40 research outputs found

    Perfomance Analysis and Resource Optimisation of Critical Systems Modelled by Petri Nets

    Get PDF
    Un sistema crítico debe cumplir con su misión a pesar de la presencia de problemas de seguridad. Este tipo de sistemas se suele desplegar en entornos heterogéneos, donde pueden ser objeto de intentos de intrusión, robo de información confidencial u otro tipo de ataques. Los sistemas, en general, tienen que ser rediseñados después de que ocurra un incidente de seguridad, lo que puede conducir a consecuencias graves, como el enorme costo de reimplementar o reprogramar todo el sistema, así como las posibles pérdidas económicas. Así, la seguridad ha de ser concebida como una parte integral del desarrollo de sistemas y como una necesidad singular de lo que el sistema debe realizar (es decir, un requisito no funcional del sistema). Así pues, al diseñar sistemas críticos es fundamental estudiar los ataques que se pueden producir y planificar cómo reaccionar frente a ellos, con el fin de mantener el cumplimiento de requerimientos funcionales y no funcionales del sistema. A pesar de que los problemas de seguridad se consideren, también es necesario tener en cuenta los costes incurridos para garantizar un determinado nivel de seguridad en sistemas críticos. De hecho, los costes de seguridad puede ser un factor muy relevante ya que puede abarcar diferentes dimensiones, como el presupuesto, el rendimiento y la fiabilidad. Muchos de estos sistemas críticos que incorporan técnicas de tolerancia a fallos (sistemas FT) para hacer frente a las cuestiones de seguridad son sistemas complejos, que utilizan recursos que pueden estar comprometidos (es decir, pueden fallar) por la activación de los fallos y/o errores provocados por posibles ataques. Estos sistemas pueden ser modelados como sistemas de eventos discretos donde los recursos son compartidos, también llamados sistemas de asignación de recursos. Esta tesis se centra en los sistemas FT con recursos compartidos modelados mediante redes de Petri (Petri nets, PN). Estos sistemas son generalmente tan grandes que el cálculo exacto de su rendimiento se convierte en una tarea de cálculo muy compleja, debido al problema de la explosión del espacio de estados. Como resultado de ello, una tarea que requiere una exploración exhaustiva en el espacio de estados es incomputable (en un plazo prudencial) para sistemas grandes. Las principales aportaciones de esta tesis son tres. Primero, se ofrecen diferentes modelos, usando el Lenguaje Unificado de Modelado (Unified Modelling Language, UML) y las redes de Petri, que ayudan a incorporar las cuestiones de seguridad y tolerancia a fallos en primer plano durante la fase de diseño de los sistemas, permitiendo así, por ejemplo, el análisis del compromiso entre seguridad y rendimiento. En segundo lugar, se proporcionan varios algoritmos para calcular el rendimiento (también bajo condiciones de fallo) mediante el cálculo de cotas de rendimiento superiores, evitando así el problema de la explosión del espacio de estados. Por último, se proporcionan algoritmos para calcular cómo compensar la degradación de rendimiento que se produce ante una situación inesperada en un sistema con tolerancia a fallos

    Analysis of Petri Net Models through Stochastic Differential Equations

    Full text link
    It is well known, mainly because of the work of Kurtz, that density dependent Markov chains can be approximated by sets of ordinary differential equations (ODEs) when their indexing parameter grows very large. This approximation cannot capture the stochastic nature of the process and, consequently, it can provide an erroneous view of the behavior of the Markov chain if the indexing parameter is not sufficiently high. Important phenomena that cannot be revealed include non-negligible variance and bi-modal population distributions. A less-known approximation proposed by Kurtz applies stochastic differential equations (SDEs) and provides information about the stochastic nature of the process. In this paper we apply and extend this diffusion approximation to study stochastic Petri nets. We identify a class of nets whose underlying stochastic process is a density dependent Markov chain whose indexing parameter is a multiplicative constant which identifies the population level expressed by the initial marking and we provide means to automatically construct the associated set of SDEs. Since the diffusion approximation of Kurtz considers the process only up to the time when it first exits an open interval, we extend the approximation by a machinery that mimics the behavior of the Markov chain at the boundary and allows thus to apply the approach to a wider set of problems. The resulting process is of the jump-diffusion type. We illustrate by examples that the jump-diffusion approximation which extends to bounded domains can be much more informative than that based on ODEs as it can provide accurate quantity distributions even when they are multi-modal and even for relatively small population levels. Moreover, we show that the method is faster than simulating the original Markov chain

    Methods and Formal Models for Healthcare Systems Management

    Get PDF
    A healthcare system is an organization of people, institutions, and resources that deliver healthcare services to meet the health needs of target populations. The size of the systems, the huge number of agents involved and their different expectations make the management of healthcare systems a tough task which could be alleviated through the use of technology. In this thesis, new methods and formal models for healthcare system management are presented. Particularly, the thesis is divided in two main parts: the first one has to do with the modeling and analysis in hospitals by the use of clinical pathways while the second one deals with the planning and scheduling of patients in the operation rooms.Regarding the modeling and analysis of healthcare systems, depending on different visions and expectations, the system can be treated from different perspectives called facets. In chapter 2, the formal definition and characterization of two facets are given: (1) facet of resource management and (2) handshake between clinical pathways facet. They are obtained by applying to Stochastic Well-formed Nets (colored Petri Nets) modeling the healthcare system a set of relaxations, abstraction and modifications. In the first facet the subclass of S4PR is obtained which is a characteristic model of the resource allocation systems while in the second facet Deterministically Synchronized Sequential Process (DSSP) are considered. Both nets (S4PR and DSSP) are formal subclasses of Petri Nets where net level techniques can be applied.In chapters 3 and 4, we will focus on the liveness of the DSSP systems resulting from the facet of communication between clinical pathways. These kinds of nets are composed by agents (modeling clinical pathways) cooperating in a distributed way by the asynchronous messaging passing through the buffers (modeling the communication channels). In particular two approaches have been proposed.The idea behind the first approach is to advance the buffer consumption to the first conflict transition in the agents. Considering healthcare systems modeled by a DSSP, this means that before a patient starts a clinical pathway, all required information must be available. Unfortunately, this pre-assignment method only works in some particular DSSP structures which are characterized. A more general approach (than buffer pre-assignment) for liveness enforcing in non-live DSSP is given in Chapter. 4. The approach is formalized on two levels: execution and control. The execution level uses the original DSSP structure while for the control level we compute a new net system called the control PN. This net system is obtained from the original DSSP and has a predefined type of structure. The control PN will evolve synchronously with the non-live DSSP ensuring that the deadlock states will not be reached. The states (marking) of the control PN will enable or disable some transitions in the original DSSP, while some transitions in the control PN should fire synchronously with some transitions of the original DSSP.The second part of the thesis deals with surgery scheduling of patients in a hospital department. The Operating Rooms (ORs) are one of the most expensive material resources in hospitals, being the bottleneck of surgical services. Moreover, the aging population together with the improvement in surgical techniques are producing an increase in the demand for surgeries. So, the optimal use of the ORs time is crucial inhealthcare service management. We focus on the planning and scheduling of patients in Spanish hospital departments considering its organizational structure particularities as well as the concerns and specifications of their doctors.In chapter 5, the scheduling of elective patients under ORs block booking is considered. The first criterion is to optimize the use of the OR, the second criterion is to prevent that the total available time in a block will be exceeded and the third criterion is to respect the preference order of the patient in the waiting list. Three different mathematical programming models for the scheduling of elective patients are proposed. These are combinatorial problems with high computational complexity, so three different heuristic solution methods are proposed and compared. The results show that a Mixed Integer Linear Programming (MILP) problem solved by Receding Horizon Strategy (RHS)obtains better scheduling in lowest time.Doctors using the MILP problem must fix an appropriate occupation rate for optimizing the use of the ORs but without exceeding the available time. This has two main problems: i) inexperienced doctors could find difficult to fix an appropriate occupation rate, and ii) the uncertain in the surgery durations (large standard deviation) could results in scheduling with an over/under utilization. In order to overcome these problems, a New Mixed-Integer Quadratic Constrained Programming (N-MIQCP) model is proposed. Considering some probabilistic concepts, quadratic constraints are included in N-MIQCP model to prevent the scheduling of blocks with a high risk of exceeding the available time. Two heuristic methods for solving the N-MIQCP problem are proposed and compared with other chance-constrained approaches in bibliography. The results conclude that the best schedulings are achieved using our Specific Heuristic Algorithm (SHA) due to similar occupation rates than using other approaches are obtained but our SHA respects much more the order of the patients in the waiting list.In chapter 6, a three steps approach is proposed for the combined scheduling of elective and urgent patients. In the first step, the elective patients are scheduled for a target Elective Surgery Time (EST) in the ORs, trying to respect the order of the patients on the waiting list. In the second one, the urgent patients are scheduled in the remaining time ensuring that an urgent patient does not wait more than 48 hours. Finally, in the third step, the surgeries assigned to each OR (elective and urgent) are sequenced in such a way that the maximum time that an emergency patient should wait is minimized. Considering realistic data, different policies of time reserved in the ORs for elective and urgent patients are evaluated. The results show that all ORs must be used to perform elective and urgent surgeries instead of reserving some ORs exclusively for one type of patient.Finally, in chapter 7 a software solution for surgery service management is given. A Decision Support System for elective surgery scheduling and a software tool called CIPLAN are proposed. The DSS use as core the SHA for the scheduling of elective patients, but it has other features related to the management of a surgery department. A software tool called CIPLAN which is based on the DSS is explained. The software tool has a friendly interface which has been developed in collaboration with doctors in the “Lozano Blesa” Hospital in Zaragoza. A real case study comparing the scheduling using the manual method with the scheduling obtained by using CIPLAN is discussed. The results show that 128.000 euros per year could be saved using CIPLAN in the mentioned hospital. Moreover, the use of the tool allows doctors to reduce the time spent in scheduling to use it medical tasks.<br /

    Invariants and Home Spaces in Transition Systems and Petri Nets

    Full text link
    This lecture note focuses on comparing the notions of invariance and home spaces in Transition Systems and more particularly, in Petri Nets. We also describe how linear algebra relates to these basic notions in Computer Science, how it can be used for extracting invariant properties from a parallel system described by a Labeled Transition System in general and a Petri Net in particular. We endeavor to regroup a number of algebraic results dispersed throughout the Petri Nets literature with the addition of new results around the notions of semiflows and generating sets. Examples are given to illustrate how invariants can be handled to prove behavioral properties of a Petri Net. Some additional thoughts on invariants and home spaces will conclude this note.Comment: 83 page

    Contributions to the deadlock problem in multithreaded software applications observed as Resource Allocation Systems

    Get PDF
    Desde el punto de vista de la competencia por recursos compartidos sucesivamente reutilizables, se dice que un sistema concurrente compuesto por procesos secuenciales está en situación de bloqueo si existe en él un conjunto de procesos que están indefinidamente esperando la liberación de ciertos recursos retenidos por miembros del mismo conjunto de procesos. En sistemas razonablemente complejos o distribuidos, establecer una política de asignación de recursos que sea libre de bloqueos puede ser un problema muy difícil de resolver de forma eficiente. En este sentido, los modelos formales, y particularmente las redes de Petri, se han ido afianzando como herramientas fructíferas que permiten abstraer el problema de asignación de recursos en este tipo de sistemas, con el fin de abordarlo analíticamente y proveer métodos eficientes para la correcta construcción o corrección de estos sistemas. En particular, la teoría estructural de redes de Petri se postula como un potente aliado para lidiar con el problema de la explosión de estados inherente a aquéllos. En este fértil contexto han florecido una serie de trabajos que defienden una propuesta metodológica de diseño orientada al estudio estructural y la correspondiente corrección física del problema de asignación de recursos en familias de sistemas muy significativas en determinados contextos de aplicación, como el de los Sistemas de Fabricación Flexible. Las clases de modelos de redes de Petri resultantes asumen ciertas restricciones, con significado físico en el contexto de aplicación para el que están destinadas, que alivian en buena medida la complejidad del problema. En la presente tesis, se intenta acercar ese tipo de aproximación metodológica al diseño de aplicaciones software multihilo libres de bloqueos. A tal efecto, se pone de manifiesto cómo aquellas restricciones procedentes del mundo de los Sistemas de Fabricación Flexible se muestran demasiado severas para aprehender la versatilidad inherente a los sistemas software en lo que respecta a la interacción de los procesos con los recursos compartidos. En particular, se han de resaltar dos necesidades de modelado fundamentales que obstaculizan la mera adopción de antiguas aproximaciones surgidas bajo el prisma de otros dominios: (1) la necesidad de soportar el anidamiento de bucles no desplegables en el interior de los procesos, y (2) la posible compartición de recursos no disponibles en el arranque del sistema pero que son creados o declarados por un proceso en ejecución. A resultas, se identifica una serie de requerimientos básicos para la definición de un tipo de modelos orientado al estudio de sistemas software multihilo y se presenta una clase de redes de Petri, llamada PC2R, que cumple dicha lista de requerimientos, manteniéndose a su vez respetuosa con la filosofía de diseño de anteriores subclases enfocadas a otros contextos de aplicación. Junto con la revisión e integración de anteriores resultados en el nuevo marco conceptual, se aborda el estudio de propiedades inherentes a los sistemas resultantes y su relación profunda con otros tipos de modelos, la confección de resultados y algoritmos eficientes para el análisis estructural de vivacidad en la nueva clase, así como la revisión y propuesta de métodos de resolución de los problemas de bloqueo adaptadas a las particularidades físicas del dominio de aplicación. Asimismo, se estudia la complejidad computacional de ciertas vertientes relacionadas con el problema de asignación de recursos en el nuevo contexto, así como la traslación de los resultados anteriormente mencionados sobre el dominio de la ingeniería de software multihilo, donde la nueva clase de redes permite afrontar problemas inabordables considerando el marco teórico y las herramientas suministradas para subclases anteriormente explotadas

    Fluidization of Petri nets to improve the analysis of Discrete Event Systems

    Get PDF
    Las Redes de Petri (RdP) son un formalismo ampliamente aceptado para el modelado y análisis de Sistemas de Eventos Discretos (SED). Por ejemplo sistemas de manufactura, de logística, de tráfico, redes informáticas, servicios web, redes de comunicación, procesos bioquímicos, etc. Como otros formalismos, las redes de Petri sufren del problema de la ¿explosión de estados¿, en el cual el número de estados crece explosivamente respecto de la carga del sistema, haciendo intratables algunas técnicas de análisis basadas en la enumeración de estados. La fluidificación de las redes de Petri trata de superar este problema, pasando de las RdP discretas (en las que los disparos de las transiciones y los marcados de los lugares son cantidades enteras no negativas) a las RdP continuas (en las que los disparos de las transiciones, y por lo tanto los marcados se definen en los reales). Las RdP continuas disponen de técnicas de análisis más eficientes que las discretas. Sin embargo, como toda relajación, la fluidificación supone el detrimento de la fidelidad, dando lugar a la pérdida de propiedades cualitativas o cuantitativas de la red de Petri original. El objetivo principal de esta tesis es mejorar el proceso de fluidificación de las RdP, obteniendo un formalismo continuo (o al menos parcialmente) que evite el problema de la explosión de estados, mientras aproxime adecuadamente la RdP discreta. Además, esta tesis considera no solo el proceso de fluidificación sino también el formalismo de las RdP continuas en sí mismo, estudiando la complejidad computacional de comprobar algunas propiedades. En primer lugar, se establecen las diferencias que aparecen entre las RdP discretas y continuas, y se proponen algunas transformaciones sobre la red discreta que mejorarán la red continua resultante. En segundo lugar, se examina el proceso de fluidificación de las RdP autónomas (i.e., sin ninguna interpretación temporal), y se establecen ciertas condiciones bajo las cuales la RdP continua preserva determinadas propiedades cualitativas de la RdP discreta: limitación, ausencia de bloqueos, vivacidad, etc. En tercer lugar, se contribuye al estudio de la decidibilidad y la complejidad computacional de algunas propiedades comunes de la RdP continua autónoma. En cuarto lugar, se considera el proceso de fluidificación de las RdP temporizadas. Se proponen algunas técnicas para preservar ciertas propiedades cuantitativas de las RdP discretas estocásticas por las RdP continuas temporizadas. Por último, se propone un nuevo formalismo, en el cual el disparo de las transiciones se adapta a la carga del sistema, combinando disparos discretos y continuos, dando lugar a las Redes de Petri híbridas adaptativas. Las RdP híbridas adaptativas suponen un marco conceptual para la fluidificación parcial o total de las Redes de Petri, que engloba a las redes de Petri discretas, continuas e híbridas. En general, permite preservar propiedades de la RdP original, evitando el problema de la explosión de estados
    corecore