability of I2P routers. Specifically, we investigate the characteristics of I2P networks in order to outline the security flaws and the issues in detecting artefacts within the I2P. Furthermore, we present a discussion on new methods to detect the presence of I2P using forensic tools and reconstruct specific I2P activities using artefacts left over by network software

    Countering internet packet classifiers to improve user online privacy

    Get PDF
    Internet traffic classification or packet classification is the act of classifying packets using the extracted statistical data from the transmitted packets on a computer network. Internet traffic classification is an essential tool for Internet service providers to manage network traffic, provide users with the intended quality of service (QoS), and perform surveillance. QoS measures prioritize a network\u27s traffic type over other traffic based on preset criteria; for instance, it gives higher priority or bandwidth to video traffic over website browsing traffic. Internet packet classification methods are also used for automated intrusion detection. They analyze incoming traffic patterns and identify malicious packets used for denial of service (DoS) or similar attacks. Internet traffic classification may also be used for website fingerprinting attacks in which an intruder analyzes encrypted traffic of a user to find behavior or usage patterns and infer the user\u27s online activities. Protecting users\u27 online privacy against traffic classification attacks is the primary motivation of this work. This dissertation shows the effectiveness of machine learning algorithms in identifying user traffic by comparing 11 state-of-art classifiers and proposes three anonymization methods for masking generated user network traffic to counter the Internet packet classifiers. These methods are equalized packet length, equalized packet count, and equalized inter-arrival times of TCP packets. This work compares the results of these anonymization methods to show their effectiveness in reducing machine learning algorithms\u27 performance for traffic classification. The results are validated using newly generated user traffic. Additionally, a novel model based on a generative adversarial network (GAN) is introduced to automate countering the adversarial traffic classifiers. This model, which is called GAN tunnel, generates pseudo traffic patterns imitating the distributions of the real traffic generated by actual applications and encapsulates the actual network packets into the generated traffic packets. The GAN tunnel\u27s performance is tested against random forest and extreme gradient boosting (XGBoost) traffic classifiers. These classifiers are shown not being able of detecting the actual source application of data exchanged in the GAN tunnel in the tested scenarios in this thesis

    Clouseau Evaluation for Peer-to-Peer Transfer Operations

    Full text link
    We evaluate whether Clouseau, a commercial product from SafeMedia, Inc., is effective in discriminating between risky and non-risky P2P operations. We construct a testbed and assess the Clouseau's efficacy in interdicting risky content while passing non-risky content in both laboratory and office settings, using a wide variety of applications and protocols. We determine that Clouseau effectively blocks access to content via known P2P protocols communicating with networks identified by SafeMedia as containing risky content, but also prevents legitimate communications and does not block alternative protocols for accessing risky content. Consequently, Clouseau is not completely effective.http://deepblue.lib.umich.edu/bitstream/2027.42/107884/1/citi-tr-09-1.pd

    Network virtualization as an integrated solution for emergency communication

    Get PDF
    In this paper the Virtual Private Ad Hoc Networking (VPAN) platform is introduced as an integrated networking solution for many applications that require secure transparent continuous connectivity using heterogeneous devices and network technologies. This is done by creating a virtual logical self-organizing network on top of existing network technologies reducing complexity and maintaining session continuity right from the start. One of the most interesting applications relies in the field of emergency communication with its specific needs which will be discussed in this paper and matched in detail against the architecture and features of the VPAN platform. The concept and dynamics are demonstrated and evaluated with measurements done on real hardware

    Darknet Traffic Analysis A Systematic Literature Review

    Full text link
    The primary objective of an anonymity tool is to protect the anonymity of its users through the implementation of strong encryption and obfuscation techniques. As a result, it becomes very difficult to monitor and identify users activities on these networks. Moreover, such systems have strong defensive mechanisms to protect users against potential risks, including the extraction of traffic characteristics and website fingerprinting. However, the strong anonymity feature also functions as a refuge for those involved in illicit activities who aim to avoid being traced on the network. As a result, a substantial body of research has been undertaken to examine and classify encrypted traffic using machine learning techniques. This paper presents a comprehensive examination of the existing approaches utilized for the categorization of anonymous traffic as well as encrypted network traffic inside the darknet. Also, this paper presents a comprehensive analysis of methods of darknet traffic using machine learning techniques to monitor and identify the traffic attacks inside the darknet.Comment: 35 Pages, 13 Figure

    Botnets and how to automatic detect them: exploring new ways of dealing with botnet classification: Botnets e como detectá-los automaticamente: explorando novas maneiras de lidar com a classificação botnet

    Get PDF
    Threats such as Botnets have become very popular in the current usage of the Internet, such as attacks like distributed denial of services (DoS) which can cause a significant impact on the use of technology. One way to mitigate such issues can be a focus on using intelligent models that can attempt to identify the existence of Botnets in the network traffic early. Thus, this work aims to evaluate the current state of the art on threats related to Botnets and how intelligent technology has been used in real-world restrictions such as real-time deadlines and increased network traffic. From our findings, we have indications that Botnet detection in real-time still is a more significant challenge because the computation power has not grown at the same rate that Internet traffic. This has pointed out other restrictions that must be considered, like privacy legislation and employing cryptography methods for all communications. In this context, we discuss the following steps to deal with the identified issues
    corecore