
Gradient-based Variable Ordering of Decision
Diagrams for Systems with Structural Units

Elvio Gilberto Amparore1, Marco Beccuti1, Susanna Donatelli1

1 Università di Torino, Dipartimento di Informatica
{amparore,susi,beccuti}@di.unito.it

Abstract. This paper presents Gradient-Π, a novel heuristics for find-
ing the variable ordering of Decision Diagrams encoding the state space
of Petri net systems. Gradient-Π combines the structural informations
of the Petri net (either the set of minimal P-semiflows or, when available,
the structure of the net in terms of “Nested Units”) with a gradient-based
greedy strategy inspired by methods for matrix bandwidth reduction.
The value of the proposed heuristics is assessed on a public benchmark
of Petri net models, showing that Gradient-Π can successfully exploit
the structural information to produce good variable orderings.

Keywords: Decision Diagrams, Variable Ordering, Petri Nets

1 Introduction

The use of binary decision diagrams [8] and their variants is at the base of the
so-called symbolic model-checking techniques. These techniques have given an
incredible boost to state-based verification of systems over the last 30 years
and have given rise to a number of successful tools for automatic verification of
systems, in particular for discrete event dynamic systems (DEDS) [9]: systems
in which the state is composed by a set of variables, taking values on a set of
finite and discrete values, and events that change the state of the system.

It is well-known that the size of the decision diagram representation of a
state space heavily depends on the chosen order of the variables that represent
the state of the system, and that the problem of finding such an ordering is
NP-complete. Many heuristics for finding “good” variable orderings have been
proposed in the past (see for example the surveys in [23,26]) and they are often
crucial for the performances of model-checking tools and of decision diagram
libraries [19].

Variable ordering can be static or dynamic, or, more precisely, can be used
statically or dynamically. In the first case an ordering is computed before state
space generation and it is kept fixed through the whole generation procedure,
while in the second case a new order can be computed and applied at run-time if
the decision diagram size grows too large. In this paper we concentrate on static
ordering and we aim at understanding if and how the structure of the system
can be exploited for devising a good variable ordering.

To answer this question we need to place our research in a specific context, as
it is difficult to draw conclusions on the efficacy of a heuristics without referring

to a specific state-space generation technique and to an appropriate benchmark
of systems on which to exercise our findings. As system specification language
we consider Petri Nets, that have proven useful in modelling a large variety of
DEDS, from hardware [24] to business process models [1]. The evaluation of the
proposed heuristics is based on a benchmark extracted from the public model
set of the Model-Checking Contest (MCC2016) [14], which includes 664 model
instances. We use symbolic model-checking based on Multi-terminal Dcision Di-
agrams (MDDs) as implemented in the GreatSPN tool [4][5] based on the MDD
library Meddly [7]. We assume that MDD levels encode Petri net places, i.e. we
do not consider merging multiple places into a single level like in [11]. The state
space generation algorithms employs saturation [10].

Another reason for choosing Petri nets is the large amount of literature on
structural analysis techniques [12], that is to say techniques that allow to check
properties of the state space (like invariant properties of the variables, finiteness
of the state space and liveness of events) without building the state space itself.

Structural informations are at the base of many of the heuristics designed
for the analysis of (Petri net models of) circuits, which exploit the locality of
the inter-dependent variables, or the input-output dependencies, as the widely
used heuristics based on fan-in [20]. However, only a subset of these heuristics
can be used effectively on general Petri net models, which usually have cyclic
behaviour and no clear input/output dependencies. Popular static variable or-
dering heuristics applied to Petri nets include, among others: The Noack and
Tovchigrechko [16] methods; The Force and the Mince heuristics [3]; Bandwidth-
reduction techniques like the Sloan method [27].

In a previous paper [6] we evaluated 14 different heuristics on 386 model
instances (belonging to 62 parametric models) taken from the MCC2016 model
set. In that paper we also tested a heuristics called P-chain based on P-semiflows
(which are subsets of places with constant weighted sum of tokens in all reach-
able states) to improve variable ordering heuristics. P-chain showed rather poor
performances, suggesting that the concatenation of P-semiflows which is at the
base of the technique is not enough. In this paper we propose Gradient-Π, a new
heuristics that modifies the bandwidth-reduction method of Sloan to order places
on a subset-basis, using either P-semiflows or Nested Units [15] to provide such
subsets. An extensive benchmark enlights that Gradient-Π has better perfor-
mance than the Sloan method and better than other structural-based methods
like P-chain, as well as various other state-of-the-art variable ordering methods.

Note that Gradient-Π assumes that in the MDD we assign one place per
level. Other techniques have instead used P-semiflows for identifying places to
be grouped in a single level [11] or for state compression for binary decision
diagrams [25]. These technique can be seen as orthogonal to the proposed one.

The paper is organized as follows: Section 2 introduces the notation used
in the paper; Section 3 describes the Gradient-Π heuristics; Estimation of the
heuristics parameters is done in Section 3.1; The effectiveness of the new method
is assessed in Section 4. Finally, Section 5 concludes the paper.

2 Background

This section first reviews the definition of Petri nets [2] and the related notions of
P-semiflows and Nested Units. The section then presents a description of the two
variable ordering algorithms (the Sloan method [27] and the P-chain method [6])
which influenced the definition of the proposed static variable ordering heuristics.

The Petri net (PN) is a graphical mathematical formalism that has been
widely used to model and study real systems in different fields (e.g. communi-
cation systems, biological systems, power systems, work-flow management, . . .).
A Petri net is a bipartite directed graph with nodes partitioned into places or
transitions. An example of PN is depicted in Figure 4. Places, graphically rep-
resented as circles, correspond to the state variables of the system, while transi-
tions, graphically represented as boxes, correspond to the events that determine
the state changes. The arcs connecting places to transitions (and vice versa)
express the relations between states and event occurrences. Each arc is labeled
with a non null natural number representing its “weight”. The state of a PN is
usually called a marking m, a multiset on the set P of places.

Definition 1 (Petri Net). A PN system is a tuple N = (P, T, I−, I+,m0),
where: P is a finite and non empty set of places; T is a finite and non empty
set of transitions with P ∩ T = ∅; I−, I+ : T × P → IN are the input and
output matrices, that define the arcs of the net and that specify their weight;
and m0 : P → IN is a multiset on P representing the initial marking of the net.

A marking m (or state) of a PN is a multiset on P . A transition t is enabled in
marking m iff I−(t, p) ≤ m(p), ∀p ∈ P , where m(p) is the number of tokens in
place p in marking m. Enabled transitions may fire, and the firing of transition
t in marking m yields a marking m′ = m + I+(t)− I−(t). Marking m′ is said to
be reachable from m because of the firing of t and is denoted by m[t〉m′.

The markings which are reachable from a given initial marking m0 form the
Reachability Set (RS(m0)). The incidence matrix is the matrix C = I+ − I−,
so that Ct,p = I+(t, p) − I−(t, p) describes the effect of the firing of transition
t on the number of tokens in place p. Any left annuller of matrix C, a vector
x ∈ Z |P | solution of the matrix equation xC = 0 is called a P-semiflow.

The set of P-semiflows are at the base of the first notion of “structure” used
in this paper. Indeed if x is a P-semiflow and m any state reachable from the
initial state m0, we can write that x · m = K, where K is a constant value
that can be computed from the initial state, K = x ·m0. This suggests that
all the places that are in the same P-semiflow (that is to say the set πx of all
places p with a non-null value of x(p)) have a form of “circular” dependency
and it is advisable to put them close together in the decision diagram [11]. The
intuition is that each P-semiflow usually represents a local sub-component of a
more complex model. The set πx consists of connected places that can be used
to identify a PN subnet, the Petri Net structure that will be at the basis of
the algorithm proposed in the next section. All the P-semiflows of a PN can
be expressed as linear combinations of the set ΠMPS of minimal P-semiflows

Algorithm 1 Pseudocode of the Sloan algorithm.

Function Sloan:
Select a vertex u of the graph.
Select v as the most-distant vertex to u with a graph visit.
Assign to each vertex v′ a gradient grad(v′) = dist(v, v′).
Initialize visit frontier Q = {v}
repeat until Q is empty:

Remove from the frontier Q the vertex v′ that minimizes P (v′).
Add v′ to the variable ordering l.
Add the unexplored adjacent vertices of v′ to Q.

(MPS). Since the number of MPS can be exponential in the number of places,
their computation is in EXPSPACE. However, on many practical cases, the set
of MPS is much smaller and can be computed in almost linear time [12]. In the
experimental section we shall detail on which models the computation is feasible.

The second notion of “structure” used in this paper is that of nested unit
(NU) which is at the base of Nested-Unit Petri Nets (NUPN) [15]. NUPN are
ordinary Petri nets (all arcs have weight one) with an additional structure of
“nested units”. Units constitute a partition of the set P of places and are char-
acterized by having at most one place of the unit marked in any reachable state.
NUPN have been developed as the target formalism for the translation from
process algebra to Petri nets. Let ΠNU be the set of nested units of a NUPN.

Note that while the structure based on MPS can be computed on (almost)
any net, the structure of NU applies only to NUPN, and is part of the model
definition. This topic will be discussed with more detail in the experimental
section. Both NU and MPS express an important property of mutual dependency
of the involved variables in PN system. In a NU, at most one place can have
a token in any marking. In a MPS, a weighted sum of tokens is constant in
any marking. Therefore, we expect that a variable ordering that groups together
MDD variables corresponding to places in the same NU/MPS should reduce the
MDD size, due to the inter-dependence between the variables [11,25].

The Sloan algorithm for static variable ordering
The Sloan algorithm [27] is an algorithm to reorder the entries of a sparse
symmetric matrix A around its diagonal. It computes a permutation of the
rows/columns of A such that most of the non-zero entries are maintained as
close as possible to the diagonal. Recently, the work in [21] has shown that Sloan
is a promising algorithm for variable ordering of Petri net models. The idea is to
express variable-variable interactions in A. Compacting A around the diagonal
results in an improved transition locality in the MDD. Since the Sloan method
requires A to be symmetric, some form of symmetrization is needed. In our con-
text, we define Ai,j to be non-zero iff there is a transition that connects place i
with place j, regardless of the direction of the arcs.

The pseudocode of Sloan is given in Algorithm 1. The method can be divided
into two phases. In the first phase it searches a pseudo-diameter of the A matrix
graph, i.e. two vertices v, u that have an (almost) maximal distance. Usually, a

Algorithm 2 Pseudocode of the P-semiflows chaining algorithm.

Function P-chain(ΠMPS):
l = ∅ is the ordered list of places.
S = ∅ is the set of currently discovered common places.
Select a MPS πi ∈ ΠMPS s.t. max{i,j}∈|ΠMPS| πi ∩ πj with i 6= j
ΠMPS = ΠMPS \ {πi}
πcurr = πi
Append V (πcurr) to l
repeat until ΠMPS is empty:

Select a MPS πj ∈ ΠMPS s.t. maxj∈|ΠMPS| πcurr ∩ πj
Remove (l ∩ V (πj)) \ S to l
Append V (πcurr ∩ πj) \ S to l
Append V (πj) \ (S ∩ V (πcurr)) to l
Add V (πcurr ∩ πj) to S
πcurr = πj
ΠMPS = ΠMPS \ {πj}

return l

heuristic approach based on the construction of the root level structure of the
graph is employed. The method then performs a visit, starting from v, exploring
in sequence all vertices in the visit frontier Q that maximize a priority function
P (v′). The function P (v′) guides the variable selection in the greedy strategy. It
is defined as P (v′) = −W1 · incr(v′) +W2 · dist(v, v′) where v, v′ are vertices in
graph A, incr(v′) is the number of unexplored vertices adjacent to v′, dist(v, v′)
is the distance of the shortest path between v and v′, and W1 and W2 are two
integer weights. The weights control how Sloan prioritizes the visit of the local
cluster (W1) and how much the selection should follow the gradient (W2).

The P-chain algorithm for static variable ordering
The P-semiflows chaining algorithm(P-chain) is based on the idea of keeping
together the places belonging to the same P-semiflow for the MDD variable
ordering. The idea behind this algorithm is to maintain the places shared by
two P-semiflows as close as possible in the final DD variable ordering, since their
markings cannot vary arbitrarily. The pseudo-code is reported in Algorithm 2.

The algorithm takes as input the ΠMPS set and returns as output a variable
ordering l. Initially, the MPS πi sharing the highest number of places with any
unit is removed from ΠMPS and saved in πcurr. All its places are added to l.

Then the main loop runs until ΠMPS becomes empty. The loop comprises
the following operations. The MPS πj sharing the highest number of places with
πcurr is selected. All the places of πj in l, which are not currently S (the list of
currently discovered common places) are removed. The common places between
πi and πj not present in S are appended to l, followed by the places present only
in πj . After these steps, S is updated with the common places in πi and πj , and
πj is removed from ΠMPS. Finally πcurr becomes πj , completing the iteration.

Evaluation methodology
When testing multiple methods on a set of models, we need one or more score

functions to determine the efficacy of the methods. We mainly consider the peak
node size of the constructed MDD as a basis for the score functions, since it is
the upper bound of the MDD computation both in terms of memory and time.
Let A be a set of considered methods, let I be the set of model instances, and let
i be a model instance solved by algorithms A = {a1, . . . , am} with peak nodes
Pi = {pa1(i), . . . , pam(i)}. We consider three score functions for each instance i:

– Solveda(i): 1 if the RS generation using the variable ordering provided by
algorithm a finishes in the time/memory constraints, 0 otherwise;

– Optimala(i): 1 if algorithm a found the variable ordering among the tested
method which leads to the smallest MDD peak size, 0 otherwise;

– Normalized Score (NS): is a value between 0 and 1 which weights the “qual-
ity” of the variable ordering, and it is defined as:

NSa(i) = 1− min{p ∈ Pi}
pa(i)

(1)

The optimal algorithm for an instance i receives a NS score of 0. If an al-
gorithm does not terminate in the given time/space limits, we arbitrarily
assign a score of 1 to that algorithm.

3 The Gradient-Π Algorithm

This section presents the Gradient-Π heuristics, the main contribution of the
paper. It is an hybrid algorithm that combines the features of both the Sloan
method (which is gradient-based) and the P-Chain method (which is based on the
idea of ordering the structural units). As observed in [6] Sloan performs rather
well, especially in terms of the number of “solved” models (models on which the
state space is generated within the given time and space constraints), but it is not
always the best one. Methods like Tovchigrechko, that takes into consideration
some aspect of the net graph (like number of input and output arcs of a place)
often exhibit better performances. That analysis also showed that a heuristics
like Force, that usually reaches intermediate performances, when modified to
include information on the NU (method called Force-NU in [6]) can go beyond
the performance of the best performers (like Tovchigrechko and Sloan) on the
set of NUPN models.

The idea behind the Gradient-Π heuristics is indeed to combine the gen-
erality of Sloan, that results in a large number of solved models, with the ex-
ploitation of structural informations that could result in better performances.
The exploitation of structural info is similar to the idea behind the P-chain al-
gorithm. According to the benchmark results reported in [6], P-chain does not
perform well, and our hypothesis is that its poor performances have two motiva-
tions: 1) there is no clever choice of the order in which the MPSs are considered
and 2) there is no indication on how to order the variables of the same MPS
(which corresponds to linearize the places inside the MPS which is basically a
cyclic structure). In Gradient-Π the choices associated to the two points above
are resolved using a gradient-based approach mutuated from Sloan algorithm

Algorithm 3 Pseudocode of the Gradient-Π heuristics.

Function Gradient-Π(v0, Π):
// Phase 1: establish a gradient based on vfirst and vlast.
Start a graph visit from v0. Let vlast the variable that maximizes dist(v0, vlast).
Start a visit from vlast. Let vfirst be the variable that maximizes dist(vlast, vfirst).
for each variable v ∈ V :

Compute grad(v).
S ← ∅
l← []
// Phase 2: Linearize the elements of Π along the gradient.
while exists at least one π ∈ Π with π \ S 6= ∅:

for each element π ∈ Π with π \ S 6= ∅:
Compute score(π).

Let πmax be the element with maximum score(π) value.
// Phase 3: Linearize the variables in the selected element πmax.
Append variables in (πmax \ S) to l in ascending gradient order.
S ← S ∪ πmax.

Append all variables in (V \ S) to l in ascending gradient order.
return l.

The method takes as input an initial vertex and a structure Π of places. We
consider two different applications of this method: Gradient-P uses the set of
minimal P-semiflows ΠMPS as input, and Gradient-NU uses the set of Nested
Units ΠNU as input. A pseudo-code is given in Algorithm 3.

The algorithm is subdivided into three main phases. In the first phase, the
algorithm identifies a pseudo-diameter of the system graph, whose vertices vfirst

and vlast are the opposite ends. Identification is done using two graph visits.
Alternatively, a root level structure [18] can be used for this task. The identi-
fied diameter is a pseudo-diameter, since there is no guarantee that (vfirst, vlast)
forms the maximum diameter of the graph. However, this method usually finds
a reasonable approximate of the pseudo-diameter, and it is very fast. Once the
pseudo-diameter is established, a scalar gradient is assigned to each vertex v.
The definition of grad(v) is the subject of study in the next section.

The second phase of the algorithm takes one element ofΠ at a time, according
to the gradient order. To do so, it assigns a score value to each element, with the
goal of taking the one with the maximum score. The algorithm tracks the set of
variables S that have already been inserted in the variable ordering l. Again we
shall discuss the considered score function in the next section. Once the element
with the maximum score πmax has been identified, the algorithm performs the
third phase, which consists in a greedy local optimization of the variable ordering.
Variables in (πmax \S) are ranked according to the grad(v) value, and appended
to l. The method continues selecting elements π ∈ Π until all variables have been
inserted in l. For completeness of the method, if some variable is not covered
by any element of Π, it is appended at the end of l. The implemented method
also considers the case where the graph is not fully connected. In that case, the
algorithm is run separately for each connected component.

3.1 Parameter Estimation of the Score and Gradient Functions

The Gradient-Π method depends on a set of different parameters and functions.
We defined a set of experiments to estimate empirically these parameters. The
targeted questions are the following:

Q1. What is the best strategy for the selection of the initial vertex v0?

Q2. What score(π) function should be used?

Q3. What grad(v) function should be used?

To answer these questions, we run a prototype implementation of the Gradient-
Π method on a benchmark composed of 51 PN model instances, made by a
seection of the smallest instances of the MCC2016 benchmark, used for the
Gradient-Π assessment in Section 4. We consider ΠMPS as the input set Π.

Q1. We consider three different criterias for the selection of v0: 1) Take v0 as the
first place P0 in the net; 2) Take v0 as a random place in the net; and 3) Take
v0 as the place with the maximum number of input/output arcs.
We run Gradient-Π on the test set, collecting the peak MDD size for each run.
Figure 1 shows the comparative results obtained by the three criterias.

Each plot in Figure 1 shows the MDD peak values of the compared runs, on
a log-log scale. Each dot represent a model run, where the x and y coordinates
are the MDD peaks obtained in two of the three tested configurations. The data
shows that the method is not very sensible to the selection of v0, with the third
configuration only marginally better than the other two. However, since the third
configuration is also the typical strategy for the initial vertex selection of Sloan,
we adopt it for our implementation of Gradient-Π.

Q2. The score function for an element π ∈ Π should balance these quantities:

1. An element π that has many variables already in S should be preferred;

2. The score should be proportional to the gradient;

3. The element cardinality |π| can be used as a weight parameter.

CM 73 10 63

FORCE 24 12 12

FORCE-NES 34 18 16

FORCE-NU 5 2 3

First::first : 8< has a length of zero and no first element. à

Part::partw : Part 4 of First@8<D does not exist. à

Part::partw : Part 3 of First@8<D does not exist. à

Part::partw : Part 4 of First@8<D does not exist. à

General::stop : Further output of Part::partw will be suppressed during this calculation. à

First::first : 8< has a length of zero and no first element. à

FORCE-P 33 26 7

FORCE-WES1 29 17 12

G-NU 25 0 25

GP 73 10 63

KING 42 10 32

First::first : 8< has a length of zero and no first element. à

General::stop : Further output of First::first will be suppressed during this calculation. à

MCL 19 3 16

NOACK 53 34 19

P 21 10 11

SLO 61 44 17

SLO-12 67 42 25

TOV 67 44 23

In[248]:= vInit = Import@"êUsersêelvioêDesktopêSVN-UnitoêATVA2017êstart vs v0max vs v0rand.csv", "Data"D;
LargeVal = 10^6.5;

logLP@X_D := ListLogLogPlot@8881, 1<, 8LargeVal, LargeVal<<, X<, Joined Ø 8True, False<D;
GraphicsRow@8logLP@vInitPAll, 2 ;; 3TD,

logLP@vInitPAll, 3 ;; 4TD,
logLP@Transpose@8vInitPAll, 2T, vInitPAll, 4T<DD<,

Spacings Ø 810, 0<, ImageSize Ø 700D

Out[251]=

10 100 1000 104 105 106

10

100

1000

104
105

106

10 100 1000 104 105 106

10

100

1000

104
105

106

10 100 1000 104 105 106

10

100

1000

104
105

106

In[221]:= Transpose@8vInitPAll, 2T, vInitPAll, 4T<D

Out[221]= 88961, 962<, 81160, 784<, 81715, 1715<, 8303, 303<, 8672, 672<, 87878, 7878<, 8357, 233<, 8387, 314<, 86270, 6260<,
8387, 371<, 88749, 8749<, 8277, 277<, 8524, 524<, 8219, 219<, 879, 73<, 8308 234, 308 234<, 812, 12<, 846, 46<, 8313, 313<,
83884, 3884<, 84918, 4918<, 8360, 360<, 85400, 4109<, 8618, 669<, 83733, 3760<, 819 063, 19 063<, 852 333, 52 333<,
82175, 2175<, 81 771 912, 1 855 426<, 8696, 683<, 8473 620, 474 662<, 814 066, 14 066<, 8373, 373<, 8134, 134<, 81454, 1222<,
8827 291, 827 291<, 8191, 191<, 8960, 960<, 825, 26<, 81 963 187, 1 963 187<, 84930, 2760<, 819 024, 19 024<, 8526, 526<,
82002, 1972<, 82151, 2161<, 81788, 1788<, 823 329, 21 045<, 8705, 705<, 8488, 462<, 8278 083, 278 083<, 886 404, 86 404<<

2 Tabelle.nb

v0 = Random P
is better.

v0 = P0

is better.
v0 = P0

is better.

v0 = P with max.
degree is better.

v0 = P with max.
degree is better.

v0 = Random P
is better.

Fig. 1: MDD peaks obtained for different choices of v0.

Out[35]=
-2
.

-1
.7
5

-1
.5

-1
.2
5
-1
.

-0
.7
5

-0
.5

-0
.2
5 0

0.
25 0.
5

0.
75 1.

1.
25 1.
5

1.
75 2.

0.125
0.25
0.5
0.75
1.
1.5
2.
3.
4.
8.
16.

E

W1

-8
.

-4
.

-2
.

-1
.5 -1
.

-0
.5 0
0.
5 1. 1.
5 2. 4. 8.

-8.
-4.
-2.
-1.5
-1.
-0.5
0

0.5
1.
1.5
2.
4.
8.

W2

W1

Fig. 2: Normalized scores on the parameter space of W1 × E and W1 ×W2.

To encode these three desiderata into a single score function, we defined (empir-
ically) two parametric score functions:

scoremult(π) =

d︷ ︸︸ ︷(
W1 ·

∑
v∈π∩S

grad(v) −
∑
v∈π\S

grad(v)

)
·
∣∣π \ S∣∣E·sign(d)

(2)

scoreadd(π) = W1 ·
∑

v∈π∩S
grad(v) −

∑
v∈π\S

grad(v) + W2 ·
∣∣π \ S∣∣ (3)

These functions are inspired by both the weight function of Sloan and the weight
function of the Noack method [16]. In the function scoremult(π) the weight of the
element size is a multiplicative factor, while for the function scoreadd(π) it is
an additive factor. The power in Eq. (2) consideres the sign of d to ensure that
when E is positive the score increases for increasing values of |π\S

∣∣ regardless of
the sign of d. Vice versa, it should decrease when E is negative. Both functions
are controlled by a set of parameters (W1 and E for the first, W1 and W2 for
the second). We run a set of experiments on the parameter space of W1×E and
W1 ×W2, in order to determine the best values for both.

Figure 2 shows the normalized scores of Eq. (1) of the runs on the 51 model
instances considered. The left plot shows the NS results when the scoremult(π)
is used, for varying (W1, E). Similarly, the right plot shows the NS results when
using the scoreadd(π), for varying (W1,W2). Lighter blocks have a smaller NS,
which means that the algorithm running on that pair of parameter’s values
computes better variable orderings. The resulting plots are remarkably smooth.
Interestingly, the left one has a local minimum in W1=1, E=0, while the right one
has a local minimum in W1=1,W2=0. This analysis suggests that the element
size does not bring any advantage to the score function, neither in multiplicative
nor in additive form. Therefore, the final score function that we adopt is:

score(π) =
∑

v∈π∩S
grad(v) −

∑
v∈π\S

grad(v) (4)

Q3. Since the Gradient-Π method works using a pseudo-diameter, a critical ele-
ment is the gradient function grad(v). Let b = maxv∈V dist(vlast, v). We consider

two gradient functions: 1) An integer function: grad(v) = dist(vfirst, v), based
solely on vfirst; 2) A fractional function: grad(v) = dist(vfirst, v) + 1

b

(
b + 1 −

dist(vlast, v)
)
. The first function is the same used in the Sloan method. The

second function also considers the distance to vlast as a fractional part. We in-
vestigate if this addition brings benefits to the method.

1 10 100 1000 104 105 106

10

100

1000
104
105
106 Integer gradient

is better.

Fractional gradient
is better.

Fig. 3: Effect of the two tested gradient functions.

Figure 3 shows the comparison of the two gradient functions. The plot com-
pares the MDD peaks obtained running the same test using the two different
functions. The results show that the integer function is slightly better than the
fractional one in some cases, but the advantage cannot be determined clearly.

Example 1 (Gradient-Π example on a Petri net using P-semiflows).
We now illustrate the Gradient-Π algorithm on a small Petri net, taken from

the MCC2016 model set. The model is called “SwimmingPool” and describes a
sort of protocol to use a pool1. We use the set of P-semiflows ΠMPS for the input
elements Π. Figure 4 shows in the upper-left frame the Petri net model. Numbers
written in the places are the ordering computed by the Gradient-P algorithm.
Numbers written aside of each place are the computed integer gradient. The
three replicas of the model on the right show the three MPS π1, π2 and π3.

The algorithm computes three iterations of the second phase loop. In the
first iteration, π1 is selected, since it has the highest score. Since no variable has
been selected yet, all variables in π1 are taken, in gradient order. In the second
iteration, π2 is selected, which has already two variables in S. Finally, π3 is
selected. Intuitively, the P-semiflows of this model represents closed loops where
a constant token quantity circulates. The algorithm attaches these “loops” one
after the other, following the gradient order.

4 Comparison of Gradient-Π with Other Heuristics

The goal of this section is to test the effectiveness of the proposed heuristics
against other commonly used variable ordering algorithms for Petri net mod-
els. We use the evaluation methodology of [6]. We only consider static variable
ordering methods. The set A of considered methods is:

1 Model details can be found in http://mcc.lip6.fr/pdf/SwimmingPool-form.pdf.

http://mcc.lip6.fr/pdf/SwimmingPool-form.pdf

score(⇡1) = �18

score(⇡2) = �26

score(⇡3) = �28

12 3

4

5 67

8 9
4

3

2
1

7

5

8

9

6

score(⇡2) = �9

score(⇡3) = �8

score(⇡3) = 10
Iteration 1: Iteration 2: Iteration 3:

Select 1, 2, 3, 4.
Select 5, 6, 7.

Select 8, 9.

Change bindingsClose.

Entered

WaitBag

1

Undress

1

InBath

1

Dress

Dressed

Out

Cabins

1

Bags

GetK

GetB RelK GetK2 RBag

RKeyEnter

N = 0

C = 0

B = 0

copy of SwimmingPool‑PT‑03

Undress + InBath + Dress + Bags

WaitBag + Undress + Dress + Dressed + Cabins

Entered + WaitBag + Undress + InBath + Dress + Dressed + Out

P‑semiflows:

100 %Ok.

Change bindingsClose.

Entered

1 WaitBag

1

Undress

InBath

1

Dress

1Dressed

Out

1

Cabins

Bags

GetK

GetB RelK GetK2 RBag

RKeyEnter

N = 0

C = 0

B = 0

copy of SwimmingPool‑PT‑03

Undress + InBath + Dress + Bags

WaitBag + Undress + Dress + Dressed + Cabins

Entered + WaitBag + Undress + InBath + Dress + Dressed + Out

P‑semiflows:

100 %Ok.

Change bindingsClose.

1

Entered

1 WaitBag

1

Undress

1

InBath

1

Dress

1Dressed

1

Out

Cabins

Bags

GetK

GetB RelK GetK2 RBag

RKeyEnter

N = 0

C = 0

B = 0

copy of SwimmingPool‑PT‑03

Undress + InBath + Dress + Bags

WaitBag + Undress + Dress + Dressed + Cabins

Entered + WaitBag + Undress + InBath + Dress + Dressed + Out

P‑semiflows:

100 %Ok.

⇡1 ⇡2

⇡3

Fig. 4: Gradient-P run on the Swimming pool model.

– Force-{PTS, NES, WES}: variants of the Force heuristics [3] where 200
orderings are generated, and the one with the smallest score is selected.
The considered score functions are: point-transition span (PTS), normalized
event span (NES) and weighted event span (WES), respectively [26].

– Force-{P, NU}: variant of Force where structural elements are also centers
of gravity, along with the events. Elements can be either ΠMPS or ΠNU.

– Cuthill-Mckee heuristics, defined in [13].
– King heuristics, defined in [17].
– Sloan/Sloan16 heuristics, defined in [27] and recalled in Section 2. We con-

sider two variations of this method: Sloan uses W1

W2
= 1

2 , while Sloan16 uses
W1

W2
= 1

16 (the parameters used in [21] and in [6], respectively).
– P-Chain heuristics: defined in [6] and recalled in Section 2
– Noack heuristics, defined in [22], is a greedy heuristics for Petri net models

that tries to minimize the locality of the events in the ordering.
– Tovchigrechko heuristics, defined in [16], is a variation of the Noack heuris-

tics with a different selection criteria.
– Markov Cluster uses the Markov cluster algorithm [28] to identify variable

clusters and group them together.

Example 2 (Tested algorithms on the running example model). Figure 5 shows
the variable orderings obtained with the tested methods on the SwimmingPool
model. The model has a very clear structure of partially overlapped P-semiflows,
as shown in Figure 4, and we expect Gradient-P to perform well as it is designed
to exploit this type of structure.

Each block shows the algorithm name, the symmetric adjacency matrix of
the ordered model, and the performances of the state space generation using that
ordering. Algorithms are ordered according to peak nodes (smallest to highest).
Some algorithms obtained the same ordering, and have been grouped together
in a single column. The matrix has a black square in (i, j) if there exists an event
that links the variable at level i with the variable at level j. In this visualization
we do not consider the event directionality, and we make the matrix symmetric.

Gradient-P Force-P Force-PTS
Force-NES

&
Force-WES1

Cuthill
Mckee &

King

Sloan
&

Sloan16
P-Chain

Noack
&

Tovchigr.

Markov
Cluster

Nodes:
Peak:
Time:
NS:

2629
6802
0.607
0.000

13154
17531
1.234
0.613

14144
17838
1.217
0.619

13364
20029
1.582
0.661

2684
21196
1.937
0.680

2684
25088
2.259
0.729

22179
61362
3.653
0.890

40134
230483
27.325
0.971

13124
430907
28.869
0.985

Fig. 5: Comparison of Gradient-P with the other tested methods.

The rows below each matrix report the number of MDD nodes, the peak nodes,
the time needed to construct the MDD, and the normalized score assigned to that
variable order. In this example, Gradient-P performs better and thus receives an
NS score of 0. All the other algorithms receive a score that is proportional to how
much their peak node size departs from the minimum peak node size found for
that instance. Note that Gradient-P has a peak size which is almost one third
of the second best ordering algorithm (Force-P, which is also an algorithm that
exploits the net structure), one fourth of Sloan (which is a generic algorithm that
does not exploit P-semiflows). Note that algorithms that have been specifically
performed for Petri nets, like Tovchigrechko and Noack perform rather poorly
on this example, with peak sizes more than 30 times bigger than Gradient-P.

4.1 Empirical assessment on the benchmark

The model of the previous section is just an example of a structure on which
Gradient-P performs very well. In this section we test Gradient-P and Gradient-
NU on a broader set of models, to evaluate their average performance. The
evaluation is based on a benchmark with two subsets of models, taken from the
664 instances of the Model Checking Contest (MCC) 2016 [14] model set:

– The set IMPS where P-semiflows are computable in less than 30 seconds.
The set is made by 408 model instances, belonging to 45 models. In 294 of
these instances at least one algorithm finishes in the time/memory limits.

– The set INU of NUPN instances, with well identified nested units that cor-
respond to process algebra terms. The set is made by 80 model instances
belonging to 12 different models. For 67 of these instances, at least one al-
gorithm finishes in the time/memory limits.

The excluded instances either are not NUPN, or the MPS set is not computable.
All computations have been done using the GreatSPN tool [5], with a maximum
of 4GB of memory and 60 minutes of time.

Table 1(left) reports the results for the IMPS set. Since in the MCC model
set the number of instances-per-model vary largely (some have just one, others
have up to forty instance), the table reports the results on a per-model and
per-instance basis. For each algorithm a ∈ A, the table indicates the number of

Table 1: Benchmark results on the IMPS and INU model sets.
Models (45) Instances (294)

Method solv. opt NS solv. opt NS

Gradient-P 28.61 12.42 12.73 240 76 137.22
Sloan16 28.61 4.60 21.46 244 53 181.29
Sloan 28.51 4.84 22.07 242 43 188.83
Tovchigr. 28.29 5.62 18.80 240 52 169.27
P-Chain 26.81 2.61 24.88 229 21 223.33
Noack 26.31 4.34 19.21 228 36 176.99
Force-NES 22.69 2.90 23.98 192 23 209.52
Force-P 22.40 4.67 20.75 199 30 188.09
Force-PTS 22.33 2.53 24.32 189 19 213.19
Force-WES 22.04 3.40 23.27 190 23 206.30
Cuthill-M. 21.32 2.74 24.63 214 52 180.11
King 20.80 1.77 24.99 206 21 199.89
MarkovCl. 18.61 1.30 27.29 174 15 235.13

Models (12) Instances (67)

Method solv. opt NS solv. opt NS

Gradient-NU 9.82 7.03 2.64 50 34 23.72
Sloan16 9.47 0.45 8.10 55 9 45.40
Sloan 9.37 1.31 8.56 53 7 49.07
Tovchigr. 8.82 0.60 8.51 44 12 47.71
Noack 7.83 0.15 8.34 42 3 50.66
Force-NES 6.30 0 10.22 35 0 61.85
Force-PTS 5.74 0 10.43 27 0 64.24
Force-NU 5.71 1.30 8.78 38 5 54.59
Force-WES 5.41 0 10.11 34 0 61.72
MarkovCl. 4.91 0 9.19 24 0 60.94
Cuthill-M. 2.53 0 10.58 21 0 65.59
King 2.49 0 10.59 21 0 65.71

models for which a terminates (solv.), the number of models where the a found
the best variable ordering (opt) and the total NS score for that algorithm. The
last three columns replicate the same data for the model instances.

The computation of the NS score for the per-instance analysis of algorithm
a just sums the value of NSa(i) of equation (1) over all instances i. In the per-
model analysis the sum is over the NSa(m) values for each model m, where the
NS score of a model m is computed as NSa(m) =

∑
i∈m

1
|m|NSa(i), to balance

models that have many instances. Analogous rescaling is done for the number
of solved and optimally solved models (which results in fractional numbers).

From the data it emerges that Gradient-P and the variation of Sloan that
we propose (Sloan16) are the best performers. In particular if we observe the
per-model results, Gradient-P has a significant margin in finding the optimal or-
dering (thus reducing the MDD peak size) on both Sloan16 and Sloan (and even
on their sum) and a much better NS score both with respect to Sloan/Sloan16
and with respect to the second one on the NS column (Tovchigrechko). Surpris-
ingly, neither P-chain nor Force-P methods, which are both P-semiflow based
algorithm, reaches similar performances to that of Gradient-P. From these pos-
itive results we conjecture that the combination of a Sloan-like gradient order
with the structural information of P-semiflows produces variable orderings that
are better that those generated by algorithms that use just one of the two ele-
ments (gradient or P-semiflows).

In the per-instance analysis, Gradient-P has the best NS score, actually sig-
nificantly better than the second one in the column (which is, again, Tovchi-
grechko), a number of solved instances that is only 1.7% less than the best
performer on solved instances (Sloan16) and the best number of optimal solved
instances. This last results is nevertheless not particularly relevant, since the
splitting of Sloan on two variations (Sloan and Sloan16) may have lead to an

In[393]:= PW = Table@pinvWeightAll, 8Length@pinvAlgoListD<D;
NUW = Table@nuWeightAll, 8Length@nuAlgoListD<D;
GraphicsGrid@88

GenScorePlot2bis@pinvNSall * PW, pinvFINall * PW, pinvAlgoList, 0.5D,
GenScorePlot2bis@nuNSall * NUW, nuFINall * NUW, nuAlgoList, 0.3D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

GraphicsGrid@88
GenDistribScorePlot@pinvNSall, pinvAlgoList, "NS", 2, NSMarker, -0.5D,
GenDistribScorePlot@nuNSall, nuAlgoList, "NS", 2, NSMarker, -0.5D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

Out[395]=

G
ra
di
en
t·P

To
vc
hi
gr
.

N
oa
ck

Fo
rc
e·
P

Sl
oa
n1
6

Sl
oa
n

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

P·
C
ha
in

K
in
g

M
ar
ko
v

C
lu
st
er

0.6

0.8

1.

G
ra
di
en
t·N
U

Sl
oa
n1
6

N
oa
ck

To
vc
hi
gr
.

Sl
oa
n

Fo
rc
e·
N
U

M
ar
ko
v

C
lu
st
er

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

K
in
g

0.4

0.6

0.8

1.

8GP Ø 137.221, TOV Ø 169.271, NOACK Ø 176.994, CM Ø 180.113, SLO-12 Ø 181.294, FORCE-P Ø 188.096,
SLO Ø 188.833, KING Ø 199.891, FORCE-WES1 Ø 206.301, FORCE-NES Ø 209.52, FORCE Ø 213.197, P Ø 223.337, MCL Ø 235.132<

8G-NU Ø 23.7213, SLO-12 Ø 45.4062, TOV Ø 47.7142, SLO Ø 49.0745, NOACK Ø 50.6687, FORCE-NU Ø 54.5945,
MCL Ø 60.9499, FORCE-WES1 Ø 61.7202, FORCE-NES Ø 61.8517, FORCE Ø 64.2465, CM Ø 65.5978, KING Ø 65.713<

Out[396]=

In[402]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,
PlotLegends Ø 8"NS", "NS", "Solved", "Solved"<,
Mesh Ø All,
PlotMarkers Ø 8NSMarker, NSMarker, MCCMarker, MCCMarker<,
H*PlotStyleØTable@ColorData@1,"ColorList"DP81,4<PnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[402]=

In[1312]:= GraphicsGrid@88

GenScorePlot2bis@pinvNSall, pinvMCCall, pinvAlgoList, 0.5D,

GenScorePlot2bis@nuNSall, nuMCCall, nuAlgoList, 0.3D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,

ImageSize Ø 730D

GraphicsGrid@88

GenDistribScorePlot@pinvNSall, pinvAlgoList, "NS", 2, NSMarker, -0.5D,
GenDistribScorePlot@nuNSall, nuAlgoList, "NS", 2, NSMarker, -0.5D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,

ImageSize Ø 730D

Out[1312]=

G
ra
di
en
t·P

To
vc
hi
gr
.

N
oa
ck

C
ut
hi
ll

M
cK
ee

Sl
oa
n

Fo
rc
e·
P

Sl
oa
n1
6

K
in
g

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

P·
C
ha
in

M
ar
ko
v

C
lu
st
er

0.6

0.8

1.

G
ra
di
en
t·N
U

To
vc
hi
gr
.

Sl
oa
n1
6

Sl
oa
n

N
oa
ck

Fo
rc
e·
N
U

M
ar
ko
v

C
lu
st
er

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

K
in
g

0.4

0.6

0.8

1.

8GP Ø 160.767, TOV Ø 175.615, NOACK Ø 183.342, CM Ø 197.946, SLO Ø 201.108, FORCE-P Ø 207.694,
SLO-12 Ø 208.451, KING Ø 217.352, FORCE-WES1 Ø 223.314, FORCE-NES Ø 227.3, FORCE Ø 231.645, P Ø 252.837, MCL Ø 257.045<

8G-NU Ø 24.0906, TOV Ø 47.8815, SLO-12 Ø 48.0919, SLO Ø 48.8384, NOACK Ø 50.7088, FORCE-NU Ø 54.3796,
MCL Ø 60.8119, FORCE-WES1 Ø 61.6182, FORCE-NES Ø 61.7712, FORCE Ø 64.2456, CM Ø 65.601, KING Ø 65.7164<

Out[1313]=

In[1320]:= GraphicsRow@8ListLinePlot@881<, 82<, 83<, 84<<,

PlotLegends Ø 8"NS", "NS", "Count", "Count"<,

Mesh Ø All,

PlotMarkers Ø 8NSMarker, NSMarker, MCCMarker, MCCMarker<,

H*PlotStyleØTable@ColorData@1,"ColorList"DP81,4<PnTT,8n,P<D,*L
Frame Ø TrueD<D

Out[1320]=

2 GraficiPrint.nb

In[393]:= PW = Table@pinvWeightAll, 8Length@pinvAlgoListD<D;
NUW = Table@nuWeightAll, 8Length@nuAlgoListD<D;
GraphicsGrid@88

GenScorePlot2bis@pinvNSall * PW, pinvFINall * PW, pinvAlgoList, 0.5D,
GenScorePlot2bis@nuNSall * NUW, nuFINall * NUW, nuAlgoList, 0.3D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

GraphicsGrid@88
GenDistribScorePlot@pinvNSall, pinvAlgoList, "NS", 2, NSMarker, -0.5D,
GenDistribScorePlot@nuNSall, nuAlgoList, "NS", 2, NSMarker, -0.5D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

Out[395]=

G
ra
di
en
t·P

To
vc
hi
gr
.

N
oa
ck

Fo
rc
e·
P

Sl
oa
n1
6

Sl
oa
n

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

P·
C
ha
in

K
in
g

M
ar
ko
v

C
lu
st
er

0.6

0.8

1.

G
ra
di
en
t·N
U

Sl
oa
n1
6

N
oa
ck

To
vc
hi
gr
.

Sl
oa
n

Fo
rc
e·
N
U

M
ar
ko
v

C
lu
st
er

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

K
in
g

0.4

0.6

0.8

1.

8GP Ø 137.221, TOV Ø 169.271, NOACK Ø 176.994, CM Ø 180.113, SLO-12 Ø 181.294, FORCE-P Ø 188.096,
SLO Ø 188.833, KING Ø 199.891, FORCE-WES1 Ø 206.301, FORCE-NES Ø 209.52, FORCE Ø 213.197, P Ø 223.337, MCL Ø 235.132<

8G-NU Ø 23.7213, SLO-12 Ø 45.4062, TOV Ø 47.7142, SLO Ø 49.0745, NOACK Ø 50.6687, FORCE-NU Ø 54.5945,
MCL Ø 60.9499, FORCE-WES1 Ø 61.7202, FORCE-NES Ø 61.8517, FORCE Ø 64.2465, CM Ø 65.5978, KING Ø 65.713<

Out[396]=

In[393]:= PW = Table@pinvWeightAll, 8Length@pinvAlgoListD<D;
NUW = Table@nuWeightAll, 8Length@nuAlgoListD<D;
GraphicsGrid@88

GenScorePlot2bis@pinvNSall * PW, pinvFINall * PW, pinvAlgoList, 0.5D,
GenScorePlot2bis@nuNSall * NUW, nuFINall * NUW, nuAlgoList, 0.3D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

GraphicsGrid@88
GenDistribScorePlot@pinvNSall, pinvAlgoList, "NS", 2, NSMarker, -0.5D,
GenDistribScorePlot@nuNSall, nuAlgoList, "NS", 2, NSMarker, -0.5D<<,

Spacings Ø 8-65, 20<, Alignment Ø 88Right, Right<, 8Top, Top<<,
ImageSize Ø 730D

Out[395]=

G
ra
di
en
t·P

To
vc
hi
gr
.

N
oa
ck

Fo
rc
e·
P

Sl
oa
n1
6

Sl
oa
n

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

P·
C
ha
in

K
in
g

M
ar
ko
v

C
lu
st
er

0.6

0.8

1.

G
ra
di
en
t·N
U

Sl
oa
n1
6

N
oa
ck

To
vc
hi
gr
.

Sl
oa
n

Fo
rc
e·
N
U

M
ar
ko
v

C
lu
st
er

Fo
rc
e·
W
ES
1

Fo
rc
e·
N
ES

Fo
rc
e·
PT
S

C
ut
hi
ll

M
cK
ee

K
in
g

0.4

0.6

0.8

1.

8GP Ø 137.221, TOV Ø 169.271, NOACK Ø 176.994, CM Ø 180.113, SLO-12 Ø 181.294, FORCE-P Ø 188.096,
SLO Ø 188.833, KING Ø 199.891, FORCE-WES1 Ø 206.301, FORCE-NES Ø 209.52, FORCE Ø 213.197, P Ø 223.337, MCL Ø 235.132<

8G-NU Ø 23.7213, SLO-12 Ø 45.4062, TOV Ø 47.7142, SLO Ø 49.0745, NOACK Ø 50.6687, FORCE-NU Ø 54.5945,
MCL Ø 60.9499, FORCE-WES1 Ø 61.7202, FORCE-NES Ø 61.8517, FORCE Ø 64.2465, CM Ø 65.5978, KING Ø 65.713<

Out[396]=

(C) Point density of (A) (D) Point density of (B)

(A) All models with P-semiflows: (B) All models with Nested Units:

Fig. 6: Performance obtained using Gradient-Π on the benchmark.

underestimation of the value with respect to a benchmark in which only one of
the two is present.

Table 1(right) reports the results for the INU set. The results are similar to
that of the previous case but even more striking for what concerns the number
of optimally solved models/instances: Sloan, Gradient-NU and Tovchigrechko
methods occupy the top positions in terms of solved models/instances, but
Gradient-NU finds the optimal variable ordering among the tested methods more
often than the others, with a significantly lower NS score. The number of solved
instances is now worse than the best one by 10%, but, as explained before, the
results per instance are less stable, since it is enough to have a single model with
many instances, on which an algorithm does not perform well, to badly influence
the results.

From the data analysis it seems that Gradient-P and Gradient-NU finds
better variable ordering compared to state-of-the-art methods like Sloan and
Tovchigrechko. To confirm this observation, we look at the point density of the
NS scores of each instance. Figure 6 reports on the top row the plots of the NS

score and the count of solved models (normalized from 0 to 1), for each algorithm.
Plots (C) and (D) shows the NS point density of each run in the benchmark.
In the bar of algorithm a there is a single black point for each NSa(m), which
allows to understand the distribution that makes up the NS value reported on
Tables 1. From the plot (C) emerges that Sloan and Tovchigrechko methods
are more polarised with a higher concentration of lower scores in the upper
part of the diagrams (higher NS scores), while the behaviour of Gradient-P is

more distributed. Note that also the algorithms of the Force type show a more
distributed values of NS than Sloan and Tovchigrechko. The small number of INU

instances do not allow to draw very definite conclusions, but apparently the trend
of plot (D) is similar to that observed in plot (C), were Sloan/Tovchigrechko have
many more instances with high NS scores.

5 Conclusions

Motivated by the aim of understating if and how the structure of the system
can be exploited to improve the performance of gradient-based algorithms for
devising a good variable ordering, in this paper we proposed a new algorithm for
statically computing a variable ordering of DDs that exploits the net structure.
The algorithm combines the features of the Sloan method, with the ideas of the
P-Chain method. It finds the variable ordering by sorting a set of structural
units of the system along a Sloan-like gradient. The structural units should be
available or computable, which may limit the applicability of the method on a
subset of models. In practice, these units are computable on most models in a
reasonable time. For the set of tested models with structural information (294
instances), the efficacy of the proposed algorithm emerges, producing better re-
sults over the set of considered state-of-the-art variable ordering methods (13
were tested). Our tests show that the combination of a gradient-based order
with the structural units is effective in reducing the MDD peak size. Parameter
estimation techniques were used to tune the internals of the proposed heuris-
tics. This allowed the identification of the range of the internal score function
coefficients that have been used for the 294 instances test.

We would like to extend the method to formalisms other than Petri nets
(like process algebra models or workflows models), to see if the observed perfor-
mance is consistent. In addition, other kinds of structural informations could be
exploited, as for instance the min-cut partitioning.

References

1. Van der Aalst, W.M.: The application of petri nets to workflow management.
Journal of circuits, systems, and computers 8(01), 21–66 (1998)

2. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley & Sons (1995)

3. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: A fast and easy-to-implement
variable-ordering heuristic. In: Proc. of GLSVLSI. pp. 116–119. ACM, NY (2003)

4. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 Years
of GreatSPN, chap. In: Principles of Performance and Reliability Modeling and
Evaluation: Essays in Honor of Kishor Trivedi, pp. 227–254. Springer, Cham (2016)

5. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in Great-
SPN. In: Ciardo, G., Kindler, E. (eds.) 35th Int. Conf. Application and Theory of
Petri Nets and Concurrency, Tunis. pp. 354–363. Springer, Cham (2014)

6. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision diagrams
for Petri nets: which variable ordering? In: Petri Net Performance Engineering
conference (PNSE). pp. 31–50. CEUR-WS (2017)

7. Babar, J., Miner, A.: Meddly: Multi-terminal and edge-valued decision diagram
library. In: Quantitative Evaluation of Systems, International Conference on. pp.
195–196. IEEE Computer Society, Los Alamitos, CA, USA (2010)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35, 677–691 (August 1986)

9. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

10. Ciardo, G., L uttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strat-
egy for symbolic state-space generation. In: TACAS’01. pp. 328–342 (2001)

11. Ciardo, G., L uttgen, G., Yu, A.J.: Improving static variable orders via invariants.
In: ICATPN 2007: 28th Int. Conf, Poland. pp. 83–103. Springer, Berlin (2007)

12. Colom, J.M., Silva, M.: Convex geometry and semiflows in P/T nets. a comparative
study of algorithms for computation of minimal P-semiflows. In: Advances in Petri
Nets 1990. pp. 79–112. Springer, Berlin (1991)

13. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proc. of the 1969 24th National Conference. pp. 157–172. ACM, New York (1969)

14. F. Kordon et all: Complete Results for the 2016 Edition of the Model Checking
Contest. http://mcc.lip6.fr/2016/results.php (June 2016)

15. Garavel, H.: Nested-Unit Petri Nets: A structural means to increase efficiency and
scalability of verification on elementary nets. In: 36th Int. Conf. Application and
Theory of Petri Nets, Brussels. pp. 179–199. Springer, Cham (2015)

16. Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MARCIE’s secrets of
efficient model checking. In: Transactions on Petri Nets and Other Models of Con-
currency XI. pp. 286–296. Springer, Heidelberg (2016)

17. King, I.P.: An automatic reordering scheme for simultaneous equations derived
from network systems. Journal of Numerical Methods in Eng. 2(4), 523–533 (1970)

18. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront
reduction. BIT Numerical Mathematics 37(3), 559–590 (1997)

19. Lu, Y., Jain, J., Clarke, E., Fujita, M.: Efficient variable ordering using a BDD
based sampling. In: Proceedings of the 37th Annual Design Automation Confer-
ence. pp. 687–692. DAC ’00, ACM, New York, NY, USA (2000)

20. Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.: Logic verifica-
tion using binary decision diagrams in a logic synthesis environment. In: IEEE Int.
Conf. on Computer-Aided Design (ICCAD). pp. 6–9 (Nov 1988)

21. Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction for static variable
ordering in symbolic reachability analysis. In: NASA Formal Methods, 2016. pp.
255–271. Springer, Cham (2016)

22. Noack, A.: A ZBDD package for efficient model checking of Petri nets (in German).
Ph.D. thesis, BTU Cottbus, Department of CS (1999)

23. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
BDD/MDD construction. Tech. rep., University of California (2008)

24. Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-
based model checking of Petri nets, pp. 374–391. Springer, Berlin (1995)

25. Schmidt, K.: Using Petri net invariants in state space construction. In: TACAS
2003, 9th Int. Conf. pp. 473–488. Springer, Berlin (April 2003)

26. Siminiceanu, R.I., Ciardo, G.: New metrics for static variable ordering in decision
diagrams. In: 12th Int. Conf. TACAS 2006. pp. 90–104. Springer, Heidelberg (2006)

27. Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices.
International Journal for Numerical Methods in Engineering 23(2), 239–251 (1986)

28. Van Dongen, S.: A cluster algorithm for graphs. Inform. systems 10, 1–40 (2000)

http://mcc.lip6.fr/2016/results.php

	Gradient-based Variable Ordering of Decision Diagrams for Systems with Structural Units

