TESIS DE LA UNIVERSIDAD 013
DE ZARAGOZA 126

Juan Pablo Lopez Grao

Contributions to the deadlock
problem in multithreaded software
applications observed as
Resource Allocation Systems

Informética e Ingenieria de Sistemas

Colom Piazuelo, José Manuel

IS5N 2254-TF506

s Universidad
i0f Zaragoza

1542

Tesis Doctoral

CONTRIBUTIONS TO THE DEADLOCK PROBLEM
IN MULTITHREADED SOFTWARE APPLICATIONS
OBSERVED AS RESOURCE ALLOCATION
SYSTEMS

Autor

Juan Pablo Loépez Grao

Director/es

Colom Piazuelo, José Manuel

UNIVERSIDAD DE ZARAGOZA

Informatica e Ingenieria de Sistemas

2013

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Contribuciones al problema de bloqueo en
aplicaciones software multihilo abordadas como
Sistemas de Asignacion de Recursos

Juan Pablo Lépez Grao

TESIS DOCTORAL

Departamento de Informética e Ingenieria de Sistemas
Universidad de Zaragoza

Director: José Manuel Colom Piazuelo

Julio 2013

Contributions to the deadlock problem in
multithreaded software applications observed as

Resource Allocation Systems

Juan Pablo Lépez Grao

PhD THESIS

Departament of Computer Science and Systems Engineering

University of Zaragoza

PhD advisor: José Manuel Colom Piazuelo

July 2013

To Esther (I love you!),
to Juan, our little masterpiece (thanks God you resemble Mom!),

and to our much-awaited Pablo.

“If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too;
If you can wait and not be tired by waiting,
Or being lied about, don’t deal in lies,
Or being hated don’t give way to hating,
And yet don’t look too good, nor talk too wise:

If you can dream - and not make dreams your master;
If you can think - and not make thoughts your aim;
If you can meet with Triumph and Disaster
And treat those two impostors just the same;

[...] If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And -which is more- you’ll be a Man, my son!”

Rudyard Kipling

Acknowledgements

I feel very privileged to have had José Manuel Colom as my PhD advisor. In him
I found a model of excellence, a devoted master, and a loyal friend. I am forever
indebted to him for his discreet patience, wisdom and generosity, and I can only
apologize for any time I could not live up to them.

Thanks also to José Javier Merseguer and Javier Campos, whom I luckily started
working with in 2002. This was a substantial step in my career. It was a pleasure to
work alongside you!

I am also grateful to Manuel Silva for granting me the honour of serving the Grupo
de Ingenierfa de Sistemas de Eventos Discretos (GISED), where I could meet some
gifted colleagues whose excellent work also inspired the thesis. If I have seen further...

Many thanks to Cristian Mahulea and Jorge Julvez, whose support and friendship
was much rewarding during the long and hard journey, as well as to Miguel Angel
Barcelona, Daniel Iriarte, Luis Montesano and Yolanda Villate, who gave encourage-
ment and enlightening advice to me when I needed them the most.

Thanks to the I3A and DIIS staffs for their willingness and efficiency, as well as
to the institutions which provided financial support to our research work: namely, by
means of an FPI grant from the former Spanish Ministry of Science and Technology,
the CICYT-FEDER projects TIC2001/1819 and DPI2006-15390, supported by the
Spanish Ministry of Science and Innovation (through former incarnations), and the
project PM063/2007 supported by the Aragonese Government.

Last, but not least, thank you very much to my dearest wife Esther and little son
Juan (you are my permanent inspiration!), to my parents and brothers, as well to the
rest of my family and friends from the DIISasters, Waltrapas, Sabindn (LaCuadrillica),
RetroAccién/S3P, and Azulito groups. Your warm support also led me here.

Contribuciones al problema de bloqueo en
aplicaciones software multihilo abordadas como
Sistemas de Asignacion de Recursos

Resumen

Desde el punto de vista de la competencia por recursos compartidos sucesivamente
reutilizables, se dice que un sistema concurrente compuesto por procesos secuenciales
estd en situacion de bloqueo si existe en él un conjunto de procesos que estan in-
definidamente esperando la liberacién de ciertos recursos retenidos por miembros del
mismo conjunto de procesos. En sistemas razonablemente complejos o distribuidos,
establecer una politica de asignacion de recursos que sea libre de bloqueos puede ser
un problema muy dificil de resolver de forma eficiente. En este sentido, los modelos
formales, y particularmente las redes de Petri, se han ido afianzando como herramien-
tas fructiferas que permiten abstraer el problema de asignacién de recursos en este
tipo de sistemas, con el fin de abordarlo analiticamente y proveer métodos eficientes
para la correcta construccién o correccion de estos sistemas. En particular, la teoria
estructural de redes de Petri se postula como un potente aliado para lidiar con el
problema de la explosién de estados inherente a aquéllos. En este fértil contexto han
florecido una serie de trabajos que defienden una propuesta metodoldgica de diseno
orientada al estudio estructural y la correspondiente correccion fisica del problema
de asignacion de recursos en familias de sistemas muy significativas en determinados
contextos de aplicacion, como el de los Sistemas de Fabricacion Flexible. Las clases
de modelos de redes de Petri resultantes asumen ciertas restricciones, con significado
fisico en el contexto de aplicacién para el que estan destinadas, que alivian en buena
medida la complejidad del problema.

En la presente tesis, se intenta acercar ese tipo de aproximaciéon metodolégica al
disefio de aplicaciones software multihilo libres de bloqueos. A tal efecto, se pone
de manifiesto como aquellas restricciones procedentes del mundo de los Sistemas de
Fabricacion Flexible se muestran demasiado severas para aprehender la versatilidad
inherente a los sistemas software en lo que respecta a la interaccién de los procesos con
los recursos compartidos. En particular, se han de resaltar dos necesidades de mod-
elado fundamentales que obstaculizan la mera adopcién de antiguas aproximaciones
surgidas bajo el prisma de otros dominios: (1) la necesidad de soportar la anidacién

de bucles no desplegables en el interior de los procesos, y (2) la posible comparticién
de recursos no disponibles en el arranque del sistema pero que son creados o declara-
dos por un proceso en ejecucién. A resultas, se identifica una serie de requerimientos
bésicos para la definicién de un tipo de modelos orientado al estudio de sistemas soft-
ware multihilo y se presenta una clase de redes de Petri, llamada PC2R, que cumple
dicha lista de requerimientos, manteniéndose a su vez respetuosa con la filosofia de
disenio de anteriores subclases enfocadas a otros contextos de aplicacién. Junto con
la revision e integraciéon de anteriores resultados en el nuevo marco conceptual, se
aborda el estudio de propiedades inherentes a los sistemas resultantes y su relacion
profunda con otros tipos de modelos, la confeccién de resultados y algoritmos efi-
cientes para el analisis estructural de vivacidad en la nueva clase, asi como la revision
y propuesta de métodos de resolucion de los problemas de bloqueo adaptadas a las
particularidades fisicas del dominio de aplicacién. Asimismo, se estudia la compleji-
dad computacional de ciertas vertientes relacionadas con el problema de asignacién de
recursos en el nuevo contexto, asi como la traslacién de los resultados anteriormente
mencionados sobre el dominio de la ingenieria de software multihilo, donde la nueva
clase de redes permite afrontar problemas inabordables considerando el marco teérico
y las herramientas suministradas para subclases anteriormente explotadas.

Contents

Introduction

1 Resource Allocation Systems: A facet of Discrete Event Systems

1.1
1.2
1.3

14
1.5

2 The
2.1
2.2
2.3

2.4

2.5

Introduction
The role of abstraction,
The resource allocation problem through Petri net models
1.3.1 An overview of model features
1.3.2 Petrinet modelsfor RASs
1.3.3 Deployment of the RAS vision in different domains
The class of S*PR net systems
Conclusions i

resource allocation problem in software applications

Introduction
The RAS view of a software application
The PC2R class v v v oot t e
2.3.1 Functional entities. Representation
2.3.2 Definition
2.3.3 Hierarchy of classes and p-semiflows
2.3.4 Basic structural properties.o L
A cross-sectional view on the liveness analysis problem
2.4.1 Acceptability of the initial marking: The 0-1 zone
2.4.2 Liveness characterisation and siphons
2.4.3 Deadlock-freeness, liveness, reversibility and livelocks
An insight on the problem of RASs with lender processes
2.5.1 Constructing systems with Plain Lender Processes
2.5.2 The SPQR class: Definition
2.5.3 The SPQR class: Some structural properties
2.5.4 The SPQR class: Some behavioural properties

© 00

13
14
20
22
28
32

Contents

2.5.5 Transformations and class relations
2.6 Conclusions e

The liveness problem: Characterisation, analysis and synthesis

3.1 Imtroduction.

3.2 On siphon-based liveness enforcing in FMSs
3.2.1 The synthesis flow for liveness enforcing
3.2.2 Managing siphons for the computation of virtual resources . . .
3.2.3 Siphon computation via the resource pruning graph
3.2.4 Structural regions and the privatisation of resources

3.3 Liveness analysis of PC2R models through siphons
3.3.1 Towards a liveness characterisation of PC?R models
3.3.2 Liveness of PC2R models with 1-acceptable initial markings . .
3.3.3 Some properties of siphons in PC?Rnets

3.4 A toolbox for synthesising live PC2R models
3.4.1 No room for despair: Heuristics to obtain live models
3.4.2 Divide and conquer: Deconstructing a PC?R model
3.4.3 Opening the RAS toolbox: The set of rules
3.4.4 Fitting the jigsaw together

3.5 Conclusions

Reconstructing the Gadara approach

4.1 Imtroduction L

4.2 The Gadara approach,

4.3 Liveness characterisation L oL

4.4 Approaching Gadara by means of S*PRnets
4.4.1 A constrained subclass of S*PR with deterministic processes
4.4.2 The conflict expansionrule
4.4.3 On liveness and siphons preservation
4.4.4 Transformation rules between Gadara and CPR nets
4.4.5 Synthesis from the underlying CPRnet

4.5 Conclusions

Some complexity results on the resource allocation problem

5.1 Imtroduction. L
5.2 Motivation of the complexity analysis and methodology
5.3 On deciding liveness
5.4 On detecting bad markings
5.5 On detecting spurious markings L.
5.6 Conclusions L

95

96

97

97
101
109
115
130
130
143
146
160
160
162
166
178
179

183
184
185
188
197
197
198
199
203
204
208

Contents

iii

Concluding Remarks
A Basic Petri nets notation
B Some additional examples and figures

Bibliography

231

235

239

246

iv

Contents

List of Tables

1.1 Modelling capabilities of some well-known Petri net classes for RASs . 23

2.1 Liveness, reversibility and t-semiflow realisability: Combinations . . . 76
2.2 Update of Table 2.1 assuming a 1-acceptable initial marking 77
2.3 Comparison of liveness-related properties among the S"PR family . . 92
3.1 Evaluating Theorem 3.13 for the PC?R net in Fig. 3.23 140
3.2 Evaluating Theorem 3.13 for the S°PR net in Fig. 2.13 142

vi

List of Tables

List of Figures

1.1
1.2
1.3
14
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

Layout of a manufacturing cell
Layout of a multiprocessor interconnection network
Example of deadlock in a tow type AGV transportation system
Non-live S*PR net system with unemptyable siphons
Inclusion relations between Petri net classes for RASs

Process subnet model for Algorithm 2.1 (Philosopher 1)
PC?R net model for Example 2.1 (Postmodern dining philosophers)
Schematic diagram of an iterative state machine
Elementary iteration blocks of an iterative state machine.
Shrinking graph of the iterative state machine in Fig. 2.4
A rather simple PC?Rmnet
Partially dead PC2R net system with no scarcely marked p-semiflow .
Partially dead PC?R net system with misleading spurious markings . .
Live PC?R net system with no realisable minimal t-semiflow
The 0-1 zone of acceptable initial markings in PC?R nets
PC?R net proving that liveness is not monotonic at the 0-1 zone
S3PR net proving that liveness is not monotonic
Two postmodern dining philosophers: A non-live S°PR net system . .
Non-live but deadlock-free L-S*PR net system
The liveness discontinuity zone in PC?R nets
Live S°PR net system with no home state
Reachability graph of the net system in Fig. 2.16
Live and reversible PC?R system with no realisable minimal t-semiflow
Live PC?R net system with no home state
Reachability graph of the net system in Fig. 2.19
Non-{live,reversible} PC?R with no realisable minimal t-semiflow . . .
Three SPQR nets featuring interesting structural particularities
Transformation rule: From PC?R to SB SPQR nets

vii

24
25
27
30
32

36
37
41
44
49
57
60
62
63
65
66
67
69
70
71
73
74
75
T
78
79
85
90

viii List of Figures
2.24 From PC?R to SB SPQR nets: Two postmodern dining philosophers . 91
2.25 Inclusion relations between Petri net classes for RASs (update 1) . . . 93
3.1 A non-live S*PR net system to be controlled 101
3.2 Applying Algorithm 3.1 on the net in Fig. 3.1 106
3.3 A non-live net system with a non-convex permissible marking space 107
3.4 Applying Algorithm 3.1 on the net in Fig. 3.3 108
3.5 Amnonlive SPRmet 110
3.6 Reachability graph of the net system in Fig. 3.5. 111
3.7 Resource pruning graph G of the net in Fig. 3.5 112
3.8 Controlled version of the net in Fig. 3.5 113
3.9 Illustrating diverse synthesis approaches through a non-live SPR net 117
3.10 Structural regions (s-regs) of a SOAR? net 121
3.11 Order relation between the s-regs of a SOAR? net 122
3.12 Agglomerated resource pruning graph of the SOAR? net in Fig. 3.11 . 123
3.13 A non-live SOAR? net and its corresponding resource pruning graph . 125
3.14 Pruning graph of the s-regs of the net in Fig. 3.13 126
3.15 The net of Fig. 3.13 after enforcing liveness by resource privatisation . 127
3.16 Structural regions of the net in Fig. 3.5 128
3.17 Pruning graph of the s-regs of the net in Fig. 3.5 128
3.18 Pruning graphs of the net in Fig. 3.5 after enforcing liveness 129
3.19 Controlled version of the net in Fig. 3.5 130
3.20 Reachability graph of the live net system in Fig. 3.19 131
3.21 A live PC?R net system within ‘the gap’ 134
3.22 A live S°PR net system within ‘the gap’ 135
3.23 A non-live PC?R net system within ‘the gap” 139
3.24 Minimal siphons that are not covered by any minimal p-semiflow . . . 156
3.25 PC?R net: Every minimal siphon is covered by a minimal p-semiflow . 158
3.26 A p-semiflow y such that no minimal siphon contains ||y||N Pg 159
3.27 Decomposition of a PC?R net model 163
3.28 Process splitting: Transforming the net in Fig. 2.13 168
3.29 Rule 2: P-semiflow cancellation 170
3.30 The net of Fig. 3.23 after applying Rule 2 on A0, BO and C2 171
3.31 Decomposition of the net in Fig. 3.28 in subsystems 175
3.32 Subsystem 1 of the net system in Fig. 3.31. 176
3.33 Controlled version of the net in Fig. 3.28 177
3.34 Controlled version of the net in Fig. 2.13 180
4.1 Inclusion relations between Petri net classes for RASs (update 2) . . . 185
4.2 Non-live Gadara net system 187

List of Figures ix
4.3 Non-live controlled Gadara net system with no bad minimal siphon 194
4.4 Gadara net for which some non-minimal siphon must be controlled . . 195
4.5 Controlled Gadara net corresponding to the net in Fig. 4.4 196
4.6 Example of a conflict expansion in a Gadaranet 199
4.7 Transformation of the net in Fig. 4.2 intoa CPRnet 200
4.8 The CPR net obtained after controlling siphon D’ of Fig. 4.7 206
4.9 The CPR net obtained after extending arcs in the net of Fig. 4.8 . . . 207
4.10 After applying the last transformation: The corrected Gadara net 208
5.1 Layout of a video streaming system 215
5.2 S*PR net system which models the system in Fig. 5.1 216
5.3 Deadlocked S*PR net system illustrating the system state in Fig. 5.1 . 217
5.4 SAT — S*PR-NL. Net /\/Z-j for each literal z; in C;. 220
55 SAT — S*PR-NL. Example: F = zy(z; +73)(z2 +Z3). - - « « 222
5.6 SAT — S*PR-RIM. Net ./\/ij for each literal z; in C;. 226
5.7 SAT — S*PR-RIM. Example: F = Ta(x1 +T2)Ta. « « « v« o o oo 228
A.1 Transformation rule: Removing self-loop places 236
B.1 Reachability graph of the PC?R net in Fig 2.6 240
B.2 Resource pruning graph of the PC?R net in Fig 2.6 240
B.3 Resource pruning graph of the PC2R net in Fig. 2.21 241
B.4 S-reg pruning graph of Fig. 3.11, including labels 242
B.5 Agglomerated resource pruning graph of Fig. 3.12, including labels . . 242
B.6 Resource pruning graph of the net in Fig. 3.22 243
B.7 Resource pruning graph of the net in Fig. 3.23 243
B.8 Resource pruning graph of the net in Fig. 3.24 244
B.9 Reachability graph of the net in Fig. 3.26 245
B.10 Resource pruning graph of the net in Fig. 3.26 245

List of Figures

List of Acronyms

AER Associated Expansion Record.

AGYV Automated Guided Vehicle.
b-SPQR borrower SPQR.

co-NP complement of NP.
co-NP-complete co-NP complete.
co-NP-hard co-NP hard.

CPR Confluent Processes with Resources.

CSS Cooperating Sequential Systems.

e-Gadara extended Gadara.
EQ Equal Conflict.

ERCN Extended Resource Control Net.
FMS Flexible Manufacturing System.
GMEC Generalized Mutual Exclusion Constraint.

ILP Integer Linear Programming.

ILPP Integer Linear Programming Problem.
L-S3PR Linear S*PR.

NP Non-deterministic Polynomial time.

xi

xii List of Acronyms

NP-complete NP complete.
NP-easy NP easy.
NP-hard NP hard.

NS-RAP Non-Sequential Resource Allocation Process.
OBDD Ordered Binary Decision Diagram.

P Deterministic Polynomial time.

P/T Place/Transition.

PC2R Processes Competing for Conservative Resources.
PLP Plain Lender Process.

PNR Process Nets with Resources.

PSPACE-complete NP complete.
QoS Quality of Service.

RAP Resource Allocation Problem.
RAS Resource Allocation System.

RSVP Resource Reservation Protocol.

S3PR. System of Simple Sequential Processes with Resources.
S*PR S*PR (not an actual acronym!).

S*PR-BM S*PR-Bad-Marking.

S*PR-DD S*PR-Deadlock-Detection.

S*PR-NL S*PR-Non-Liveness.

S*PR-PIM S*PR-Path-to-Initial-Marking.

S*PR-RIM S*PR-Reachable-Initial-Marking.

S4PR-SD S*PR-Spurious-Detection.

S®PR S°PR (not an actual acronym!).

List of Acronyms

xiil

S*PR SPR (not an actual acronym!).
SAT Satisfiability.

SB Structurally Bounded.

SD Structural Directedness.

SIP Structurally Implicit Place.

SL Structurally Live.

S"PR S"PR = {L-S®PR, S?PR, S*PR, S°PR, S"PR}.

SOAR? S*PR with Ordered Allocation and Release of the Resources.

SPQR System of Processes Quarrelling over Resources.

xiv List of Acronyms

Introduction

Much has changed for computer science since RADM Grace M. Hopper allegedly found
the first computer bug in History [Kid98]. Its presence in our society has strengthened,
been diversified and interconnected to the point that the very notion of what we
consider a computer has considerably blurred. The ancient chimera of an ubiquitous
computing [Wei91] gradually seems to step into a tangible reality. Gradually, hand in
hand with this phenomenon, we become increasingly dependent on computer systems.
The scenarios in which the safety of these systems is a prerequisite are more and more
diverse. The motivation for such interest transcends the economic level, often affecting
the very own human security, even beyond the classic safety critical domains, such as
healthcare or aerospace engineering [LT93].

While ever smaller, more lightweight and mobile computing devices become inte-
grated into our daily lives and transgress the classical notion of ordinateur, the need
for devices with an ever-increasing computing capacity remains intact. The increas-
ingly more-difficult-to-keep! Moore’s Law (which characterises the rate of increase in
the transistor density on an integrated circuit with respect to the time) has prompted
the emergence of multicore computing as a paradigm to stay with us for some time.
In this context, parallel programming is of particular significance in order to take
advantage of the computational capabilities of the new devices. On the other hand,
it is no secret that, considering the current methodological approaches in software
development, these systems are more error-prone.

This whole amazing revolution we are witnessing can often be neatly perceived in
the proliferation of highly concurrent computer systems. In that sense, it is worth
stressing the increasing importance that lies in the need to understand the problems
and phenomena that emerge in such systems, as well as in the need to provide solutions
and methodologies to help building increasingly more secure concurrent systems. Just
as structured programming helped underpinning an orderly and modular construction
of large software systems, the emergence or evolution of new paradigms of software
design and development may be necessary in order to at least alleviate the problems

1Still, the validity of Moore’s Law is being revisited by recent studies [Hel13]

2 Introduction

and risks inherent to the construction of large concurrent software.

Until such a thing happens, the need for tools that help engineers and developers
in the construction and debugging of reliable products is undeniable. Beyond the
controversies over their intricacy and involved cost, it is pointless to neglect the path
followed by formal methods as tools to understand the very own nature of systems and
address these problems from a systemic focus. Or as sound means to, in other words,
put more engineering into software engineering. In that sense, much of the success of
this kind of approaches relies in our ability to bring them closer to the development
teams, providing accessible and understandable tools that abstract the scientifically
complex part and supplement their work throughout the product life cycle.

The software verification field attempts to answer questions about the system’s
compliance with properties of good behaviour, just as software validation deals with
the question of whether the software is consistent with the design specification. Both
branches have been widely approached from the viewpoint of formal methods. In
particular, within the context of software verification, formal models (such as Resource
Allocation Graphs [CEST71]) have been widely exploited in the quest for characterising
and finding solutions to deadlock problems that may eventually emerge in the context
of concurrent software.

Unfortunately, the deadlock problem is, in general, very complex, to the extent
that a perfect solution to the problem of determining whether a program may deadlock
is unaffordable under the current paradigm of computation. However, this does not
exclude the plausibility of finding efficient solutions to this problem addressed in a
less general form. Indeed, the mathematical essence of formal methods can be useful
when trying to grasp the own nature of such a complex problem.

Broadly speaking, software deadlocks can be classified into two categories. On the
one hand, deadlocks induced by unordered and concurrent access to shared resources.
On the other hand, deadlocks in message passing (e.g., due to flooding of message
buffers), usually being the detection and correction of the latter more difficult.

In this thesis, we focus on the study of the deadlock problem due to shared resource
allocation in multithreaded software. This problem becomes even more relevant in the
aforementioned current context in computing, where there exists a blooming of sys-
tems with many concurrent processes that need to access shared resources in mutual
exclusion; being the latter physical (e.g., databases, files) or virtual (e.g., services pro-
tected by mechanisms such as semaphores [Dij67]). Edward G. Coffman defined four
necessary conditions for the existence of such kind of deadlocks [CES71] (namely: mu-
tual exclusion, hold and wait, no preemption and circular wait). However, a general
characterisation remains elusive from a structural point of view.

On the other hand, Petri nets [Mur89] have a success story as models aimed at
the study of Resource Allocation Systems (RASs) from a systemic perspective [Col03,
LZ09]. An RAS is a discrete event system in which a set of concurrent processes

Introduction 3

coexist, and these must compete in order to be granted the allocation of some shared
resources. Deadlocks arise when a set of processes is indefinitely waiting for resources
that are already held by other processes of the same set [CES71]. From a qualitative
standpoint, the Resource Allocation Problem (RAP) consists in meeting the demand
for resources of the set of processes while dealing with the set of potential system
deadlocks.

Petri nets constitute a fertile ground to deal with such deadlocks. Many real-world
RASs can be abstracted into a conceptualisation constructed around two entities:
processes and resources. Petri nets are constructively simple models which feature an
appealing graphical representation for modelling these abstractions [Col03]. Besides,
there exist powerful structural results for certain subclasses of Petri nets for RASs
which enable powerful analysis and synthesis techniques for identifying and fixing
potential or factual deadlocks [ECM95, PR01, TGVCEO05]. In the end, the corrections
computed for the model are deployed over the real-world system.

This methodology has been successfully applied to Flexible Manufacturing Sys-
tems (FMSs) where processes follow predefined production plans and resources can
be artifacts such as robots, machines or conveyor belts, or passive elements such as
storage area. Diverse classes of Petri net models, such as System of Simple Sequen-
tial Processes with Resources (S?PR) [ECM95], S*PR [PR01, TGVCE05] and many
others [JXP02, XJ99] were defined for this aim, with specific attributes for modeling
different configurations of FMSs.

However, all of them prove insufficient for modelling the RAP in multithreaded
software [LGC12]. Nevertheless, the structure of this category of RASs introduces
new challenges due to the particularities of programming languages which will be
addressed in the following chapters.

In short, the main goal of the thesis is to provide a profound and more general in-
sight on the liveness problem in RASs with sequential processes and serially reusable
resources, particularly from the perspective of dealing with multithreaded software
correction. This includes the proposal of a Petri net-based design methodology, the
review and integration of previous results in the new framework, the production of
efficient liveness analysis algorithms for the new Petri net class, as well as the propo-
sition of efficient methods for overcoming deadlock problems in the real system. The
theoretical complexity of various aspects related to the RAP will also be explored and
heuristics and relaxations will be proposed to alleviate that computational complexity.

The thesis is organised as follows:

1. A major problem in the literature with regard to the study of the RAP using
Petri nets is the disparity of proposed models, often with a strong overlap in
terms of its modeling capability. In Chap. 1, a state of the art review is ad-
dressed and enriched through the establishment of taxonomic categories that
allow capturing the different capabilities of each kind of model. Thus, the

Introduction

groundwork is laid to shed light on the shortcomings of each of these models on
fully capturing the RAS vision of multithreaded software. This is materialised
in the next chapter.

. The modelling needs of this kind of systems are discussed in Chap. 2. As a
result, a new class of Petri nets, named Processes Competing for Conserva-
tive Resources (PC2R), is introduced. The PC?R class provides a framework
in which the above results are adequately encompassed and expanded. This
completes the map of the RASs with sequential processes and resources used
conservatively.

Moreover, a categorisation of the intrinsic structural and behavioural properties
of PC?R and subclasses is conducted in the chapter. Unlike for other well-
known classes such as free choice nets [Hil85], a direct relationship between
the deadlock-freeness property (i.e., the enabling of at least one transition is
ever granted) and system liveness (i.e., no transition is ever dead) does not
generally exist in the context of RASs. Thus, it is possible to find nets in which
some transitions are dead while other parts of the net can normally progress.
This is true for almost all known Petri net models for RASs, except for very
restricted subclasses. This and other properties (non-directedness, existence
of home states, etc.) are characteristic of the new models and delimit the
difficulties to be found in this kind of systems to implement earlier results or
provide efficient solutions to the RAP. In this chapter, the properties that affect
liveness in PC?R nets are studied in depth, as well as how they extrapolate (or
not) to its subclasses. Additionally, transformation rules that allow us to study
this kind of systems throughout syntactically simpler models are introduced.

. Chapter 3 tackles the analysis and synthesis of multithreaded software systems
modelled by means of PC?R nets regarding the liveness property. Most state-of-
the-art techniques for liveness enforcing introduced in the context of FMSs are
essentially based on a half-behavioural, half-structural liveness characterisation.
Unfortunately, this characterisation does not apply to the more general context
of PC?R nets. This is illustrated in the chapter, while new results are provided
delimiting, through necessary or sufficient conditions, the liveness problem for
PC?R nets. Additionally, new properties are presented and analysed that mark
the point of disruption to the previously known characterisation, and show the
roadpath for attempts to extend previous techniques and results on RAS models
to the new application domain. The discussion crystallises in the proposal of a
new methodological framework to enforce liveness on PC2R models that makes
use of the particular characteristics of the new application domain. This is ac-
complished through the introduction of a toolbox that is offered to the software
engineer so as to correct the multithreaded software system. This toolbox relies

Introduction 5

on the application of previously acquired knowledge, such as the technique of
privatisation of resources, which serves as an alternative or complement to the
approximation of the classical approaches of addition of virtual resources based
on integer linear programming to the multithreaded software field.

Gadara [WLR'09)] is a subclass of PC?R for which certain assumptions are taken
with relation to the nature of the decisions which the threads can take during
their execution. In Chap. 4, Gadara nets are approached from the standpoint
of what has been learnt so far. In parallel, a novel proof of the structural char-
acterisation of liveness for this kind of nets is provided. Furthermore, Gadara
nets are proved to be close to another subclass of PC?R nets rather exploited
in the literature: the S*PR class.

. Another contribution of this thesis is the statement of the computational com-

plexity of various problems related to liveness analysis and synthesis in RASs.
Accompanied by an appropriate in-depth literature review on previous work in
RAS complexity, Chap. 5 presents new results describing the complexity of is-
sues related to the RAP, either directly (e.g., the problem of deciding whether
a net system is live, the problem of deciding whether a marking inevitably leads
to deadlock) or indirectly (e.g., the problem of detecting spurious markings).

The thesis finishes with a brief summary of the conclusions of the work, as well as

a discussion on the opened lines of future research.

Some notational conventions

Throughout this thesis, certain notational conventions have been adopted which are

worth further attention. For the sake of convenience, they are grouped and explained

below.

On caption location and item numbering

Five categories of items are numbered independently:

1.

2.

3.

Chapters, sections, and subsections
Tables
Figures

Algorithms

. Theorem-like annotations (namely: theorems, lemmas, propositions, properties,

remarks and problems)

6 Introduction

Chapters, sections and subsections are numbered according to the usual LaTeX
convention. This means that all of them get decimal numbering (except the ap-
pendixes, which get a letter) and the numbering of sections and subsections is prefixed
by the chapter number or chapter and section numbers, respectively. Items in the last
four categories are numbered consecutively in order of appearance within the thesis:
chapter number first, then numbered sequentially within each chapter, e.g.: Table
1.1, Figure 4.2. Note that theorem-like annotations are grouped in a single category,
and therefore the numbering sequence applies to all these items; e.g. Theorem 3.4
follows Proposition 3.3.

The unique exception to the above general rule is in Chap. 4. Three transforma-
tion rules are defined in that chapter, which (for the sake of readability) are simply
numbered 1, 2 and 3, without any chapter number prefix.

The format of titles and captions of tables and figures are as consistent as possible
throughout the thesis. In general, they are placed under the floating element, except
in the case of large tables that span through several pages. In those cases, the caption
is placed over the table top, in the first page. Table headings (if any) are repeated on
the second and subsequent pages. As a exception, the caption of algorithms is always
provided at the top of them.

Petri net-related notational conventions

The basic Petri net terminology and notation required to follow this thesis is described
in Appendix A. However, a few remarks are in place at this point, since they affect
many of the figures throughout the thesis.

First, net markings are usually denoted in the form: [PI' Pz . PE] with
Ki, ..., K, € IN". For a marking m denoted in this way, the naturals K1, ..., K,
represent the values of the vector m corresponding to the places Py, ..., P, of the net,
ie., Vi€ [1,n] : m[P;] = K;. If P; has no superscript, it is assumed that K; = 1. The
rest of components of the vector m are assumed to be zero-valued.

Sets are denoted following the usual curly bracket notation, e.g., {e1, e, ...,en}.
Consequently, the sets of markings (such as, e.g., livelocks) are usually denoted using
curly brackets as well. For instance, {[A0, B2, C0,D1,R1],[A1,B2,C0,D1]} denotes
a set containing the net markings [A0, B2, C0,D1,R1] and [A1, B2, C0,D1].

Besides, p-semiflows are often represented as marking invariants in the form: Kj -
m[P;] + Ky - m[P3] + (...) + K,, - m[P,] = K', with Ki, ..., K,,, K’ € IN*. In the
first part of the equality, the naturals Ki, ..., K, represent the values of the vector
y corresponding to each place Py, ..., Py, of the net, i.e., Vi € [1,n] : y[P;] = K;. The
rest of components of the vector are assumed to be zero-valued. Meanwhile, K’ is the
result of the weighted sum of tokens in the net for a given initial marking, where y
determines the weighting (in other words: K’ =y7T - myg).

Chapter 1

Resource Allocation Systems:
A facet of Discrete Event
Systems

Summary

In the last years, the application of formal models, as Petri nets [Mur89], to the RAP
has been a fruitful approach from a double perspective. First, thanks to the consoli-
dation of an abstraction process of systems leading to models structured around the
concepts of processes and resources, which can be easily translated into Petri nets.
Second, thanks to the unveiling of analytical results characterising deadlock states,
as well as methods to amend the problem. As a matter of fact, much of the success
is based on the intensive use of structural reasoning on the Petri net model, unlike
other more traditional approaches based on the state space under which real systems
can hardly be considered. The process of abstraction enables the implementation of
these methods to a wide range of engineering domains such as logistics, multiproces-
sor interconnection networks or distributed systems, although manufacturing is yet
predominant.

Nonetheless, the assumption of syntactic restrictions with a physical meaning is
a common practice for most application domains, such as, e.g., FMSs. Almost as a
corollary, a myriad of different models exist, with subtle syntactic variances between.
In this chapter, a consistent and structured view is provided on the different Petri
net models for RASs with sequential processes, highlighting modelling capabilities
independently from the target application domains. By doing so, the shortcomings of
earlier approaches brought to the multithreaded software domain are made evident.

8 1. Resource Allocation Systems: A facet of Discrete Event Systems

1.1 Introduction

Economical, spatial, technical: whatever the reason, resource scarceness is a tradi-
tional scenario in diverse systems engineering disciplines. Loosely speaking, an RAS
is a discrete event system in which a finite set of (scarce) resources is shared among
a set of concurrent sequential processes. From a different perspective, we consider
that an RAS is a view of a system from which we study the problems related to the
use of shared resources. This means that in an RAS view of a system we can ignore
the explicit causal relations imposed by a process to another by means of message
passing, for example. Consequently, once the resource related matters are solved, we
can proceed with the next phase of the analysis/design of the system in which other
facets of it are incorporated. This description or view has been successfully applied
on a broad family of systems which range in disciplines such as manufacturing, dis-
tributed computing, operations research, networking or logistics. Thanks to a prior
process of abstraction which is inherent in the discipline, RASs can be conceptualised
under system models conceived around two distinct entities: processes and resources.

Consequently, syntax restrictions on formal models for RASs can be roughly clas-
sified according to two basic criteria [RLF97]: first, to the structure (control flow)
of the concurrent processes; second, to the way the resources are used by these pro-
cesses. Beyond this coarse-grained categorisation, the variety of domain-specific phys-
ical constraints has led to a proliferation of works which study subtly different abstract
models for RASs with strong structural restrictions. Most often these feature an ex-
pressive power well adapted to specific application domains, while powerful solutions
are known for them. From this perspective, and taking into account some usual phys-
ical constraints in the context of flexible manufacturing systems (sequential processes,
non-consumable resources, etc.), the success of some Petri net-based methodologies
for studying the deadlock problem seems well justified.

Generally, the aforementioned abstract models are used to study the RAP: the
procedure in serving the processes requirements for resources, according to their own
resource usage policy, while accomplishing a certain goal. In fact, such a generic def-
inition encompasses different problems from a qualitative or quantitative standpoint.
In quantitative terms, the concept relates to the ability of optimising a system per-
formance function [KS89]. In qualitative terms, it is widely associated to satisfying
successfully the requests for resources made by the processes, ensuring that no process
ever falls in a deadlock [LT79]: the focus of this thesis.

Although other models of concurrency have also been considered [FMMT97], Petri
nets [Mur89] have arguably taken a leading role in the family of formal models used
for dealing with the RAP [ECM95, ER04]. One of the strengths of this approach is
the smooth mapping between the main entities of RASs and the basic elements of
Petri nets.

1.2. The role of abstraction 9

This fact is well recognised in the domain of FMSs, where Petri net models
for RASs have widely succeeded since the seminal work on the matter was intro-
duced [ECM95]. This is based upon two solid pillars: 1) the definition of a rich
syntax from a physical point of view, which enables the natural expression of a wide
disparity of plant configurations; and 2) the contribution of sound scientific results
which let us characterise deadlocks from the model structure, as well as provide a
well-defined methodology to automatically correct them in the real system.

Section 1.2 focuses on RASs from the point of view of the key role played by the
process of abstraction in obtaining tractable models for different application domains.
In that sense, common elements in the abstraction of processes and resources are
categorised from a systemic point of view. This is a relatively unexplored approach
to the problem, since most works start from the specific study of an application
domain. From this general framework, the different state-of-the-art Petri nets classes
are categorised in Sect. 1.3. Finally, in Sect. 1.4, the class of S*PR nets is introduced
as a starting paradigm of the methodology. To this aim, a simple example from the
field of FMSs is presented.

1.2 The role of abstraction

As introduced above, the methodological approach discussed in this thesis is based
primarily on obtaining manageable formal models from the observation of real-world
systems. To this end, we must discard those irrelevant details for the property to be
studied (in this case, for the emergence of deadlocks due to an inappropriate resource
allocation sequence), while preserving those relevant aspects. Such process is known
as the process of abstraction [GW92].

In this sense, an RAS constitutes a facet of a real world system [Zei84], i.e., a
particular, restricted, non-exclusive view of it. For instance, in the context of mul-
tithreaded software, deadlocks can occur not only due to some resource allocation
order, but also to message passing between different threads. Within the scope of
this thesis, an RAS view of such systems will be addressed in which details of the
message passing are ignored. Therefore, this kind of deadlocks is not reflected in the
resulting models. The philosophy of the methodology proposed in this thesis consists
in, as discussed in Chap. 2, first resolving the deadlock problems through an RAS
vision, moving later to address the deadlock problems caused by other communica-
tion/synchronisation paradigms. In short, an RAS is just the intellectual product
resulting from the application of a process of abstraction on the system studied.

The importance of the abstraction process must be emphasised because in fact
it implies a particular methodology for the design of complex systems. In effect,
a system is not a pure RAS in general because of processes that impose causality
relations to other processes in the system. Consequently, when we retain processes

10 1. Resource Allocation Systems: A facet of Discrete Event Systems

and resources ignoring the rest of relations in the system we advocate for analysing
and correcting the problems associated to the use of resources. Once this goal is
accomplished, the designer can concentrate in other systemic problems, such as those
related to performance, scheduling or others. In fact, this is the design flow assumed
in this thesis. This approach to system design is the deep reason to promote structural
methods to correct or fix problems. Indeed, such methods can survive to further steps
in the design concerning performance or optimisation.

Through the process of abstraction we obtain higher-level items such as resources
and processes, and relations between them. The concept of what is and is not a process
(or resource) is dependent on the application domain to be studied. In fact, although
in this section we discuss the process of abstraction as an entity which is abstract in
itself, in practice it makes no sense to speak of a single process of abstraction. On the
contrary, it would be more reasonable to speak of a family of them, each one closely
linked to an application domain and even sometimes to a particular case study.

In this regard, it may suffice to exemplify the last observation through a par-
ticularity. In the process of abstraction for the study of the RAP, the fact that an
element of the real system is considered a resource often makes practical sense only
if it intervenes, or may intervene, in situations of deadlock. For this it is necessary
(though not sufficient) that the resource is held at some time while waiting for the
allocation of a different resource so as that the system (or part thereof) can progress:
a property known in the realm of operating systems as “hold & wait” [CES71]. Oth-
erwise, for the sake of conciseness and manageability of the resulting RAS model, it
is unnecessary to consider the item as a resource in it.

On the other hand, given that the steps of a process that are relevant to the RAP
are somehow related to the set of resources involved, the aforementioned issue can also
affect the size or structure of the processes (understood as abstract entities). Or, even,
it might involve their disappearance from the model if no other resource interacts with
them. In short, the concept of process and resource is heavily dependent not only on
the application domain, but also on the particular conditions of the problem to be
studied.

Given the foregoing, it is still possible to sketch an outline of the main steps that
constitute the process of abstraction to obtain an RAS. Broadly speaking, the com-
mon features in the abstraction of systems of very diverse nature could be catalogued
according to the following road map:

1. Resource identification. The Collins English Dictionary defines a resource as ‘a
supply or source of aid or support; something resorted to in time of need’ or ‘a
means of doing something’ [Coll1]. A first important consideration is that the
nature of this medium can be logical, and as such, there is no need for a visibly
located physical embodiment of an element to be considered as a resource from
an RAS point of view. A simple example of this in the field of manufacturing

1.2. The role of abstraction 11

systems is the consideration of storage space as a system resource. Indeed,
the lack of storage space for a part in transit in the manufacturing system can
be a cause of circular waits in the system and therefore of deadlocks. It is
also possible to consider a group of physically dispersed elements as a single
resource for the sake of the study of the RAP if all of them are always used in
unison under the same circumstances. The possibilities are very diverse under
the interpretation of various application domains.

Another relevant consideration concerns the way a resource is seen with respect
to its interaction with the rest of the system. From an RAS point of view, re-
sources are passive elements in the sense that their behavior can be summarised
in two states (allocated or free) and that the change from one to another state
can be fully explained from the evolution of the rest of the system. In fact, the
latter behaviour should apply for all resources considered in the system.

Considering the above, two types of high-level operations can be identified: as-
signment operations, which wait until the resource is free and switch its status to
assigned, and release operations, which switch the resource status from allocated
to free. It is important to note that the assignment operation thus conceived is
a blocking operation (i.e., if the resource is not free, then the system, or that
part of the system, wait for it to be). Therefore, a parallel identification of
operations that interact with the resources is important in order to decide what
should be considered a resource in our high-level abstraction.

Another fundamental aspect to consider is whether the resources can be grouped
into sets of resources that can be used interchangeably at all times. In that sense,
returning to the previous example in the context of manufacturing systems, we
could quantify the storage space in a given buffer content, where a single resource
would be considered the gap that a piece would fill by being placed at the buffer.
Obviously, all gaps should stand on equal footing for all system operations, so
that any free resource of the set can be chosen whenever one of these is required.
When we find such an scheme, we can reach a higher level of abstraction that
simplifies the vision of the system: the existence of resource types.

2. Process identification. The Collins English Dictionary defines a process as ‘a
series of actions that produce a change or development’ or ‘a method of doing
or producing something’ [Colll]. Unlike resources, processes are the active
elements of the system from an RAS point of view. Processes are patterns
of behavior of the system, potentially repetitive and often sequential, that are
observable from a local perspective. Note that the condition of locality here does
not refer to a physically contiguous location for the operations that compose it,
but to the existence of a certain order relation between them or between groups
of them, so that their repetition is closely linked. Or, more appropriately, to

12

1. Resource Allocation Systems: A facet of Discrete Event Systems

the possibility of discerning a control flow that relates them logically.

At this point, one may notice a new category of significant operations beyond
those of resource allocation and release. These operations are those that al-
ter the control flow of a particular process, either breaking or restoring their
sequentiality (e.g., job splitting/merging operations in the context of FMSs)
or by establishing alternative execution paths or reunifying them (e.g., chain
branching). Such operations can also be coupled with those above, so that the
alteration of the control flow is subject to the allocation of certain resource(s).

In line with this last point, it should be noted that, from the point of view
of the processes, the allocation and release operations may require different
resource types, or multiple instances of the same type, simultaneously. This is
another question that must be evaluated in order to characterise the process of
abstraction of the system and finally determine the type of model required to
properly study the problem.

Finally, processes following the same behavioural pattern may concur in the
system. Similar to the approach undertaken with resources, this observation
leads to the introduction of a higher level abstraction that can result in more
compact models: the existence of process types that may or may not have a
certain capacity (i.e., maximum number of concurrent instances).

. Modular construction of the model. A modular abstraction, and thus ending up

with a modular model, is natural in such abstractions. This is because RASs
consist of multiple concurrent active entities that, if they had enough resources
to progress, could ignore each other. As resources are limited, the construction
is done by overlapping entities via use of shared resources.

Essentially, the modelling stage consists in the embodiment of the product of
the abstraction process through a formal language. Thus, strictly speaking,
modelling cannot be considered part of the process of abstraction. Nonetheless,
it is still a process closely linked to the process of abstraction, to the extent
that the latter is often consciously or unconsciously influenced by the type of
target model. Note that in other abstractions modularity is not evident as a
constructive principle, but that is not the case of RASs. In that sense, the
choice of a formal model with restricted expressiveness can derail the study of
the desired property. The versatility and modularity of Petri nets, however,
seems to provide a natural setting which is suitable for the expression of the
various entities involved in an RAS in due complexity. This issue is revisited in
Sect. 1.3.

In the case of Petri nets, the modeling methodology is based on three steps:
characterisation of the processes, incorporation of the resources, and construc-

1.3. The resource allocation problem through Petri net models 13

tion of the complete model by fusion of all shared resources. In that sense, the
construction of the model is bottom-up, allowing the designer to focus on the
understanding of the system in a disaggregated way. In the end, a model is
reached that allows to study the problems of the system as a whole.

4. Identification of the minimally admissible operating conditions The establish-
ment of some minimum operating conditions is often a prerequisite in the design
of these systems, and therefore inherent in the definition of the resulting mod-
els. In fact, in the context of RAS modelling it is very natural to require initial
states in which resources are not used (cold start). In such cases, we say that
the system is in the idle state'. Also, it is often very natural to have enough
resources in the system to grant the execution of each process path in isolation
(where a process path is considered as a sequence of operations which occurrence
represents the successful execution and completion of one single process). Of-
ten, these are minimum operating conditions that can and should be established
from the beginning because the system would not work otherwise. Proceeding
thus, it suffices to study and correct the problems caused by competition for
shared resources.

Based on the above, one can extrapolate certain aspects that allow a rough classifi-
cation of the RASs into various categories. These aspects largely determine the shape
of the resulting model. In the case of modeling using Petri nets, they can impose syn-
tactic constraints that may simplify the analysis and synthesis of the resulting models.
Among these decisive aspects the next ones are specially remarkable: (i) Resource
conservativity; (ii) Categorising of the resources into resource types within which any
instance can be used interchangeably by the processes; (iii) Routing flexibility in the
control flow of the processes; (iv) Internal execution cycles within the processes; (v)
Sequentiality of the processes; (vi) Resource-dependent decisions/merges/forks/joins
within the processes; (vii) Joint acquisition requests of different resources by a single
process; (viii) Process types; (ix) Existence of minimally admissible operating condi-
tions. These and other properties will be studied further in Subsection 1.3.1 from the
perspective of the classification of Petri net models for RASs.

1.3 The resource allocation problem through Petri
net models

The traditional usage of raw Petri nets for modelling RASs was essentially disrupted
in 1995, when the publication of a seminal work [ECM95] triggered the integration of

1In Petri net terms, all tokens are in the idle places of the processes and in the resources; see
Sect. 1.4.

14 1. Resource Allocation Systems: A facet of Discrete Event Systems

methodological aspects in the construction of models. Conceptual objects of higher
level than places and transitions like processes were incorporated. Also, a semantics
connected to the physical system was introduced at the proper definition of the new
models, addressing the interpretation of the own models, their objects and the analysis
results. Finally, modularity was introduced as a design principle both in the definition
and construction of the models. In the end, these new models belonged to novel
subclasses from a syntactic point of view, being the definition of these subclasses
directed by the application domain.

Precisely, one of the pillars on which rests the success of these Petri net-based
approaches for the study of the RAP is the existence of a concise, natural and intuitive
way of expressing the functional entities of a typical RAS abstraction (processes,
resources, etc.) by means of Petri net artifacts, considered both from a fine-grained
perspective (places, transitions) and from that of more structurally complex elements
(p-components, circuits, state machines, etc.).

For instance, a resource type can be modelled using a place: the number of in-
stances of it being modelled with tokens. Meanwhile, sequential processes are mod-
elled with tokens progressing through state machines. Arcs from resource places to
transitions (from transitions to resource places) represent the acquisition (return) of
some resources by a process. In the end, the process state machines can be merged
into a model of the whole system via fusion of the common resource places. In sum-
mary, Petri nets provide a natural formal framework for the modelling and analysis
of RASs, besides benefiting from the goods of compositionality.

In this section we examine how the different classes of Petri nets for RASs respond
to the modelling needs arising from the abstraction process.

1.3.1 An overview of model features

In Sect. 1.2, a catalogue of generic properties that can be found in the abstraction of
an RAS was presented. These find their starting point in those observed for FMSs
in a previous work [Col03]. Next, it is intended to introduce a list of (Petri net)
model features that are closely related to those generic properties. To this end, it is
necessary to introduce a few instrumental concepts allowing us to discuss the model
structure. The first concept is that of process path. Process paths are used to discuss
the structure of processes, and later the syntactical implications they have on the
classes of Petri net models derived from such discussion.

A process path is a sequence of operations whose occurrence represents the suc-
cessful execution and completion of one single process. Obviously, the sequence of
operations belongs to a unique process type. In the context of FMSs, for instance, a
process path is a production sequence that generates a finished product from some
raw material(s) following a production plan. Meanwhile, in the context of multipro-

1.3. The resource allocation problem through Petri net models 15

cessor interconnection networks with wormhole routing, a process path is a sequence
of flit transmissions such that the sending of a whole single message from a source
node to a (set of) target node(s) is successfully completed.

Moreover, a few more concepts must be defined prior to the main discussion. Given
a Petri net model for RASs, two kinds of subnets can be clearly identified considering
the main elements of an RAS, i.e., processes and resources. Those are the process
subnets and the resource subnets.

A process subnet is a subnet of the given Petri net model for RASs which models all
the possible evolution of a single process, i.e., all the process paths that it can execute.
In general, each process subnet models a different process type. Therefore, process
subnets are mutually disjoint. Under this interpretation, several process instances
(modelled by tokens) can concurrently execute that process type by being concurrently
moved through the same process subnet. Usually, well-known Petri net subclasses such
as strongly connected state machines or marked graphs are used to restrict the syntax
of the process subnet structure. These syntax restrictions are usually derived from
the application domain, and are fundamental to confront the inherent complexity of
the RAP in the most general case.

Meanwhile, a resource subnet is a subnet which models one resource type along
with all the stages of process paths in which resources of this type are used (and
the operations that allocate/release those resources). When the use of resources is
conservative, the resource subnet is a strongly connected subnet in which the set of
places is the support of a special (minimal) p-semiflow called the resource p-semiflow
(which is defined below). In contrast to process subnets, resource subnets are not
mutually disjoint in general.

Finally, a resource p-semiflow is a minimal p-semiflow which describes an invari-
ant relation of use of instances from a certain (unique) resource type. In other words,
this invariant relation rules how such resources are used by the processes. As ex-
plained above, there exists a tight relation between a resource p-semiflow and the
corresponding resource subnet.

The model features (or properties) presented next are catalogued into three main
categories. A subsubsection is devoted to each one of these categories.

Properties for the whole system

In the RAS abstraction of a system, there exist two fundamental types of participating
entities: processes and resources. The following properties capture the support to the
multiplicity and heterogeneity of the processes which concur in the system, as well as
to those of the corresponding system resources.

e Unique process subnet. This property answers the question: do all the concur-
rent processes follow the same behavioural pattern? In other words, can all the

16

1. Resource Allocation Systems: A facet of Discrete Event Systems

inactive processes eventually execute the same process paths? If that is not the
case, then we say that there exist several process types. Each process type is
usually modelled by a different process subnet.

Closed process subnets. Instead of having one process subnet per process, RAS
models are usually compacted by allowing several tokens within the same pro-
cess subnet. This is often accomplished by establishing a structural, non-binary
bound of the number of concurrent process instances of the corresponding pro-
cess type. This bound is enforced by the initial marking of the so-called idle
place of the process subnet. When such a place does not exist, we say that the
process subnet is open [GV99] and the number of concurrent instances is only
limited by the available resources, yet no deliberated restriction is imposed on
the number of concurrent processes; i.e., it models an open system.

Binary resources. As explained earlier, resource types are usually modelled
using a place. This place is usually called the resource place. Usually, the
initial marking of that place (assuming that the processes are in a idle state)
establishes a capacity for the corresponding resource type. If that capacity
is limited to one, then we speak of binary resources. Otherwise, a number
of available instances of that resource type may be granted to any requesting
process. These resources are used in equal footing, i.e., it is assumed that they
can be used interchangeably.

Structural properties for each process type

Below are some properties that the structure of each process of an RAS model can

verify when considered in isolation. In some cases, they are desirable system properties

that most RAS models meet by construction. In other cases, they are more specific
characteristics aimed to adapt the modeling capability to the needs of a particular

application domain.

e Reproducibility of t-semiflows. Overall, this is a usually desirable property in

the RAS field. Not in vain, this is related to the possibility of repeating the
successful execution of a process, since the process paths in these models are
usually captured by t-semiflows. Consequently, the property is supported by
practically all Petri net classes for RASs. However, it should be pointed out
that some t-semiflows do not capture any process path: that is the case when
there exist internal cycles in the system (e.g., recirculating circuits in FMSs).
On the other hand, the concept of reproducibility is usually captured by the
concept of t-semiflow, although this is not a strict rule of thumb, not even
when the net is consistent?. However, all t-semiflows are reproducible for well-

2In Chap. 2, Fig. 2.18 depicts a Petri net such that no minimal t-semiflow is reproducible

1.3. The resource allocation problem through Petri net models 17

known Petri net classes such as marked strongly connected state machines or
live strongly connected marked graphs. For instance, in S*PR nets, each pro-
cess path is a minimal t-semiflow, and every minimal t-semiflow is reproducible
since processes are marked strongly connected state machines. S*PR nets are
thoroughly revisited in Sect. 1.4.

e (Consistency. In conjunction with the above property, it seizes a usually de-
sirable situation in the RAS context, since this relates to the repeatability of
every process. This property answers the question: can a process type be fully
explained as a composition of its process paths? In terms of Petri nets, the
property is satisfied, as long as each process path is a t-semiflow, if the net is
consistent. Again, practically all classes of Petri nets for RASs are consistent
by construction.

e Fquivalence of t-semiflows. This property refers to the fact of each t-semiflow
being executable in isolation from the idle state. By the expression idle state
we denote the system state in which no process is in an intermediate step of
execution. This usually coincides, in general, with the initial state of the system.
This is a common and often desirable property in Petri net models for RASs
when every t-semiflow represents a process path, since it refers to the possibility
of fully executing any process path without triggering the execution of other
processes. In that sense, it is often accompanied by the two previous properties.
However, it is not usually satisfied when there exist internal cycles within the
control flow of processes, as those cycles are usually captured by t-semiflows
which are only activated when the process reaches a certain intermediate point
of execution. Typically, the problem of the existence of cyclic behavior inside
processes severely complicates liveness analysis in the general case. However,
some classes of models can syntactically address the problem in, at least, a
partial way, as shall be seen in the next section. In particular, Chap. 2 shows
that the context of the RAS vision of multithreaded software is a good example
of a situation in which it is usually necessary to consider the existence of internal
cycles within the processes (such as loops, for example) in order to successfully
address the problem of occurrence of deadlocks.

e Process termination. This property is verified if, given a process in an interme-
diate execution state, its execution can always be concluded in such a way that
the idle state is reached. In the side of Petri nets, this is held if the idle state
is a home state for each process type. In most Petri net classes for RASs, the
idle state is represented by the empty marking when the so-called idle place is
omitted (the concept of idle place will be defined in Sect. 1.4). This property
is therefore strongly related to that of the reproducibility of the empty mark-

18 1. Resource Allocation Systems: A facet of Discrete Event Systems

ing [Lau02]. Again, this can be seen as a property of good behaviour of systems,
and therefore it is usual among those classes.

e Process liveness. Another interesting property that most RAS models fulfill
by construction is the liveness of all transitions that compose each process.
Thereby, liveness problems only arise when adding the system resources. In
other words, it is ensured that the analysis of liveness problems can be limited to
those emerging from the order of allocation of shared resources used in mutual
exclusion by the processes, and no other cause whatsoever. This property is
satisfied if the idle state is a home state and all processes are consistent, which
is a commonplace in the RAS context.

e No internal decisions. Essentially, this property refers to the existence of multi-
ple (non-disjoint) process paths within a single process. More precisely, it points
to the possibility of finding conflicts (i.e., decisions) within the control flow of
the processes. In the context of FMSs, where such decisions appear we speak of
‘routing flexibility’. If no conflicts exist, there can only exist non-disjoint pro-
cess paths if path reunification is allowed. However, these reunified paths are
independent from the very start of the process until they merge, and never split
up again. In other words, in such kind of RASs the process paths are perma-
nently confluent. This often derives in a considerable simplicity in the analysis
of the RAP when the resources are aggregated. When neither internal decisions
nor reunifications are allowed, it is said that the processes are linear [EGVC98].

e Process sequentiality. A severe source of problems when addressing the RAP
from a structural perspective arises when some processes are eventually sub-
divided in concurrent subtasks (through fork-like operations), and/or reunite
the latter (through join-like operations). In such cases, we usually speak of
Non-Sequential RASs [Rev99] in reference to the non-sequentiality of some of
the processes that comprise them. In case all the abstracted processes are con-
ceived as sequential processes, the system is referred as a Sequential RAS.

Properties regarding how processes use the resources

e Resource conservativity. The conservative use of resources by the set of processes
considered individually is a commonplace in the abstraction of RASs. This
requirement must be met for every resource that each process interacts with
during its execution. Then each of these resources belongs to the support of
(at least) one minimal p-semiflow that defines the positive invariant relation
that characterises the way the resource is used by that process: the resource
p-semiflow. Furthermore, if every place of the subnet that models the process

1.3. The resource allocation problem through Petri net models 19

belongs to some p-semiflow (and resources are used conservatively) then the
system is structurally bounded.

e Ordinary resource subnets. This property essentially refers to the simplicity
of the resource request/release operations. If such operations allow request-
ing/releasing multiple instances of the same resource type, then the corre-
sponding arcs in the resource subnets are weighted (i.e., some subnets are non-
ordinary). In general, the more complex the allocation operations, the more
difficult the model is to analyse.

e Binary resource p-semiflows. Stricter than the preceding one, this model re-
striction is applicable when processes never request several instances of the same
resource type, neither simultaneously nor in an successive requests. Instead, an
allocated resource must be released prior to any other allocation request of a
resource of the same type.

e Orthogonal resource p-semiflows. The orthogonality of the resource p-semiflows
implies that a process can only simultaneously use resources of a single resource
type. Prior to requesting resources from a different resource type, it must release
all its allocated resources. This property often comes coupled with the preceding
one [ECM95, EGVC98]. When both restrictions apply, at most one resource can
be allocated to each process at a given state of execution.

e Resource-independent internal conflicts. This property holds when each conflict
belonging to a single process path is fully non-deterministic with respect to
the allocation state of resources. In other words, resource allocation operations
are conceived as strictly blocking operations: whenever a process requests some
resources, it cannot advance in whichever other way until that precise request
is granted (and no other set of available resources can serve as an alternative).

e Resource lending. In some application domains, it may be necessary to consider
the fact that a resource can be created by some process, shared with other
processes, and finally destroyed by the same process that created it. This is
done in such a way that there still exists an invariant relation that ensures
that these new resource is serially reusable by the concurrent processes. Notice
that under certain circumstances (namely, when the process subnets are open)
this invariant relation may no longer be captured by the concept of resource
p-semiflow, and certain specific p-flows are used instead. All of this is further
discussed in Chap. 2 from the perspective of the modelling of multithreaded
software systems. This phenomenon is labelled as resource lending, since some
resources are somewhat lent by some ‘server’ processes to other ‘client’ processes.

20 1. Resource Allocation Systems: A facet of Discrete Event Systems

o First allocated, first released. This property establishes a link between the al-
location operations and the release operations within every single process path,
in such a way that resources are released in the same order as they were allo-
cated. In many cases (e.g., as that of multiprocessor interconnection networks)
this is a natural restriction imposed by the application domain, as discussed in
Subsection 1.3.3.

1.3.2 Petri net models for RASs

Despite the existence of other works based on formal models [FMMT97], Petri nets
have proven to be an especially useful tool for the modelling, analysis and synthesis of
RASs with serially reusable resources [LT79, ECM95, GV99, JX01, PR01, ETGVC02,
Tri03, Col03, ER04, JXC04, TGVCEO05, LDZ06].

With respect to the structure of the concurrent processes, most of the current work
focuses on Sequential RASs, as opposed to Non-Sequential RASs, in which assembly
and disassembly (fork / join) operations are allowed within the processes. However,
some studies have attempted to approach Non-Sequential RASs using Petri nets as
modelling paradigm. Classes such as Non-Sequential Resource Allocation Process
(NS-RAP) [ER04], Extended Resource Control Net (ERCN) merged nets [XJ99],
ERCN" merged nets [JXC04] or Process Nets with Resources (PNR) nets [JXP02]
extend the capabilities of conventional models beyond Sequential RASs by way of lot
splitting or merging operations. Unfortunately, finding effective solutions for these
systems is, in general, much more complicated [XJ99].

As for Sequential RASs, which are the subject of study in this PhD thesis, it is
worth mentioning the disparity of Petri net models that have emerged successively,
often extending previous results and thus extending the subclass of systems that can
be modelled and studied. The Cooperating Sequential Systems (CSS) class is one
of the first classes designed to study the RAP in Sequential RASs [LT79]. In CSS,
there is only one type of process, i.e., all processes share identical structure of stages
or steps to execute. These processes may compete for multiple resource types, with
possibly multiple instances of each type. In more recent works on Sequential RASs,
the existence of multiple process types is supported, usually allowing different routes
or alternative execution plans. In some of these models, however, the execution plan
of a process is chosen at the launch of its execution, and remains fixed throughout
the course of it [FMMT97]. Other works overcome this limitation, supporting routing
decisions at runtime. In particular, so it is with the seminal S?PR class [ECM95].
However, the processes of an S?PR net can reserve at most one single resource in
each stage or execution step. Also of note is the existence of subclasses of S*PR (like
Linear S?PR (L-S3PR) nets [EGV(C98]) with interesting structural properties.

The restriction on the resources usage per process is overcome by the S*PR

1.3. The resource allocation problem through Petri net models 21

class [Tri03, TGVCEO05], also named S*PGR? [PRO1], which is a superclass of S?PR.
This class allows runtime routing decisions, as well as the simultaneous reservation of
multiple resources of different types by a single process. These resources can be re-
leased in an arbitrary order. Systems of this type are occasionally named Disjunctive-
Conjunctive RASs [RLF97]. Particularly, the S*PR class has received special atten-
tion because it can deal with a fairly general class of Sequential RASs, and efficient
characterisations exist for deadlock situations [Tri03]. Although most of these works
emphasise the application in FMS, the use of a purely systemic approximation allows
to apply these models, as well as the techniques developed for analysis and synthe-
sis [ETGVC02, TGVCEOQ5], to very different application domains.

Another interesting subclass of S*PR is that of S*PR with Ordered Allocation and
Release of the Resources (SOAR?) [Rov11]. In this case, the resources are managed
in a “first allocated, first released” basis by the processes, and the model structure is
restricted to adhere to this particularity. This characteristic is inherent to some appli-
cation domains such as wormhole communication in multiprocessor interconnection
networks. This is further discussed in Subsection 1.3.3.

At present, the most general class of Petri nets for Sequential RASs is the S"PR
class [ETGVC02], in which processes are ordinary state machines with internal cycles.
However, deadlocks in S"PR net models are not fully comprehended from a structural
perspective. A more detailed study on the relationships between the different kinds
of nets was published in a previous work [Col03]. It should be noted that for all the
above classes except for the S"PR class, there exist liveness characterisations based
on the absence of certain types of partially unmarked siphons. The structural nature
of such characterisations opens a door to the efficient detection and correction of
deadlocks, by implementing controllers (usually by adding new places) that restrict
the behaviour of the net, preventing the reach of undesirable markings.

There exist, however, other studies that try to address the problem of processes
with internal cycles, always starting from certain restrictions on the approach of the
S*PR class regarding the use of resources within those cycles [JX01, JXC04, LDZ06].
One of these Petri net subclasses is that of Gadara [WLRT09]. Gadara nets are
presented as a model for studying the RAP in multithreaded software systems sharing
a set of binary locks. Gadara nets therefore feature binary resources and internal
cycles are allowed within the structure of the processes. However, all conflicts in
the process paths of a Gadara net are resource-independent. Unfortunately, it is not
hard to find real-world systems in which the above restriction does not apply. This
deficiency is addressed along this thesis in the framework of the study and exploitation
of the RAP in the context of multithreaded software. In particular, Chap. 4 carefully
approaches Gadara nets from a critical position.

Finally, the class of System of Processes Quarrelling over Resources
(SPQR) [LGCO06] notably diverges from the previous approaches in an attempt to

22 1. Resource Allocation Systems: A facet of Discrete Event Systems

generalise the systems considered in the traditional modelling of FMSs from an RAS
perspective. This generalisation is essentially driven in two directions. First, the pro-
cess subnets are open systems. Second, resource lending is allowed. SPQR nets will
be thoroughly studied in Chap. 2.

Table 1.1 relates the Petri net classes mentioned above with the model proper-
ties presented in Subsection 1.3.1. The table draws a more complete picture of the
relationships between them from an essentially syntactic viewpoint.

1.3.3 Deployment of the RAS vision in different domains

Having reviewed the steps which are necessary to realise the process of abstraction,
in this section we focus on the observation of some application domains in which the
RAS approach has led to relevant results. In this course of action, we identify the basic
functional entities which are abstracted in the process. Consequently, those aspects
which were previously introduced from a conceptual perspective are here materialised.

The RAP in Flexible Manufacturing Systems

The problem of deadlocks due to an inappropriate resource allocation sequence is
very well-known in the field of FMSs, where the RAS approach has a long, successful
road [Col03].

In this area, an RAS would be a view of a manufacturing cell where resources are
often machines or tools that are used to achieve the manufacturing process. Such tools
can be fixed processing elements such as workstations, as well as transport mechanisms
such as robotic arms or conveyor belts. As noted above, it is also possible to consider
the space in containers or pallets as system resources used to hold parts in the process.
Figure 1.1 depicts a production cell with two robotic arms and three workstations, as
well as conveyor belts for the input and output of material.

On the other hand, the processes of the RAS would be the parts being processed
in the system. Each of these parts follows a prefixed production plan which is divided
into different stages where operations are executed. These operations can be classi-
fied into different types closely related to the various types of resources mentioned
above (transformations, handling, storage, etc.). Such production plans would be our
“process types”. For example, a process type would be the production plan for the
cell of Fig. 1.1 in which, first, parts from I1 are taken to M1 through R1. Second, the
arm moves them, when processed, from M1 to M2. And finally, after the processing
in M2 is completed, R1 moves them to Ol so as to leave the cell. Parts following
different production plans but sharing a nonempty set of resources can concur in the
system, which may be a source of deadlocks.

At this point, it is important to discern whether parts can be assembled and disas-
sembled in the system. Assembly/dissassembly operations can have a dramatic impact

1.3. The resource allocation problem through Petri net models

g
3 gie|g|y| g
IHEEHBERNEE
Ol A || R |0 || || RB|Z2|n
Properties of the whole system
Unique process subnet VX | X | X | x| x| x| x| x]X
Closed process subnets VIiVvIiVvI vV v
Binary resources X | X | X | V|V | X]|X]|XxX|X]|Xx]X
Structural properties of the processes
Reproducibility of t-semiflows VIVIVIVIVIVIVIVIVI]IX]|V
Consistency VIVIVIVIVIVIVI|IVI]V v
Equivalence of t-semiflows VIV IV IV IX|V|x|V|x]|x|V
Process termination VIVIVIVIVIVIVIVIV] x|V
Process liveness VIVIVIVIVIVIVIVIV] x|V
No internal decisions VIV X | X | X[X]|XxX]|X|X]|X]X
Process sequentiality VIVIVIVIVIVIV]X|x]|x]|V
Properties about the use of resources
Conservativeness VIVIVIVIVIVIVIVIVIVIY
Ordinary resource subnets X | VIV IV IV] X|X|VI|V]|x]X
Binary resource p-semiflows X | VIV IV I|V]X| x| x]|x]|Xx
Orthogonal resource p-semiflows | X | v | v | X | X | X | X | X | x| X
Resource-independent conflicts | v/ | vV | X | X | V | X | X | X | X | X
No resource lending VIiVvIiVvI VvV
First allocated, first released X | VIV IV |xX| x| x| x| x]|x

Table 1.1: Modelling capabilities of some well-known Petri net classes for RASs

24 1. Resource Allocation Systems: A facet of Discrete Event Systems

Figure 1.1: Layout of a manufacturing cell

on the complexity of the analysis of the problem, as discussed in Subsection 1.3.2.

Furthermore, it is important to note that in such systems the production plans
often have a very specific structure, in which all operations, or large groups of them,
are fully or partially ordered. Besides, it is unusual to find internal cycles, as recircu-
lating circuits; or if any, there are usually few of them, having no major ramifications
and being well located. In general, the predominant element regarding changes in
the process flow is the routing of parts into different production branches. Again,
this peculiar type of structure has been well exploited by the application of formal
methods (and particularly Petri nets) to the study of the RAP.

Most of the Petri net models presented in Subsection 1.3.2 have been conceived
with FMSs in mind as the target application domain.

From a modelling point of view, the problem of integrating assembly /dissassembly
operations has been approached in several works. Classes such as NS-RAP [ER04],
ERCN merged nets [XJ99], ERCN™ merged nets [JXC04] or PNR nets [JXP02] were
proposed in the context of approaching the RAP in FMSs. However, structural live-
ness enforcing approaches can be computationally demanding in this scenario, as
evidenced for augmented marked graphs [XJ99]. An insight on the computational
complexity of such approaches on the Sequential RAS context is driven in Chapt. 5.

In most recent works in the context of Sequential RAS, different process types
with multiple concurrent instances are allowed, often allowing on-line routing deci-
sions into different production branches. In particular, such kind of FMSs are dealt
with the seminal S3PR class [ECM95]. However, processes in a S®PR net can use
at most a single resource unit at a given state. The same applies for its subclass
L-S3PR [EGV(C98], also conceived to approach certain FMSs. Although more restric-

1.3. The resource allocation problem through Petri net models 25

— Cho—————» Cpp————»
— C,
N1 Co—> N2 Co— ™ N3

- Cp———>| Ca————|

Cps Cas Caz Cg2 Ci2
A4—Cpy +—Cpy—

N4 —Cpy N5 Gy N6
«—Cy3 +—C3———

Figure 1.2: Layout of a multiprocessor interconnection network with an unidirectional ring

topology

tive, L-S®PR nets are very interesting from an analytic point of view.

The mentioned restriction over resources usage is eliminated by the (more general)
S'PR class [Tri03, TGVCEOQ5]. This allows processes to simultaneously reserve several
resources belonging to distinct types. Nowadays, this is the most general class that
allows modeling FMSs while maintaining a complete correction methodology based
on efficient structural analysis and synthesis techniques. However, a few more general
net classes (SPQR, S*PR) have been proposed in the realm of approaching the RAP in
FMSs. This PhD thesis attempts to push the boundaries of those structural techniques
into this essentially unexplored ground.

The RAP in multiprocessor interconnection networks

In recent times, novel results have seen the light in the development of a methodology
for the design of deadlock-free minimal adaptive routing algorithms for multicomputer
interconnection networks from an RAS perspective [Rov11].

From this point of view, an RAS within the multicomputer interconnection net-
work would be a potential view of it with messages in transit between nodes. Here,
the resources are the channels available for communication between nodes, be those
physical or virtual. Figure 1.2 shows a network of this type with six nodes, an uni-
directional ring interconnection topology, and a variable number of channels between
the interconnected nodes. In the particular case of routing in communication networks
using wormhole flow control [DS86, Dua95], deadlocks can occur by the emergence of
circular waits due to the reservation of channels for simultaneous communication of
different messages, each of which is composed of a row of elementary flow units called
flits. Such situations are difficult to detect when the routing algorithm is adaptive,
i.e., routes are non-preset but dynamic depending on the traffic.

26 1. Resource Allocation Systems: A facet of Discrete Event Systems

In networks with wormhole flow control, flits travel in a row through the intercon-
nection network by establishing a virtual path. The first of these flits is called head
and reserves the channels through which, in turn, the rest of flits will be orderly sent.
The last of those flits, called tail, releases the channels reserved by the head, which
are then made available for sending flits of other messages.

In this context, a process is the routing of a message. Each process consists of
the various states that a message undergoes from source to destination through the
interconnection network. Therefore, the state of a process in networks with wormhole
flow control is determined by the location of the head and tail flits, as well as by the
sequence of channels that are still reserved for the transmission of the message, and
that the queue must release. Unlike manufacturing systems, we can see that the state
of a process does not have a clear physical location (i.e., a part located on a stage of
the production line using some resources) but is somehow scattered in space.

In general terms, the structure of a process is determined by the network topol-
ogy, the routing algorithm and the flow control model. A particular feature of the
networks with wormhole flow control stems from the fact that the reservation and
release of channels (resources) by the processes is conducted in a unitary and se-
quentially ordered way following a policy that might be called ‘first allocated, first
released’. In the case of static routing, the structure of the processes shall also be
linear, which greatly facilitates determining whether the system is deadlock-free. The
use of adaptive routing algorithms (i.e., dynamic) marks the possibility of finding al-
ternative paths (decisions) and merges in the structure of the processes. Furthermore,
the minimality of the adaptive routing algorithm guarantees the absence of internal
cycles in the structure of the processes. Assuming unicast communications, the types
of processes would be determined by the various destinations.

Approaching the problem of minimal adaptive routing in multiprocessor intercon-
nection networks from the perspective of RASs is a novel initiative. As such, the
corpus of knowledge is essentially condensed throughout a single PhD thesis [Rov11]
and external contributions in this area are yet to emerge. That thesis tackles the
aforementioned problem in interconnection networks with wormhole flow control pro-
viding a particular subclass of S*PR to model and analyse this kind of systems: the
SOAR? class. The definition of this class takes advantage of the peculiar physical
constraints of the domain. Despite this limitations, the groundbreaking synthesis ap-
proach developed throughout this thesis is relevant for the study of the RAP in the
multithreaded software domain. In essence, there exists a disruption here with the
classical synthesis methods based on the addition of monitor places that restrict the
system behaviour. This disruption came somewhat forced by the need for a truly,
unavoidable ‘distributed’ control approach that can be obviated in the context of
FMS, but which is much convenient, even sometimes indispensable, in the concurrent
software domain. We delve into this issue throughout Chap. 3.

1.3. The resource allocation problem through Petri net models 27

1L

)

I

IL

L

Figure 1.3: Example of deadlock in a tow type AGV transportation system

The RAP in transportation systems

Viewed from an RAS perspective, there are significant parallels between Automated
Guided Vehicle (AGV) transportation systems and multicomputer interconnection
networks [Rov11]. In particular, in the case of tow type AGVs applied for in-plant
material transport, strong resemblances can be traced between deadlocks caused by
the blocking of path segments and those emerging in interconnection networks with
wormhole flow control. Figure 1.3 illustrates a possible deadlock of this nature.

Those commonplaces have been studied in depth in order to establish a de-
sign methodology of deadlock-free minimal adaptive routing algorithms for such sys-
tems [Rov1l]. In this case, the resources are the segments visited by the AGV. These
segments are occupied by the AGV as soon as the tow tractor (the head) enters in
them (that includes the decision points that delimit the segment) and are not released
until the last of the carts (tail) leaves.

In turn, a process is the transport of goods from a source point (location / sta-
tion) to a destination point. Following this scheme, it is easy to understand the
aforementioned parallel with multicomputer interconnection networks with wormhole

28 1. Resource Allocation Systems: A facet of Discrete Event Systems

flow control, again being the structure of the processes dependent on the plant topol-
ogy and the routing algorithm proposed for the AGVs.

The observation previously stated on the synthesis techniques applicable to mul-
tiprocessor interconnection networks can be fully extrapolated to the context of the
development of deadlock-free minimal adaptive routing algorithms in tow type AGV
transportation systems. This parallelism is examined throughout the said PhD thesis,
and the results of this work will be exploited and extended in Chap. 3. It should also
be mentioned the existence of some other works that address the modeling and anal-
ysis from a RAS point of for other types of AGV transportation systems, although
the techniques of analysis and correction, when presented, do not always address the
problem from a structural standpoint [Rev00, Fan02, WZ05].

The RAP in multithreaded software systems

Although there exist a significant number of works that approach the modelling of
concurrent programming through Petri nets [TA09], only a handful of them approach
multithreaded software from the perspective of RASs [LGC06, WLR*09, Wan09,
LGC12], often either with severe limitations in the class of software systems which are
subject of study or lacking a complete methodology to correct the liveness problems.
This PhD thesis tries to fill this gap in the literature. To this end, the abstraction
and modelling of this kind of systems is tackled in Chapter 2. On the other hand, the
limitations of the Gadara project, an alternate approach in the same vein [Wan09],
are studied in depth in Chapter 4.

1.4 The class of S*PR net systems

In order to illustrate all the ideas previously presented about the different classes
of Petri nets that are currently used to model RASs we recall here the definition of
S*PR. This class is fundamental because it represents the largest class for which the
analysis and synthesis results allow to dispose a complete methodology to construct
good RASs. We have syntactic constraints but they are general enough to cover many
real applications as those previously presented.

Historically, the S*PR class appeared as a generalisation of the seminal S?PR class
which was proposed to extend the existing techniques to a more general category of
RASs. In this generalisation, the structure of the processes is left intact, and the
novelty lies in the fact that several resources can be simultaneously allocated to a
single process. Although, S*PR nets were originally proposed to deal with FMSs,
they can be applied to other domains, as discussed in Sect. 1.3.

S*PR nets are modular models composed of state machines with no internal cycles
plus shared resources. One of the most interesting features of this kind of models is

1.4. The class of S*PR net systems 29

their composability. Two S*PR nets can be composed into a new S*PR model via
fusion of the common resources. Since multiple resource reservation is allowed, S*PR
nets can be non-ordinary, i.e., the weight of the arcs from the resources to the state
machines (or vice versa) is not necessarily equal to one, in contrast to S°PR nets.

Definition 1.1. [Tri03, TGVCEO05] Let Iy be a finite set of indices. An S*PR net
is a connected generalised pure Place/Transition (P/T) net N = (P, T, C) where:

1. P = PyU Ps U Py is a partition such that:

(a) [idle places] Py = ;¢ s, {Po; }-

(b) [process places] Ps = ¢, P, where:
VieIy:Pi#0 andVi,j € Iy i #j, PN P; = 0.

(c) [resource places| Pr = {r1,....,7n},n > 0.
2. T =U,cr, Tis where Vi € I, T; # 0, and Vi, j € In,i # 5, T N Tj = 0.

3. For each i € Iy the subnet generated by {po,} U Ps,, T; is a strongly connected
state machine such that every cycle contains po, .

4. For each r € PR there exists a unique minimal p-semiflow y, € NPl such that
{r} =llyrl 0 P, llyel[0 Po =0, llysl| N Ps # 0, and yy[r] = 1.

5. Ps = U epy (lyrl \ {73)-

Fig. 1.4 depicts a net system belonging to the S*PR class. Places R1 and R2
are the resource places. A resource place represents a resource type, and the number
of tokens in it represents the quantity of free instances of that resource type. If
we remove these places, we get two isolated state machines. These state machines
represent the different patterns of resource reservation that a process can follow. In
the context of FMSs, these two state machines model two different production plans.

Consequently, tokens in a state machine represent parts which are being processed
in stages of the same production plan. At the initial state, the unique tokens in each
machine are located at the so-called idle place (here: A0, BO). In general, the idle
place can be seen as a mechanism which limits the maximum number of concurrent
parts being processed in the same production plan. The rest of places model the
various stages of the production plan as far as resource reservation is concerned.

Meanwhile, the transitions represent the acquisition or release of resources by the
processes along their evolution through the production plan. Every time a transition
fires, the total amount of resources available is altered while the part advances to the
next stage. The weight of an arc connecting a resource with a transition models the
number of instances which are allocated or released when a part advances.

30 1. Resource Allocation Systems: A facet of Discrete Event Systems

A0, BO, R1%, R2?

y—TAL TBL ha
TA4<A1, B0, R, R2) (A0, B1, R1, R2?)
TA2 TB1 TA1L—/ T

A2, BO, R2 Al, B1, R1, R2 TA4TBZ
TA3 TB1#{ A3, B1, R1

TA4

marking

Figure 1.4: A S*PR net system. Despite being non-live, no minimal siphon is ever insuffi-

ciently marked

For instance, place R1 could model a set of free robotic arms used to process
parts in the stage A2 of the first production plan (two arms are needed per each
part processed there) as well as in the stage B1 of the second production plan (only
one arm needed per part processed). Consequently, if transition TBI is fired from the
initial marking then one robotic arm will be allocated and one part will visit stage B1.
Still, there will remain one robotic arm to be used freely by other processes.

Finally, it is worth noting that moving one isolated token of a state machine (by
firing its transitions) until the token reaches back the idle state, leaves the resource
places marking unaltered. Thus, the resource usage is conservative.

The next definition formalises the fact that there should exist enough free resource
instances in the initial state so that every production plan is realisable:

Definition 1.2. [TGVCE05] Let N = (PoUPsUPg, T, C) be an S*PR net. An initial
marking mg 1s acceptable for N iff |[mg|| = Py U Pr and ¥p € Ps,r € Pgr : mg[r] >
yr[pl-

Traditionally, empty or insufficiently marked siphons have been a fruitful struc-
tural element for characterising non-live RASs. The more general the net class, how-
ever, the more complex the siphon-based characterisation is. In the case of S3PR
liveness can be characterised through the existence of siphons that can eventually be
emptied. However, this characterisation is sufficient, but not necessary, in general,
for S*PR net systems: this fact is further examined throughout Chapt. 2. Hence,
the liveness characterisation, and particularly the notion of empty siphon, had to
be generalised. The following theorem presents a liveness characterisation for S*PR
nets. This characterisation is fully behavioural. The structural causes for non-liveness
are related to the existence of certain siphons and this will be presented later. An
instrumental definition will be introduced first.

1.4. The class of S*PR net systems 31

Definition 1.3. Given a marking m in an S*PR net system, a transition t is said
to be:

e m-process-enabled (m-process-disabled) iff it has (not) a marked input process
place, i.e. t € (|lm| N Ps)® (i.e., t ¢ (|m| N Ps)®).

e m-resource-enabled (m-resource-disabled) iff its input resource places have (not)
enough tokens to fire it, i.e., m[Pg,t] > Pre[Pg,t] (i.c., m[Pg,t] ? Pre[Pg.,t]).

Theorem 1.4. [TGVCE05] Let (N, mg) be an S*PR net system with an accept-
able initial marking. (N,mg) is non-live iff Im € RS(N, mg) such that the set of
m-process-enabled transitions is non-empty and each one of these transitions is m-
resource-disabled.

Theorem 1.4 relates non-liveness to the existence of a marking in which all active
processes are blocked. Their output transitions need resources that are not available.
These needed resources cannot be generated (released by the corresponding processes)
by the system (the transitions are dead) because there exists a set of circular waits
between the blocked processes.

This concept of circular waits is captured in the model by the existence of a
siphon (in Petri net terms) whose resource places are the places preventing the firing
of the process-enabled transitions. The following theorem characterises non-liveness
in terms of siphons establishing the bridge between behavior and model structure.

Theorem 1.5. [TGVCE05] Let (N, mg) be an S*PR net system with an acceptable
initial marking. (N, mg) is non-live iff Im € RS(N,mg) and a siphon D such that:
i) There exists at least one m-process-enabled transition; i) Every m-process-enabled
transition is m-resource-disabled by resource places in D; iii) Process places in D are
empty at m.

Most analysis and control techniques in the literature are based on the compu-
tation of a structural element which characterises deadlocks in many RAS models:
the so-called bad siphon. A bad siphon (often also called strict siphon in the liter-
ature [LZ09]) is a siphon which is not the support of a p-semiflow. If bad siphons
become (sufficiently) emptied, their output transitions die since the resource places of
the siphon cannot regain tokens anymore, thus revealing the deadly embrace. Control
techniques thus rely on the insertion of monitor places [HZL09] , i.e. controllers in the
real system, which limit the leakage of tokens from the bad siphons. Such a siphon is
said to be insufficiently marked at m, generalising the notion of empty siphon. Such
kind of techniques are revisited throughout Chapt. 3.

32 1. Resource Allocation Systems: A facet of Discrete Event Systems

+

()

=

0 Legend:

Q [

> = "isincluded
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, § Iinto

6]

L-S®PR =

+ process structure -

Figure 1.5: Inclusion relations between Petri net classes for RASs

1.5 Conclusions

In this chapter we have emphasised that an RAS view of a system is just a facet of
the system that we consider the first one to be studied and corrected. This, in fact,
is a basic principle of our methodological proposal for the construction of complex
systems where the existence of concurrency and sharing of resources are two essential
characteristics. For the construction of this facet of the system and translate it into a
model aimed to study this aspect of the system, an abstraction process of the system
is needed. This abstraction process must be able to capture the active entities of
the system (processes) and the shared resources for which they are competing. We
have proven that this abstraction process is difficult to formalise in a general setting
because it depends on the application domains.

After the identification of processes and resources the translation into Petri nets
is a more or less easy task. Nevertheless, we have observed that the most synthetic
systems that engineers conceive share a significant set of properties. Therefore, the
resulting Petri nets belong to a restricted number of subclasses where the variations
come from the structure of the processes or the way the resources are used by the
processes. Among these subclasses, SPR represents an important subclass because
it is the most general one for which everything works well. Beyond S*PR, there are
many difficulties for the analysis and the synthesis of well-behaved systems that this
PhD thesis will point out in the following chapters.

Chapter 2

The resource allocation
problem in software
applications

Summary

RASs were intensively studied in the last years for FMSs. The success of this research
stems from the identification of subclasses of Petri nets that correspond to an RAS
abstraction of these systems. In this chapter, a parallel road to that travelled through
for FMSs is taken. It is revealed that the existing subclasses of Petri nets used to study
this kind of deadlock problems are insufficient, even for very simple software systems.
A new subclass of Petri nets that generalises the previously known RAS subclasses is
proposed, but extending the kind of systems that can be tackled. These extensions
allow to consider nested iterations within the processes, and to hold resources in the
initial state. We will show that these extensions are very relevant from the real-
world system point of view. Nevertheless, the behaviour of the resulting models is
much more complex than those of the previous restricted models. A taxonomy of
emerging anomalies is therefore presented in the context of software systems. These
harden the extension of the existing liveness analysis and synthesis techniques from
FMSs into the new scenario. Finally, an interesting subclass of nets named SPQR is
presented, which was originally aimed to generalise the class of FMSs tackled with
previous approaches. Due to its syntactic simplicity and the existence of powerful
net transformation rules which retain the essential net properties, this subclass seems
to facilitate the study of the liveness problem at its very core. Therefore, its basic
properties will be studied and relations between both classes will be manifested.

33

34 2. The resource allocation problem in software applications

2.1 Introduction

In Chap. 1, the fundamental concepts on the RAP are introduced, and a whole family
of Petri net models to represent RASs which are commonplace in the literature are
categorised. Such Petri net classes are frequently presented in the context of FMS
modelling, and make sense as artifacts conceived for properly modelling significant
physical aspects of this kind of systems. On the other hand, there exists a family
of powerful results which allow applying liveness enforcement techniques over such
FMS-oriented models, and ultimately, over the real system.

Although there exist obvious resemblances between the RAP in FMSs and that
of parallel or concurrent software, previous attempts to bring these well-known RAS
techniques into the field of software engineering have been, to the best of our knowl-
edge, either too limiting or unsuccessful. Gadara nets [WLR109] constitute the most
recent attempt, yet they fall in the over-restrictive side in the way the resources can
be used. Presumably, this is a consequence of being conceived with a primary focus
on inheriting the powerful structural liveness results which were fruitful in the con-
text of FMSs. Such a bias works against obtaining a model class capable of properly
abstracting RASs in many multithreaded systems, as later discussed in Chap. 4. In
this chapter, it is basically analysed why the net classes and results introduced in the
context of FMSs can fail when brought to the field of concurrent programming.

Section 2.2 presents a motivating example and discusses the elements that an RAS
net model should desirably feature in order to successfully explore the RAP within the
software engineering discipline. Taking into account those considerations, Sect. 2.3
introduces a new Petri net class, called PC?R. Section 2.4 relates the new class to
those defined in previous works and forewarn us about new behavioural phenomena.
Some of these anomalies highlight the fact that previous theoretical results in the
context of FMSs are insufficient in the new framework. Finally, in Sect. 2.5 another
Petri net class is introduced named System of Processes Quarrelling over Resources
(SPQR). This is essentially a subclass of PC?R which facilitates the study of the
liveness problem in multithreaded software systems. Some properties, relations and
net transformations will be introduced to justify its definition.

Note that some additional figures are provided in Appendix B which complement
some of the examples throughout the chapter with further information.

2.2 The RAS view of a software application
Example 2.1 presents a humorous variation of Dijkstra’s classic problem of the dining
philosophers which adopts the beautiful writing by C.A.R. Hoare [Hoa78].

Example 2.1 The postmodern dining philosophers. “Five philosophers spend their
lives thinking and eating. The philosophers share a common dining room where there

2.2. The RAS view of a software application 35

is a circular table surrounded by five chairs, each belonging to one philosopher. A
microwave oven is also available. In the centre of the table there is a large bowl of
spaghetti which is frequently refilled (so it cannot be emptied), and the table is laid
with five forks. On feeling hungry, a philosopher enters the dining room, sits in his
own chair, and picks up the fork on the left of his place. Then he touches the bowl
to feel its temperature. If he feels the spaghetti got too cold, he leaves his fork and
takes the bowl to the microwave. Once it is warm enough, he comes back to the
table, sits on his chair and leaves the bowl on the table after recovering his left fork.
Unfortunately, the spaghetti is so tangled that he needs to pick up and use the fork on
his right as well. If he can do this before the bowl gets cold again, he serves himself
and starts eating. When he has finished, he puts down both forks and leaves the
room.”

According to the classic RAS nomenclature, each philosopher is a sequential pro-
cess, and the five forks plus the bowl are serially reusable resources which are shared
among the five processes. From a software perspective, each philosopher can be a
process or a thread executed concurrently.

Algorithm 2.1 introduces the code for each philosopher. Notationally, the acqui-
sition / release of resources is modelled by way of the wait() / signal() atomic
operations, respectively. Both of them have been generalised for the acquisition of
multiple resources (separated by commas, inside the parentheses, when invoking the
operation). Finally, trywait() models a non-blocking wait operation. If every re-
source is available at the time trywait () is invoked, then it acquires them and returns
TRUE. Otherwise, trywait () will return FALSE without acquiring any resource. For
the sake of simplicity, it is assumed that the conditions with two or more literals are
also evaluated atomically.

Figure 2.1 depicts the net for Algorithm 2.1, with i = 1, after abstracting the
relevant information from an RAS perspective. Figure 2.2 renders the composition
of the five philosopher nets via fusion of the common shared resources. Note that
if the dashed arcs from Fig. 2.2 are removed, then we can see five disjoint strongly
connected state machines plus six isolated places.

Each state machine represents the control flow for a philosopher. Every state
machine is composed of seven states (places). Tokens in a state machine represent
concurrent processes/threads which share the same control flow. At the initial state,
every philosopher is thinking (outside the room), i.e. the unique token in each machine
is located at the so-called idle place. In general, the idle place can be seen as a
mechanism which limits the number of concurrent active threads. Here, at most one
philosopher of type ¢ can be inside the room, for each i € {1,...,5}.

The six isolated places are called resource places. A resource place represents a
resource type, and the number of tokens in it represents the quantity of free instances
of that resource type. In this case, every resource place is monomarked. Thus, at

36 2. The resource allocation problem in software applications

Algorithm 2.1 - Code for Philosopher i (where i € {1,2,3,4,5})

var
fork: array [1..5] of semaphores; // shared resources
bowl: semaphore; // shared resource
begin
do while (1)
THINK:
Enter the room;
(T1) wait(fork[il); (T6)
do while (not(trywait(bowl, fork[i mod 5 +1]))
or the spaghetti is cold)
(T2) if (trywait(bowl) B IW
and the spaghetti is cold) then
(T3) signal(fork[il]);
Go to the microwave;
Heat up spaghetti;
Go back to table;
(T4) wait(fork[il);
(T5) signal (bowl) ;
end if;
loop;

Serve spaghetti;
(T7) signal(bowl);
EAT;
(T8) signal(fork[il, fork[i mod 5 +1]);
Leave the room,;
loop;

Figure 2.1: Philosopher 1

the initial state there is one fork of type ¢, for every i € {1,...,5}, plus one bowl of
spaghetti (modelled by the resource place at the centre of the figure).

Finally, the dashed arcs represent the acquisition or release of resources by the
active threads when they change their execution state. Every time a transition fires,
the total amount of resources available is altered. Please note, however, that moving
one isolated token of a state machine (by firing its transitions) until the token reaches
back the idle state, leaves the resource place markings unaltered. Thus, the resource
usage is conservative.

At this point, some capabilities that an RAS model should have so as to support
the modelling of concurrent programs are discussed.

State machines without internal cycles are rather versatile for modelling sequential
processes in the context of FMSs. In FMSs, the process plans containing internal loops

2.2. The RAS view of a software application 37

Figure 2.2: The dining philosophers are thinking. Arcs from/to Pr are dashed for clarity

exist. Nevertheless, the number of iterations is usually constant and independent of
the raw parts to be processed. Consequently, from the point of view of modelling,
loops are unrolled and models without internal loops are generated. The success of
the S?PR and S*PR classes, in which every circuit in the state machines traverses the
idle place, proves the claimed versatility of the approach.

Nevertheless, this is clearly too constraining even for very simple software systems.
Considering Bohm and Jacopini’s theorem [Har80], however, it can be assumed that
every non-structured sequential program can be refactored into a structured one using
while-do loops. In this case, many loops cannot be unrolled, because the number

38 2. The resource allocation problem in software applications

of iterations depends on the value of some data to be processed during the process
runtime.

Meanwhile, calls to procedures and functions can be substituted by inlining tech-
niques. Let us also remind that fork/join operations can also be unfolded into
isolated concurrent sequential processes, as some works evidence [ER04]. As a result,
process models can be restricted to state machines in which decisions and iterations
(in the form of while-do loops) are supported, but not necessarily every kind of
unstructured branch.

Another significant difference between FMSs and software systems from an RAS
perspective is that resources in the latter are not necessarily physical (e.g., a file) but
can also be logical (e.g., a semaphore). This has strong implications in the degree of
freedom in allocating those resources: this issue will be further inspected later.

In this domain, a resource is an object that is shared among concurrent pro-
cesses/threads and must be used in mutual exclusion. Since the number of resources
is limited, the processes compete for the resource and use it in a non-preemptive
way. This particular allocation scheme can be imposed by the resource access primi-
tives, which may be blocking. Otherwise, the resource can be protected by a binary
semaphore/mutex/lock (if there is only one instance of that resource type) or by a
counting semaphore (multiple instances). Note that this kind of resources can be of
varied nature (e.g., shared memory locations, storage space, database table rows) but
the required synchronisation scheme is inherently similar.

On the other hand, it is well-known that semaphores used in that context can
also be seen as non-preemptive resources which are used in a conservative way. For
example, a counting semaphore that limits the number of connections to a database
can be interpreted in that way from an RAS point of view. Here processes wait for
the semaphore when attempting to establish a database connection, and release it
when they decide to close the aforementioned connection.

However, semaphores also perform a relevant role as an interprocess signalling
facility, which can also be a source of deadlocks. In this chapter, the goal is the study
of the RAP, so this mode of use is out of scope. Instead, it is proposed to fix deadlock
problems due to resource allocation issues firstly, and later apply other techniques for
amending those due to message passing.

Due to their versatility, semaphore primitives are interesting for studying how
resources can be allocated by a process/thread. For instance, XSI semaphores
(also known as System V semaphores) have a multiple wait primitive (semop with
sem_op<0). An example of multiple resource allocation appears in Algorithm 2.1. Be-
sides, an XSI semaphore can be decremented atomically in more than one unit. Both
POSIX semaphores (through sem_trywait) and XSI semaphores (through semop with
sem_op<0 and sem_flag=IPC_NOWAIT) have a non-blocking wait primitive. Again, Al-
gorithm 2.1 could serve as an example. Finally, XSI semaphores also feature inhibition

2.2. The RAS view of a software application 39

mechanisms (through semop with sem_op=0), i.e. processes can wait for a zero value
of the semaphore.

All these implementations of the semaphore API use a waiting queue of pending
processes for completing wait operations on O-valued semaphores. In this thesis, this
queue is ignored in order to consider the inherent non-determinism of the operating
system scheduler when imposing an ordering to the processes attempting to enter in
the queue of the semaphore.

As suggested earlier, the fact that resources in software engineering do not always
have a physical counterpart is a peculiar characteristic with consequences. In this
context, processes do not only consume resources but also can create them. A process
will destroy the newly created resources before its termination. For instance, a process
can create a shared memory variable (or a service!) which can be allocated to other
processes/threads. Hence the resource allocation scheme is no longer first-acquire-
later-release, but it can be the other way round too. Still, all the resources are used
conservatively by the processes (either by a create-destroy sequence or by a wait-
release sequence). As a side effect, and perhaps counter-intuitively, there may not
be free resources during the system startup (as they still must be created), yet the
system is live.

Nevertheless, the kind of software systems to be considered in this study will be
limited. The following typical features that can appear in a program will not be
considered for the moment:

e Dynamic creation of new types of functionality implemented throughout threads
based on functions which were not present in the initial state.

Function recursion.

Reentrant routines outside the caller’s address space. Coroutines.

Software or hardware interrupts.

Signalling facilities.

Besides, internal choices of the processes determined by the value of a data-
dependent expression (i.e., not dependent on semaphores) will be represented as non-
deterministic choices (i.e., free choices).

Summing up, for successfully modelling RASs in the context of software engineer-
ing, a Petri net model should at least fulfil the following requirements:

1. The control flow of the processes should be represented by state machines
with support for decisions (if-then-else blocks) and nested internal cycles
(while-do blocks).

2. There can be several resource types and multiple instances of each one.

40 2. The resource allocation problem in software applications

3. State machines can have multiple tokens (representing concurrent threads) ex-
ecuting the same function.

4. Processes/threads use resources in a conservative way.

5. Acquisition/release arcs can have non-ordinary weights (e.g., a semaphore value
can be atomically incremented/decremented in more than one unit).

6. Atomic multiple acquisition/release operations must be allowed.

7. Processes can have decisions dependent of the allocation state of resources (due
to the non-blocking wait primitives, as in Fig. 2.2).

8. Processes can lend resources. As a side effect, there could exist processes that
depend on resources which must be created/lent by other processes

With these characteristics in mind, the next section defines a class of Petri nets
to cope with these requirements.

2.3 The PC?R class

2.3.1 Functional entities. Representation

In this section, a new Petri net class is presented: the class of Processes Competing
for Conservative Resources (PC?R). This class fulfils the list of abstract requirements
enunciated in Sect. 2.2 and generalises other subclasses of the S"PR family while
respecting the design philosophy on these. Hence, some previous results are still valid
in the new framework. However, PC?R nets can deal with more complex scenarios
which were not yet addressed from the domain of S"PR nets.

It should be remarked that no S"PR net class fulfils all requirements presented at
the end of Sect. 2.2. Requirements 2-6 are satisfied by the S*PR class. Requirement
7 also is, but it is not fulfilled by Gadara nets. Requirement 1 is only verified by the
Gadara and S"PR classes, and fulfilment of Requirement 8 has never been addressed
before, justifying the next definition.

Definition 2.2 presents a subclass of state machines used for modelling the control
flow of the processes in isolation. Iterations are allowed, as well as decisions within
internal cycles, in such a way that the control flow of structured programs can be
fully supported, in fulfilment of Requirement 1.

Definition 2.2. An iterative state machine N' = (P,T,C) is a strongly connected
state machine such that:

1. P can be partitioned into three subsets: {py}, P1 and Ps.

2.3. The PC?R class 41

forbidden
internal cycles

Figure 2.3: Schematic diagram of an iterative state machine

2. Pl#@7

3. The subnet generated by {px}UPy,* PLUP,*® is a strongly connected state machine
in which every cycle contains py,

4. If Py # 0, the subnet generated by {pr} U Ps,* P>, U P2* is an iterative state
machine.

As Fig. 2.3 shows, P; contains the set of places of an outermost! iteration block,
while P, is the set of places of the rest of the state machine (the inner structure,
which may contain multiple loops within). Consequently, the subnet generated by
{p}UP;,*PiUP;* is a strongly connected state machine in which every cycle contains
pk- Meanwhile, inner iteration blocks can be identified in the iterative state machine
generated by {px} U P, * Py U P,°.

Finally, the place pg represents the place “py” that we choose after removing every
iteration block. In the following, such possible last py places will be generically called
idle places. Note that by the definition of iterative state machine, at least one idle
place must exist. Such term will serve as a bridge prior to the introduction of the
concept of idle place of a process subnet in the context of the class of PC?R nets.
At this point, it must be remarked that the definition of iterative state machines is
instrumental for introducing the class of PC?R nets.

In the net of Fig. 2.1, if we remove the resource places FORK1, FORK2 and
BOWL, we obtain an iterative state machine, with P, = {A2,A3,A4}, P, =
{A0, A5, A6} and p, = Al. Note that, according to the previous description, A0
can be considered the idle place.

In the following, we assume that every state machine has one fixed idle place.
Obviously, this idle place can be any place of the iterative state machine, but it is

1In the context of this thesis, we always use the adjectives outer /inner/etc. from the perspective
of the structure of the iterative state machine: where the outermost iteration blocks are those farthest
from the idle place. Please note that in the context of imperative programming languages is exactly
the other way round: the innermost loops in the program structure are those which are modelled
with the outermost iteration blocks in the iterative state machine.

42 2. The resource allocation problem in software applications

assumed being identified from the beginning. Considering the application domain
(multithreaded software engineering) this makes perfect sense, since an iterative state
machine models the possible execution paths of a thread. In this sense, it must be
remarked that the point of entry (thread startup) can be unequivocally identified by
the begin statement.

An elementary iteration block of an iterative state machine is a maximal strongly
connected state machine embedded in the iterative state machine where all circuits
contain a distinguished idle place named the idle place of the elementary iteration
block. Algorithm 2.2 computes the set of these elementary iteration blocks and, in
the answer, each elementary block is characterised by the idle place, px, the set of
places, Psy, and the set of transitions, Tgy. Obviously, the flow relation between
places and transitions of an elementary iteration block is the flow relation of the
iterative state machine constrained to the objects of the elementary iteration block.

Definition 2.3. Let N = (P, T,C) be an iterative state machine, and py € P be its
idle place. The set of elementary iteration blocks of N, Sy, is the set generated by
Algorithm 2.2.

Note that the computation of a minimal circuit which covers a certain place p
is a polynomial complexity problem that can be accomplished, for example, through
the computation of a basic feasible solution via the SIMPLEX algorithm on the set
of constraints C - x = 0, x[p*] # 0, x > 0 (basic feasible solutions are of minimal
support and are therefore minimal t-semiflows of the net, i.e., elementary circuits).
An analogous approach can be used to compute a minimal circuit containing a given
transition. In the same vein, D. B. Johnson [Joh75] proposes an algorithm for the
computation of minimal circuits of a digraph which starts by computing a first ele-
mentary circuit in polynomial time. Therefore Algorithm 2.2 exhibits a polynomial
run-time growth rate on the size of the net in the worst-case scenario.

Figure 2.4 depicts the elementary iteration blocks obtained for a sample iterative
state machine using Algorithm 2.2, assuming that PO is the idle place of the iterative
state machine. In order to illustrate how it works, a trace of the first iterations of an
execution of the algorithm using the net in Fig. 2.4 as input follows:

idle_pairs = {(PO, [P0 T1 P1 T3 P3 T6 P5 T8))};
Iteration 1 (idle place P0)
pr = P0; m = [P0 T1 P1 T3 P3 T6 P5 T8g|;
p = {P0,P1,P3,P5}; Psy = 0; Ty = {T1, T3, T6, T8};
idle_pairs = (;
Iteration 1.1 (place PO € p)
p = {P1,P3,P5}; p; = P0;
7 =P0°\ Tey = {T1, T2} \ Ten = {T2};

2.3. The PC?R class 43

Algorithm 2.2 Splitting of an iterative state machine into its set of elementary
iteration blocks

Input: An iterative state machine N' = (P, T, C) and the idle place py € P of N.
Output: A set of strongly connected state machines of A, iteration_blocks, each one

with a distinguished idle place, and all circuits containing the detected idle place.
Note 1: The function Min_Circuit(N,z), x € PUT), returns a minimal circuit in N'
traversing x.
Note 2: Given a circuit 7, the functions fp(7) and fr(7) return the set of places and
transitions, respectively, that occur at least once in 7.
begin
1: iteration_blocks «— 0; visited_trans «— 0; idle_pairs < {(po, Min_Circuit(N, po))};

2: while idle_pairs # () do

3 (pk,) « Extract_A_Pair(idle_pairs);

40 p—ftp(n); Pom — 0; Tsm — fro(m);

5. while p # () do

6: p1 < Extract_An_Element(p);

7 T p1®\ (Tsm U visited_trans); Psy — Psm U {p1};
8: while 7 # () do

9: t « Extract_An_Element(7);

10: 7« Min_Circuit(N, t);

11: if pr ¢ fp(n’) then

12: idle_pairs «— idle_pairs U {(p1,7")};

13: else

14: p— (pU fe(r)\ Psms; Tom < Tsm U fr(7');
15: end if

16: end while

17: end while

18: iteration_blocks «— iteration_blocks U {(px, Psm, Tsm) }
19: wisited_trans < visited_trans U Tgy;

20: end while

Psy = Psm U {P0} = {P0};
Iteration 1.1.1 (transition T2 € 1)
t=T2; 7 =0; 7’ = [P0 T2 P2 T5 P4 T7 P5 Tg|;
px € fp(n') =
p ={P1,P2,P3,P4,P5};
Tsm = {T1,T2, T3, T5,T6, T7, T8};
Iteration 1.2 (place P1 € p)
p = {P2,P3,P4,P5}; p; = P1;

2. The resource allocation problem in software applications

Figure 2.4: Elementary iteration blocks of an iterative state machine

T="P1° \TSM = {T37T4} \ TSM = {Tél}7
PSM = {PO,PI};
Iteration 1.2.1 (transition T4 € 1)
t =T4; 7 =(; «’ = [P0 T1 P1 T4 P4 T7 P5 T§gJ;
px € fp(r') =
p = {P2,P3,P4,P5};
Ten = {T1, T2, T3, T4, T5,T6, T7, T8}
Iteration 1.3 (place P2 € p)
p ={P3,P4,P5}; p; = P2;
7 =P2°\ Ty = {T5,T9} \ Tsm = {T9};
PSM = {PO, Pl, PQ},
Iteration 1.3.1 (transition T9 € 1)
t=T9; 7 =0; ' = [P2 T9 P6 T10 P7 T13];
p ¢ fr(n') =
idle_pairs =) U {(P2,[P2 T9 P6 T10 P7 T13))};
Iteration 1.4 (place P3 € p)
p = {P4,P5}; p1 = P3;
T =P3°\ Tsm = {T6} \ Tsm = 0;
Psu = {PO, P1, P2, P3};
Iteration 1.5 (place P4 € p)
p={P5}; pr = P4;

2.3. The PC?R class

45

7= PA°\ Tsy = {T7, T14} \ Tgw = {T14};
Psy = {P0, P1, P2, P3, P4};
Iteration 1.5.1 (transition T14 € 7)
t=T14; r = 0; 7’ = [P4 T14 P9 T15];
px & fp(n') =
idle_pairs = {(P2,[P2 T9 P6 T10 P7 T13]),
(P4,[P4 T14 P9 T15))};
Iteration 1.6 (place P5 € p)
p=0; p1 = P5;
7= P5*\ Tsw = {T8}\ Tons = 0
Psu = {P0,P1,P2, P3, P4, P5);
iteration_blocks = {(P0, {P0,P1,P2,P3, P4, P5},
{T1,T2,T3,T4, T5, T6, T7, T8} };
visited _trans = {T1,T2,T3,T4,T5,T6, T7, T8};
Iteration 2 (idle place P2)
pr = P2; m = [P2 T9 P6 T10 P7 T13];
p = {P2,P6,P7}; Psy = 0; Tsm = {19, T10, T13};
idle_pairs = {(P4, [P4 T14 P9 T15))};
Iteration 2.1 (place P2 € p)
p={P6,P7}; p; = P2;
7 =P2*\ (Tsm U visited _trans) =
{T5,T9} \ ({T9, T10,T13} U {T1 — T8}) = 0;
Psu = {P2};
Iteration 2.2 (place P6 € p)
p = {P7}; p1 = P6;
7 =P6° \ (Tgm U visited_trans) =
{T10} \ ({T9,T10,T13} U{T1 — T8}) = 0;
Psy = {P27 P6};
Iteration 2.3 (place P7 € p)
p=0; p1 =PT;
7 =P7°\ (Tsm U visited_trans) =
{T11,T13}\ ({T9,T10, T13} U {T1 — T8}) = {T11};
PSM = {PQ, P67 P7},
Iteration 2.3.1 (transition T11 € 7)
t=T11; 7 =0; «/ = [P7 T11 P8 T12];
px ¢ fp(n') =
idle_pairs = {(P4, [P4 T14 P9 T15)),
(P7,[P7 T11 P8 T12])}:;
iteration_blocks = {(P0, {P0,P1,P2,P3, P4, P5},
{T1,T2,T3,T4, T5, T6, T7, TS}),

46 2. The resource allocation problem in software applications

(P2, {P2,P6,P7}, {T9, T10, T13})};
visited_trans = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T13}:
Iteration 3 (idle place P4)
pr = P4; m =[P4 T14 P9 T15];
p = {P4,P9}; PSM = @; TSM = {T14,T15};
idle_pairs = {(P7,[P7 T11 P8 T12])};
Iteration 3.1 (place P4 € p)
p={P9}; p1 = P4;
T = P4°* \ (Tgpm U visited _trans) =
{T7,T14} \ ({T14,T15} U{T1 — T10,T13}) = 0;
Psm = {P4};
Iteration 3.2 (place P9 € p)
p=0; p1 =PY;
7 =P9°\ (Tsm U visited _trans) =
{T15,T16} \ ({T14,T15} U {T1 — T10, T13}) = {T16};
Pavt = {P4,P9};
Iteration 3.2.1 (transition T16 € 7)
t =T16; 7 = 0; =’ = [P9 T16 P10 T17};
pe & fr(n') =
idle_pairs = {(P7,[P7 T11 P8 T12]),
(P9, [P9 T16 P10 T17])};
iteration_blocks = {(P0, {P0,P1,P2,P3, P4, P5},
{T1,T2,T3,T4, T5, T6,T7, T8}),
(P2, {P2,P6, P7}, {T9, T10,T13}),
(P4, {P4, P9}, {T14,T15})};
visited _trans = {T1 — T10,T13 — T15};

Although, for the sake of concision, the computation of the three last elementary
iteration blocks (i.e., Iterations 4-6) has been omitted, the reader can easily check
that the final result of the computation fits the one depicted in Fig. 2.4.

In the following, a number of properties concerning the set of elementary blocks
computed by Algorithm 2.2 are proven. These are later used to reveal the particular
morphology of the metastructure that synthesises the connection between the elemen-
tary blocks of an iterative state machine. This morphology is ultimately symbolised
through a metamodel called the shrinking graph of the iterative state machine.

Lemma 2.4. Let N' = (P, T,C) be an iterative state machine, pg € P be its idle
place, and By be the set of elementary iteration blocks of N'. There exists one and
only one elementary block By € Bar such that pg € By.

Proof. Before the main loop of Algorithm 2.2, the variable idle_pairs is initialised
with the set {(po, Min_Circuit(N,po))}. This set contains a unique pair, where place

2.3. The PC?R class 47

po indicates the idle place for the construction of the elementary iteration block. To
accomplish that we will use as seed a minimal circuit of A containing pg. From
this circuit, the algorithm adds all circuits containing place pg. This means that no
further step will be able to add a strongly connected state machine containing pg
because none of the places identified with the computed state machine will be visited
in future searches. U

Observe that, from Definition 2.2, two different elementary iteration blocks ob-
tained from a same iterative state machine can share, at most, a place that will be
the idle place of one of the two elementary iteration blocks, and the sets of transitions
of the two elementary iteration blocks are disjoint. This property is formalised in the
following Property.

Property 2.5. Let B; and B; be two distinct elementary iteration blocks ob-
tained from an iterative state machine, where B; = (p;, Psm,,Tsm,) and B; =
(pj» Pon;» Tomy)

a) PSMi n PSMj = {pz} or PSMi n PSMJ- = {pj} or PSMi n PSMj =0.
b) Tsm, N TSMj = (.

Proof. According to Definition 2.2, one of the two elementary iteration blocks will be
the first iteration block generated by the partition of Definition 2.2. Without loss of
generality, we can suppose that this first elementary iteration block is B;. The only
shared place that can be shared with B; is the place p;. This is the case if the places
of B; play the role of the set P, U {py} of Definition 2.2. Otherwise, Psn, N Psm; = 0.
The set of transitions is disjoint because they are strongly connected state machines
that only share one place at most. O

Another interesting property of elementary iteration blocks concerns the fact that
all minimal circuits of the iterative state machine are local to a unique iteration block.
This obviously matches the intuitive idea of iterative programming, in which all paths
of execution within an iteration block are confined to the very own iteration block.

Lemma 2.6. A minimal t-semiflow of an iterative state machine is contained in one
and only one elementary iteration block of the iterative state machine.

Proof. In strongly connected state machines, minimal t-semiflows are the minimal
circuits of the iterative state machine. Minimal circuits are contained in an elementary
iteration block, because Algorithm 2.2 proceeds in the definition of one elementary
iteration block by adding minimal circuits containing the idle place of the block. [

From Property 2.5 we can define a partial order relation between the elementary
iteration blocks.

48 2. The resource allocation problem in software applications

Definition 2.7. Let N = (P, T, C) be an iterative state machine, pg € P be the idle
place of N, and B be the set of elementary iteration blocks of N'. We define < as
a binary relation in By such that, for every pair of elements B;, B; of Bar, where

B; = (pi, Psm;, Tsm,) and By = (pj, Psm;, Tsu;)

Psyy, N Psu; = {pj s
or
3Bk = (pk, Psm,,, Tsm,,) € Bar such that
B; < By < B; and B; # By # Bj.

B; -<Bj Zﬁ

Lemma 2.8. The binary relation < defined on the set Bys of the elementary iteration
blocks of an iterative state machine is a strict partial order relation.

Proof. The relation is irreflexive since (i) Pom; N Pom; 7 {pi} because every iterative
state machine contains at least two places by Definition 2.2, and so does every elemen-
tary iteration block by Algorithm 2.2, and (ii) 3B, € By, By, # B;: B; < By, < B;.
Otherwise, following a recursive reasoning, there should exist a sequence of elementary
iteration blocks By, ..., By, with n > k > ¢, such that B; < ... < B < ... < B,,, where
B,, = B, and every elementary iteration block B;, with j € [i,n), shares (only) the idle
place pj1 with the next block in the sequence, Bj;1. Now let B, < Boy1 < ... < By,
where n > w > a > 1, be the shortest subsequence contained in it such that all its
elements are distinct except for B, = B,,. Obviously, one such subsequence with two
or more elements must exist since By # B;. Then for every elementary iteration block
Bj, with j € [a,w), an elementary path m; can be constructed from the idle place
p; to the next idle place p;y1. By concatenating the set of paths, m...m,, we obtain
a minimal circuit which contains transitions from at least two different elementary
iteration blocks, which is inconsistent with Lemma 2.6, reaching a contradiction.

On the other hand, the relation is trivially transitive according to Definition 2.7,
since it explicitly states that B; < By and By, < Bj, with B; # By, # Bj;, implies
that B; < B;. Note that, since the relation is irreflexive and transitive, it must be
asymmetric too. O

Definition 2.9. Let N = (P, T, C) be an iterative state machine, pg € P be the idle
place of N, and By be the set of elementary iteration blocks of N'. The shrinking
graph associated to N', Gnr, is a labelled (directed) graph Gy = (V, E, L), where:

1. V =By,
2. EQVXV:(BZ*,B]‘)EE iﬁBi<Bj andPSMiﬁPSM]. :{pj},
3. L:FE— P: L((B“B])) = Pom;, N PSM]- = {pj}.

Figure 2.5 illustrates the shrinking graph associated to the net in Fig. 2.4.

2.3. The PC?R class 49

Bo
PZ/\P4
B B,
P7 P9

Figure 2.5: Shrinking graph of the iterative state machine in Fig. 2.4

Lemma 2.10. Let N be an iterative state machine, py the idle place of N and Gnr
the shrinking graph associated to N'. Gn is a rooted tree and the root node is the
elementary iteration block containing the idle place pg.

Proof. First, Lemma 2.4 determines that there exists one and only one elementary
iteration block By € B containing the idle place pg. Since, by the way Algo-
rithm 2.2 proceeds, every minimal circuit in A/ containing py belongs to By then
#B; € By : B; < By, and therefore By has no input arcs in the shrinking graph.

Second, the shrinking graph is an acyclic graph, since there exists an arc between
two nodes B; and B; only if B; < Bj, and the binary relation < is an strict partial
order relation (Lemma 2.8).

Third, considering the way Algorithm 2.2 works, the shrinking graph must be
connected. In there, the construction of a new block is started only if there exists
a pair in idle_pairs. A pair in idle_pairs is only introduced when inspecting another
block which shares a special place with it: this place will be the idle place of the new
block. Therefore, an arc must exist between both blocks.

Fourth and last, each node in the shrinking graph can only have one parent node.
If it were not so, all parent blocks would share a common place: the idle place of the
child block. Since two blocks share a place only if this is the idle place of one of the
two (Property 2.5), then the idle place of the child node should be the idle place of
(at least) one of its parents too. This is impossible considering the way Algorithm 2.2
works: no pair (p1,7’) can ever be added to idle_pairs such that p; = py. O

The last lemma is straightforward considering that an elementary iteration block
is a strongly connected state machine:

50 2. The resource allocation problem in software applications

Lemma 2.11. Fach elementary iteration block is conservative and consistent.

So far, it has been established how the models of the processes that comprise the
system are constructed. In the next subsection, we will study how these models are
composed together with the resources to build a global model of the system that
meets the list of requirements introduced in Sect. 2.2. This is materialised through
the class of models PC?R.

2.3.2 Definition

PC?R nets are modular models composed by iterative state machines and shared
resources. Two PC?R nets can be composed into a new PC2R model via fusion of the
common resources. Note that a PC?R net can simply be one process modelled by an
iterative state machine along with the set of resources it uses.

The class supports iterative processes, multiple resource acquisitions, non-blocking
wait operations and resource lending. Inhibition mechanisms (such as processes that
can wait for a zero value of a semaphore) are not natively supported in general,
although some cases can still be modelled with PC2R nets.

Definition 2.12. Let Ix be a finite set of indices. A net of Processes Competing for
Conservative Resources (PC*R net) is a connected generalised self-loop free P/T net
N = (P, T,C) where:

1. P= PyU Ps U Py is a partition such that:
(a) [idle places] Py = UZ.E]N{pOi}.

(b) [process places| Ps = U;cy,, Pi, where:
Viely:Pi#0 andVi,j € Iy :i# j, PN P; =0.

(c) [resource places| Pg = {rs,...,mn},n > 0.
2. T =Ucq, Tis where Vi € In, T; # 0, and Vi, j € In,i # 3, Ti N T; = 0.

3. For alli € Iy the subnet generated by {po, }UP;, T; is an iterative state machine.
This is called the i-th process subnet.

4. For each r € PR, there exists a unique minimal p-semiflow y, € NPl such that
{r} =lyrll0Pr, lyrlN(PoUPs) #0, and yr[r] = 1.

9. Ps € Urep, (llyrl\ {r})-

In fulfilment of Requirement 8, the support of the y, p-semiflows (point 4 of
Definition 2.12) may include Py: this is new with respect to S*PR nets. For such a
resource place r, there exists at least a process which creates (lends) instances of r.

2.3. The PC?R class 51

As a consequence, there might exist additional minimal p-semiflows containing more
than one resource place. This is also new and will be discussed in Subsection 2.3.3.

In the following, By denotes the set of elementary iteration blocks of N, i.e.,
the set of elementary iteration blocks of each process subnet of A. Since all process
subnets are disjoint, the shrinking graph associated to N, Gy, is a forest of |Iy|
rooted trees holding the conditions of Lemma 2.10.

The next definition is strongly related to the notion of acceptable initial marking
introduced for the S*PR class. In software systems all processes/threads are initially
inactive and start from the same point (the begin statement). Hence, all of the
corresponding tokens are in the idle place at the initial marking (the process places
being therefore empty). The definition takes this into account and establishes a lower
bound for the marking of the resource places.

Definition 2.13. Let N' = (PyUPsUPR, T, C) be a PC*R net. An initial marking mg
is acceptable at level 0 (0-acceptable) for N iff |mo ||\ Pr = Py, andVp € Ps,r € Py :

yo' -mo=mo[r]+ Y yrlpo] - molpo] > yr[p]

po €PNyl

Note that Definition 2.13 traces a lower bound for the initial marking of each re-
source place r € Pg (namely, Vp € Ps : mo[r] = y»[p] — 3=, cpyn|ly.| Y= [Po] - mo[po]).
If the marking of some resource place is below that bound, then there exists at least
one dead transition at the initial marking, as later proved in Subsection 2.4.1. But
having a marking which is above that bound does not guarantee, in the general case,
that there do not exist dead transitions. Again, all of this is more profoundly discussed
in Subsection 2.4.1.

Nevertheless, it is worth stressing at this point that an S*PR net system with
an acceptable initial marking cannot have any dead transition at the initial marking
(since every minimal t-semiflow is firable in isolation from it). Hence the use of the
suffix at level 0 in Definition 2.13, in spite of introducing a concept which collapses
with the definition of acceptable initial marking for the S*PR subclass, as proved a bit
later in Subsection 2.3.3. By refining this definition, the fact that they may induce
different behavioural patterns in the general case is stressed. Note that in earlier
works [LGC12], this refining is not used. However, it is introduced here for the sake
of clarity.

Note that in the following, when the context does not allow any ambiguity, the
term acceptable initial marking may be used to refer to O-acceptable initial markings
in a more concise way.

Finally, note that resource places whose support includes some idle place may
be empty for a 0-acceptable initial marking. Figure 2.2 shows a PC?R net with a
0-acceptable initial marking. This net does not belong to the S*PR subclass.

52 2. The resource allocation problem in software applications

2.3.3 Hierarchy of classes and p-semiflows

In the following definition we stress the main differences between the well-known
classes of the S"PR family. Observe that these differences are essentially associated
to the places belonging to the support of the p-semiflows of the resources.

Definition 2.14. Previous classes of the S"PR family are defined as follows:
e An S°PR net [LGC06] is a PC*R net where Vr € Py : ||y»|| N Po = 0.

e An S*PR net [Tri03, TGVCE05] is an S°PR net where Vi € In the subnet
generated by {po,} U P;, T; is a strongly connected state machine in which every
cycle contains po, (i.e., a iterative state machine with no internal cycles).

o An S*PR net [ECMY95] is an S*PR net where ¥p € Ps:|**p N Pr| = 1 and
pN Pg = p N Pr.

o An L-S*PR net [EGV(C9S] is an S°PR net where Vp € Ps: |*p| = [p®| = 1.
Remark 2.15. L-S°PR C SPR C S#PR C S°PR C PC*R.

The preceding remark is straightforward from Definition 2.14. It is worth not-
ing that Definition 2.13 collapses with the definition of acceptable initial markings
respectively provided for those subclasses [ECM95, EGVC98, TGVCE05]. That for
the S*PR subclass is provided in Definition 1.2. In a similar vein, we can define the
concept of acceptable initial marking for the S°PR subclass:

Definition 2.16. Let N' = (PyU Ps U PR, T, C) be an S°PR net. An initial marking
my is acceptable for N iff |mo|| \ Pr = Py, and ¥p € Ps,r € Pr : mg[r] > y.[p].

The latter also collapses with Definition 2.13, since y,I - mg = y,[r] - mo[r] +
Yepa\fry Yrelr'T-molr']) + 30 e p (Yo [p] - molp]) + 32, e p, (¥r[Po] - mo[po]) = mor]
(mind that, by Definition 2.12, y,.[r] = 1, |ly=|| N Pr = {r} and mg[Ps] = 0 and, by
Definition 2.14, ||y.|| N Py = ().

Besides, there exists another class for Sequential RASs, called SPQR [LGCO06],
which is dealt with in Sect. 2.5. This class does not strictly contain or is contained
by the PC?R class. Yet, there exist transformation rules to travel between PC?R and
Structurally Bounded (SB) SPQR nets. Note that, by construction, PC?R nets are
conservative, and hence SB, but this is not true for SPQR nets. The SPQR class
seems interesting from an analytical point of view thanks to its syntactic simplicity,
as discussed in Subsection 2.5.

One perspective for inspecting the differences between the subclasses of PC?R is
that of the form and number of minimal p-semiflows. All subclasses are conservative
by definition. Let yg, denote the unique minimal p-semiflow induced by the iterative
state machine generated by restricting N to ({po, } U P;, T;).

2.3. The PC?R class 53

Lemma 2.17. Let N' = (P, T,C) be a PC*R net. A basis of the left null space of the

incidence matriz C contains |Pr| + |In| vectors.

Proof. For every r € Pr, let yo = y» — > i/ Ve[po] - ¥s,- The set of vectors
A={ys,|i €Iy} U{y, | r € Pr} contains |Pg| + |Ix]| vectors and they are linearly
independent, because for each p € Pgr U Py there exists one and only one distinct
vector y € A such that y[p] =1 and Vy' € A, y' #y, y'[p] = 0. Moreover, A is a
basis because there is no other vector linearly independent with the vectors of A. This
last statement is proved by contradiction. Let us suppose that there exists y being a
left annuller of C and y cannot be generated from vectors of A. Construct the vector
Y =y = 2icn YPol - ¥s, — > cp, YTl -y, . Obviously, y' is a left annuller of A/
because so are the vectors of A and y, but ||y’|] C Ps, and this is not possible because
there are no annullers of the iterative state machines without their idle places. O

Now let B be a matrix of dimensions (|Pr|+ |[Ix]) X |P| of integers such that the
rows of B are the set of vectors A defined in the previous proof.

Lemma 2.18. If N is an S°PR net, B is a non-negative canonical basis of p-
semiflows.

Proof. By reordering columns in B so that the first ones correspond to Pgr U Py, and
subsequently reordering the rows of B, a matrix of the form [I | B'] is obtained, where
I is the identity matrix of dimension |Pgr| + |Ix|, and B’ is a matrix of dimensions
(|Pr| + |In|) X | Ps| of non-negative integers, since in S°PR nets, Vr € Pr, y»[Po] =0
and y, =y O

Corollary 2.19. If N is an S°PR net, then every row in B belongs to {0,1}71.

However, nets belonging to the S*PR class may have non-binary minimal p-
semiflows. Furthermore, PC?R. nets feature a new kind of minimal p-semiflows:

Lemma 2.20. If N is a PC*R net but not an S°PR net, there exists at least one
minimal p-semiflow whose support contains more than one resource place.

Proof. Since N is not an S°PR net, there exists r € Pgr, i € Iy such that po, €
||yl In that case, there exists at least one p € P; such that p ¢ ||y, (otherwise,
¥r—ys, > 0 and y, is not minimal). Let A be the minimal set of minimal p-semiflows,
{¥u|u € Pr}, that are essential to cover every p € P; such that y.[p] = 0. This
means that y,, € Aiff Ip € P;, y.[p] =0, yu[p] # 0 and Vy, € A, Yo # Yu : Yu[p] =
0. By Definition 2.12.5, this set A exists. We construct y, = yr + > 4 Yu
that obviously contains, at least, the p-semiflow yg,. Therefore, y.. = y. —k-ys,,
k = minye|ys | {y7[p]}, is a p-semiflow by construction, and y, [Pr] = y[Pr]. In
the same way, we detract other ygs, that can be contained in y,..

If y,© is a minimal p-semiflow then the lemma is true, since the support of y,.
contains more than one resource place. Otherwise, three facts must be considered:

54 2. The resource allocation problem in software applications

1. By construction, y, cannot contain any ys;, Vj € Iy, since all those have been
maximally detracted.

2. The p-semiflow y, does not contain any minimal p-semiflow y, covering one
single resource place. By contradiction. Let us suppose that y, contains y,,.
The resource v must be either r or a resource for which its minimal p-semiflow
Vo isin A. If v is r then y,[r] = y, [r], and (¥, — ¥v)[po,] < 0. Therefore,
a contradiction is reached. If v holds y, € A then y,[v] = y, [v] because the
weight y. [u] is not modified by the previous operations. And (y,. —y»)[p] <0
for some p € P; for which y, becomes essential in the set A, since y,. [p] <

Yvu)] — k.

3. Last, there must exist one minimal p-semiflow y, ~ such that ||y, ~| C ||y, |
(otherwise, y,. is minimal). Considering the two previous facts, the support of
vy, ~ contains more than one resource place.

O

In other words, the above result reveals that the set of minimal p-semiflows con-
tains strictly a basis of the left null space of the incidence matrix C.

2.3.4 Basic structural properties
Trivially, the next lemma follows:
Lemma 2.21. Every PC*R net is conservative.

On the other hand, each PC?R net is consistent, and so is every net belonging to
the rest of subclasses.

Lemma 2.22. Every PC?R net is consistent.

Proof. Let N be a PC?R net. The process subnets of N are strongly connected
state machines (indeed, they are iterative state machines) and therefore each one
is consistent, i.e., every transition ¢t of A/ is covered by at least a t-semiflow of the
iterative state machine containing ¢. It will be proved that these t-semiflows are also
t-semiflows of the net N. Indeed, if x is a t-semiflow of N without resources it is
enough to prove that Vr € Pg: C[r,T] - x = 0. Taking into account Definition 2.12,
point 4, C[r,T] = =3 o \r} Yr [P - Clp, T}, and therefore:

crT-x=—{ 3 vl-CpTl| -x=— 3 y.lpl-ClpT]-x=0.

pElly-\{r} pElly-II\{r}

Hence, N is consistent. O

2.3. The PC?R class 55

Observe that conservative and consistent nets are called well-formed nets [Ter04]
because this is a necessary condition for structural liveness and structural bounded-
ness.

The next lemma is rather obvious and a well-known result in the Petri net litera-
ture but, for practical reasons, it is nonetheless stated for our restricted class of nets
since it will often be used in proofs of this and some other forthcoming chapters.

Lemma 2.23. Let N be a conservative P/T net, and y € NPl be o p-semiflow of
N. The support of y, ||yll, is both a siphon and a trap of the net.

Proof. Since y is a p-semiflow, each column of the incidence matrix must be annulled
by y, ie., y - C[P,t] = 0, for every ¢ € T. In order to annul each column for
its corresponding transition ¢ in the set *(||y|) U (|ly]|)® at least one input and one
output place of ¢ is needed. Therefore *(||y||) = (|ly|l)®, i-e., [|y| is both a siphon and
a trap. O

Now an analogous lemma can be stated for the dual case of t-semiflows. This
lemma plays an instrumental role in subsequent proofs.

Lemma 2.24. Let N be a consistent P/T net. FEvery t-semiflow x of N holds *||x|| =
I]°-

Proof. The dual net of a consistent net is a conservative net. By Lemma 2.23, the dual
p-semiflow of x is the support of both a siphon and a trap. Then ®||x|| = ||x||*. O

The proof of Lemma 2.22 shows that a minimal circuit is always the support
of a t-semiflow (and vice versa). On the other hand, Lemma 2.6 proves that each
minimal circuit is local to a unique iteration block. Therefore, the next lemma is
closely related to the conservativeness in the use of resources within the circuits of an
elementary iteration block. The conservativeness for the whole elementary iteration
block is finally proved by Lemma 2.26.

Lemma 2.25. Let N be a well-formed P/T net, and x be a t-semiflow of N'. The
subnet induced by x, i.e., the subnet generated by *||x||, ||x]|, is conservative.

Proof. N is conservative, i.c., 3y € NIl y > 0:yT.C = 0. Therefore, Vt € ||x]| :
yT - C[t] = 0. Since, by Lemma 2.24, *||x|| = |x||*, then C[P \ *|x||,|x|]] = 0.
Therefore, y T [*||x||] - C[*||x]|, |x||] = 0 and the lemma holds. O

Lemma 2.26. Let N' be a PC*R net, and B = (p, Psy, Tsy) be an elementary
iteration block of a process subnet of N, B € By. The use of resources in B is
consistent and conservative (i.e., the subnet generated by *Tsp, Tsn is consistent
and conservative).

56 2. The resource allocation problem in software applications

Proof. Lemma 2.11 proves that every elementary iteration block is consistent in iso-
lation. Since N is a state machine, the t-semiflow that covers all the transitions in
the block is also a t-semiflow of A/. On the other hand, Lemma 2.25 proves that the
subnet induced by a t-semiflow in A/ is conservative. Therefore, the use of resources
in B is conservative. O

The above result states that not only a PC?R net is globally well-formed, but
also that so is every elementary iteration block augmented with the resource places
it interacts with, considered from a local perspective.

Finally, we want to formalise that PC?R nets correspond to an RAS view of sys-
tems since the so-named resource places have a behaviour according to the actual
experience or intuition that software engineers have about conservative resources.
This means that if we have enough copies of a type of resource then it is not a con-
straint to the system of processes and can be removed from the analysis of the RAP.
This intuitive idea is captured in Petri nets by means of the concept of Structurally
Implicit Place (SIP). An SIP is a place whose row in the incidence matrix can be
obtained as a non-negative linear combination of other rows of the incidence matrix.
This property, essentially a structural property, leads to that if we have the freedom to
select the initial marking for these places, we can make them implicit places and then
they can be removed from the net maintaining the same set of occurrence sequences
of transitions. The next result points out this structural property.

Lemma 2.27. Let N' be a PC?R net and v a resource place of N'. The place r is
structurally implicit and

crntl=- Y wbl-ChTl+ Y Kiys.

pElly-IIN{r} Vil lys; I0lly=l#0

where K; = max{y,[p] | p € |lys; |}

Proof. The result is trivially true because from the definition of PC?R net, there
exists a unique p-semiflow such that {r} = |ly»|| N Pr, (P U Ps) N |ly-|| # 0 and
y»[r] = 1. Therefore, pre-multiplying the incidence matrix by the vector y,, we can
construct the following equation:

Clr,T]= - Z y=[p| - Clp, T

pElly=IIN{r}

Obviously, this is a non-negative linear combination of rows of the incidence ma-
trix. But we know that, for each iterative state machine i, there exists a minimal p-
semiflow ys, € {0, 1}|P| that we can add to the previous equation because ys,T-C = 0,
but weighted by the greatest coefficient y,.[p] of those places p belonging to the i-th

2.3. The PC?R class 57

Figure 2.6: A rather simple PC*R net

iterative state machine. Applying this procedure to all iterative state machines vis-
ited by the p-semiflow of r we obtain a non-negative linear combination of rows of
the incidence matrix as follows:

C[rvT}:_ Z yr[p]-C[)T]+ Z Kr)’si

pElly=IN{r} Vil lys, INlly=-ll#0

where K; = max{y,[p] | p € |lys,||}. That is, r is a structurally implicit place. [

Observe that this linear combination of process places and possibly some idle
places is unique. Nevertheless, we can have other linear combinations including not
only process places or idle places, but also other resource places present in the net.

For example, in the net depicted in Fig. 2.6, if we consider the resource place R2,
we have two different equations to obtain the row of R2 in the incidence matrix:

C[R2,-] = C[A0,-] + C[A2,-] + C[BI,]
C[R2,-] = C[R1,-] + C[R3,-] + C[A2,]

Observe that, in the first equation, the implying places are only process places,
A2 and B1, as well as the idle place A0. Nevertheless, the second equation contains
as implying places the resources R1 and R3.

According to the theory of structurally implicit places [GVC99], if we are consid-
ering SIPs in structurally bounded nets then we can compute a finite initial marking
for a SIP making it an implicit place. For example, we can compute a bound of the
minimal initial marking for the place R2 in the net of Fig. 2.6 to make it implicit. This
is accomplished by resolving a linear programming problem [GVC99]. The obtained
result is 2, that is, the minimum initial marking for the place R2 to be implicit is
equal to 2. Therefore, R2 in the figure is implicit.

58 2. The resource allocation problem in software applications

This small value for this initial marking of the place R2 is due to the second previ-
ous equation because the more restrictive places to the firing of the output transitions
of place R2 are the resource places and not the process and idle places of the first
equation.

This apparently instrumental result allows us to obtain interesting conclusions.
The first one says that we must analyse if the resources of a PC?R net system are
implicit or not, because if some of them are implicit, we can remove them and then
we can simplify further analysis (less siphons, for example) or even we can fall in a
subclass where we can find stronger results that can be applied. The second conclu-
sion says that we can conclude that these nets are structurally live and structurally
bounded.

Lemma 2.28. Every PC?R net is structurally live and structurally bounded

Proof. The net is conservative, therefore it is structurally bounded. All resource
places are structurally implicit places, therefore if we consider an initial marking
where: (i) All resource places have an initial marking making each one implicit; and
(ii) All idle places contain at least one token; then the net is live. In effect, if the
resource places are implicit then we can remove them and the language of occurrence
sequences remains unchanged. Therefore, the resulting net is composed by a set
of strongly connected state machines, each one containing at least one token, and
therefore, each one is live. If our net is live, is structurally live. O

That is, structural implicitness of resources, and the acceptable initial markings
guarantees structural liveness and structural boundedness in PC?R.

2.4 A cross-sectional view on the liveness analysis
problem

So far, it has been introduced a Petri net class (the PC?R class) which fulfils the list
of basic model requirements introduced in Sect. 2.2. In this section, it is proved that
finding a structural characterisation of the liveness problem reveals itself much harder
than was for previous (sub-)classes used in the FMS context.

The discussion is divided into three parts. In Subsection 2.4.1, the hard problem of
establishing an acceptable initial marking in general PC?R nets is investigated. This
problem was trivial for earlier net subclasses in the S"PR family. In Subsection 2.4.2,
it is reminded how siphons structurally capture the problem of liveness in those sub-
classes, and evidenced that this kind of siphons is no longer sufficient to characterise
non-liveness in the multithreaded software domain. Finally, in Subsection 2.4.3, some
other properties strongly related to liveness analysis are inspected.

2.4. A cross-sectional view on the liveness analysis problem 59

2.4.1 Acceptability of the initial marking: The 0-1 zone

In Subsection 2.3.2 it was introduced the notion of 0-acceptable initial marking. As
explained there, it is a generalisation of the notion of acceptable initial marking
which was introduced for the S"PR subclasses (see, e.g., Definition 1.2 for S*PR, and
Definition 2.16 for S°PR).

One common factor in those subclasses is that any initial marking which is not
acceptable just because of a lack of tokens in the resource places (i.e., it is not accept-
able in spite of having ||mg|| \ Pr = FPp) guarantees that there is a dead transition
at the initial marking (and therefore the net system is non-live). Thus, this kind of
markings can be discarded from the very beginning.

This is a property which can be extended to PC2R nets and 0-acceptable initial
markings. The next theorem proves that. Although it can be trivially extended for a
more general class of conservative Petri nets, it is specialised here for PC?R nets for
the sake of clarity:

Theorem 2.29. Let (N, mg) be a PC*R net system with an initial marking such
that |mo||\ Pr = Py but Ip € Ps,y € NIl such that yT-C =0 and yT -mg < y[p].
Then at least one transition is dead at mg.

Proof. By multiplying both sides of the net state equation by yT we get: y* -m =

y' - mog+yT -C-0 =y" mg. Thus, for every m € RS(NM,mg):0 < y' - m =

yT -mg < y[p]. Since m,y > 0 then y[p] - m[p] < yT
mlp] = 0. Thus p is empty for every reachable marking, so all its input and output

transitions must be dead. O

-m < y[p|, and therefore

Nevertheless, another common factor for the S°PR and simpler subclasses is that
having an acceptable initial marking guarantees that every minimal t-semiflow is
eventually realisable from the initial marking. This ultimately implies that every
transition is firable an arbitrary number of times since these nets are consistent by
Lemma 2.22. This is later discussed in Subsection 2.4.3 and proved in Theorem 2.40.

On the contrary, there exist PC2R net systems with 0-acceptable initial markings
such that there exist dead transitions at those initial markings. In some cases, the
observation of a set of minimal p-semiflows provides enough information to infer the
deadlock. In those cases, at least one of the minimal p-semiflows must have two or
more resource places in its support (i.e., the set cannot be a subset of A, as defined
in Subsection 2.3.3). As a result, such nets cannot belong to the S°PR subclass, since
in that case every p-semiflow belongs to the set A by Lemma 2.18.

One of such nets is depicted in Fig. 2.7. The net also proves that the reverse
of Theorem 2.29 is false in general for the PC?R class: in this case, no (minimal) p-
semiflow provides enough information when observed isolately. This is straightforward

60 2. The resource allocation problem in software applications

A0?, B0?, CO, R1, R2
T1 T4

T3 Y X T6

(Ao Al, 502 €0, R2, R3 A0? BO, B1, CO, R2, R4>

T6
T5
Ty ™
A0, A2, BO?, co R1, R3? (AOZ, BO, B2, CO, R1, R4*
73" 'T6

T4 T1

\‘(Ao, A2, B0, B1, C0, R&” R4) (A0, AL, BO, B2, CO, R3, R4“)‘/

Figure 2.7: Non-live PC?R net system with a 0-acceptable initial marking. No (minimal)

p-semiflow reveals, when considered in isolation, that T7 and T8 are dead at mg

from the complete set of minimal p-semiflows, represented by the following place
invariants:

m[A0] + m[Al] + m[A2] =2

m([B0] + m[B1] + m[B2] = 2

m[C0] + m[C1] =1

m[R1] +m[Al] + m[Bl] =1

m[R2] + m[A2] + m[B2] =1

m[R3] + 2 m[A0] + m[A1] + 2 - m[C1] = 4

m[R4] + 4 - m[B0] + 3- m[B1] + 2 - m[C1] = 8

2. m[R1] + 4 - m[R2] + 2 - m[R3] + m[R4] + m[B1] + 6 - m[C1] = 6

m[R1] +4- m[R2] + 3- m[R3] + m[R4] + 2 - m[A0] + 8 - m[C1] =9

m[R1] + 4 - m[R2] + m[R3] + m[R4] + 2 - m[A2] +4-m[Cl] =5

m[R1] +4 - m[R2] + m[R4] + m[A1] +4 - m[A2]+ 2 -m[Cl] =5
3-m[R2] + 3 - m[R3] + m[R4] + 3 - m[A(0] + m[B0] 4+ 8 - m[C1] = 11

3-m[R2] + m[R4] +3 - m[A2] + m[B0] +2-m|[C1] =5

m[R1] + 2 - m[R2] + m[R3] + m[B1] + 2 - m[B2] + 2 - m[C1] = 3

m[R2] + m[R3] + m[A0] + m[B2] + 2 - m[C1] = 3

Nevertheless, the fact that there exist dead transitions can be determined from the

2.4. A cross-sectional view on the liveness analysis problem 61

marking of a subset of minimal p-semiflows. From the invariant m[R1] +4 - m[R2] +
m[R3] + m[R4] + 2 - m[A2] + 4 - m[C1] = 5 it can be inferred that m[R1] + m[R3] +
m[R4] > 1, since 5 is an odd number. If we combine this result with the invariant
2-m[R1]+4 - m[R2] + 2 - m[R3] + m[R4] + m[B1] + 6 - m[C1] = 6 then we conclude
that Vm € RS(NV, mg) : m[C1] = 0. Since C1 is already empty at mg, both its input
(T7) and output transitions (T8) are dead.

Note that the above system has a solution in the field of the real numbers
[A0%5, A1, A2°5 B0'5, B2°®, R3%, R4?] such that T7 is enabled, in spite of not hav-
ing any analogous solution in the non-negative integer field. This is due to the
convexity of the solution space of this net system. That real number solution is
the midpoint of the segment between the reachable markings [A1, A2, B0?, R33] and
[A0,A1,B0,B2,R3% R4%]. Therefore, in order to ‘cut’ this solution from the state
space (in other words: to explain that this solution does not belong to it) it is not
enough with a unique straight line (i.e., linear equation) but several of them (in this
case, two).

In some other cases, however, the death of a transition cannot be detected
by taking into account (solely) the set of (minimal) p-semiflows, as proved
by the net of Fig. 2.8. In this case, the non-linear invariant (m[R1] < 1) Vv
(m[R2] < 1)V(m[R3] < 1) cannot be inferred from the p-semiflows, since the marking
[A0,B6,C0,R1,R2,R3] is a solution of the system which is not a reachable marking.
A non-negative canonical basis of p-semiflows follows:

m[A0] + m[A1] + m[A2] + m[A3] + m[A4] + m[A5] + m[A6] =1
m(B0] + m[B1] + m[B2] + m[B3] + m[B4] + m[B5] + m[B6] =1
m[C0] + m[C1] =1
m[R1] + m[A1] + m[A4] + m[BO] + m[B3] + m[C1] =1
m[R2] + m[A2] + m[A5] + m[B1] + m[B4] + m[C1] =1
m[R3] + m[A3] + m[A6] + m[B2] + m[B5] + m[C1] =1
m[R4] + m[A0] + m[B3] + m[B5] =1
m[R5] + m[A4] + m[A6] + m[B6] =1
m([R1] + m[R2] + m[R3] + m[R4] + m[BO] + m[B1] + m[B2] + 2 - m[B3] +
m[B4] + 2 - m[B5] + 3 - m[C1] = 3
m[R1] + m[R2] + m[R3] + m[R5] + m[Al] + m[A2] + m[A3] + 2 - m[A4] +
m[A5] +2-m[A6] +3-m[C1l] =3

m[R1] + m[R2] + m[R3] + m[R4] + m[R5] + m[A4] + m[A6] + m[B3] +
m[B5] + 3 - m[C1] = 3

62 2. The resource allocation problem in software applications

B2 T10 B3 T11 B4 T12 B5 T13 B6 T14
Bl

A0, BO, CO, R2, R3, R5
(A5, B0, C0, R3, R4, R5)} T6-(A6, BO, C0, R2, R4 —T7»(] 5) (no.B2,Co.RL R2, Rs)—n‘

-
T‘14 38 T8 j T9™(AL, B2, CO, R2, R4, R5 —T2—

(As, B6, CO, RL, R3, R4> (AG, B1, CO, R1, R4>—T7 T9 T10—(A2, B2, CO, R1, R4, R5)
Z _Al, B1, CO, R3, R4, RS

1 ~

(5, B5, C0, R1, RS)« T5—((A4, B5, C0, R2)+ T12(A4, B4, CO, R, R4 JT4—{ A3, B4, CO, RL, R4, R5) T11——(A3, B3, CO, R2, RS)

Figure 2.8: Non-live but reversible PC2R net system with a 0-acceptable initial marking.

T15 and T16 are dead at mg. No minimal t-semiflow is ever realisable

Unfortunately, the problem of removing all the spurious solutions of a net system
is a very hard one, even for very simple net classes. In Chap. 5 it is proved that the
problem of deciding if a net state equation solution is spurious from the net structure
is co-NP-complete for the S*PR subclass. This implies that, in the case of PC?R net
systems, the problem is co-NP-hard.

The above discussion suggests the convenience of establishing a second frontier of
initial markings from which the eventual firability of every transition is guaranteed.
For coherence with the classical definition of acceptable initial marking, we establish
a second frontier from which every minimal t-semiflow is eventually realisable. Note
that this is a stronger condition: indeed, there exist live PC?R net systems in which
no minimal t-semiflow is ever realisable, as the net in Fig. 2.9 proves. Observe that the
two minimal t-semiflows correspond to the two process paths in the net. Nevertheless,
every cycle in the reachability graph of this net system is labelled with the transitions
of both t-semiflows. That is, the minimal t-semiflows are not firable in isolation.

2.4. A cross-sectional view on the liveness analysis problem 63

(r0,B0,R1,R2,R3)
A3,BO.RLR2R4)) (Al’ BO, R2, R3, R4>‘ T1 T3T9 A0, B3, R1, R2, RS
T14

= T7—* T1
A2,BO, R1, R3, R4 Ja-1, 4 A0, B2, R1, R3, R5
AL, B6, R2, R5 A6, B1, R2, R4 T7
p'8 | T
T13
(AZ, B1, R3, R4, Rs) (AZ, B6, R1, R5)+T2/ LCREEY 1\ 5> R1, R4 AL, B2, R3, R4, R5
T8 T1
T10

T3
]
AL, B3, R2, R4, R5
T2

A3, B1, R2, R4, Rs) CAl. B5, R3, R4, R5>

A

A5, B1, R3, R4, R5

79—
14»(A4,B2,R3,R4) T1 AW A2, B4, R3,R5 SISH)
A3, B2, R1, R4, R5 A2, B3,R1, R4, R5
A5, B3, R1, R4, R5)4-T5_(pz B3, R2.RA) o 14 T12

T11

J T4
A5, B4, R3, R5)—T6-{ A6, B4, R2)~T12»(A6, B5, R1, R4) T5T13

Figure 2.9: Live PC?R net system with a O-acceptable initial marking for which no minimal

t-semiflow is ever realisable

Definition 2.30. Let N = (PyU PsU PR, T,C) be a PC*R net. An initial marking
myg is acceptable at level 1 (1-acceptable) for N iff ||mol||\ Pr = Py, and Vp € Ps,r €
Pr : mo[r] > yr[p] — yr[po], where py is the idle place of the process subnet which p
belongs to.

The initial marking established by Definition 2.30 is greater, in general, than the
minimum initial marking required by the definition of 0-acceptable initial marking
(Definition 2.13), because in this new definition we diminish only with the initial
marking of the idle place of the state machine of p. 1-acceptable initial markings
can make much sense in the context of developing good practices in multithreaded
programming. What is essentially requiring is that a single thread can be entirely
executed in isolation, without requiring the intervention of any other process as far
as the allocation of resources refers.

64 2. The resource allocation problem in software applications

Observe that, once again, the definition of this kind of initial markings collapses
with the definition of acceptable initial marking provided for subclasses such as S?PR
or S*PR, since no idle place belongs to any p-semiflow of resources in those cases.

Theorem 2.31. Let (N, mg) be a PC?R net system with a 1-acceptable initial mark-
ing. Then every (minimal) t-semiflow is eventually realisable.

Proof. 1t will be proved that a single token can be extracted from any idle place at mg
and be freely moved in isolation through its corresponding iterative state machine.
Let M be the subset of reachable markings such that one and only one process place is
(mono-)marked, i.e., My = {m € RS(M,my) | Ilp € Ps: m[p] =1, |m| N Ps = {p}}.

First, every t € Py* is enabled at mg since *t C Py U Pg and, by the definition of
l-acceptable initial marking, Py C [jmg|| and Vr € Pr : mo[r] > y»[q] — ¥~ [po], where
q = t* N Ps and py is the idle place of the process subnet which ¢ belongs to. Since
Prer,t] = max(0,y,[¢] — yr[po]) and mg[r] > 0 then mg[r] > Pre[r,¢]. By firing ¢ a
marking of Mj is reached.

Without loss of generality, let m € M;. It will be proved that every transition
t € (lm|| N Ps)*® is enabled. Let {p} = *¢tN Ps, and py be the idle place of the process
subnet which p belongs to. For every r € Pr the following invariant holds: y, -m =
yr-mg. This can be rewritten as follows: y.[r]- m[r]+y[po]- m[po]+3_c g\ (poy (Vr[s]*
mls]) + yolp] - mlp] = yolr] - mo[r] + v [po] - m0[Po] + 32, c (o (Y15 - Mos]). Sinee
mp] =1, mpg] = mgpo] — 1, y»[r] =1 and Vs € Py \ {po} : m[s] = mg[s] then it is
derived: m[r] — y.[po] + y=[p] = mo[r]. And, finally, m[r] = mg[r] + y=[po] — y+[p]-
It must be proved that m[r] > Pre[r,t]. Now two cases are distinguished:

e Ift*NPs = () then Pre[r, t] = max(0,y,[po] —y=[p]). Since m[r] > 0 then it only
must be proved that m[r] > y,.[po] — y-[p]. Since m[r] = mo[r] + y,[po] — y=[p]
and mg[r] > 0 then V7 € Pg : m[r] > Pre[r,t] and m—".my.

e Otherwise, {¢} =t* N Ps and Pre[r,t] = max(y,[q] — y»[p],0). Since m[r] >0
then it only must be proved that m[r] > y,[q] — y-[p]- By Definition 2.30,
mo[r] > yr[q] — yr[po] Then m[r] = mo[r| + y[po] — y=[p| = y=[d] — y=[po] +
yr[po] — yr[p] = ¥rla] — y»[p]. Thus, Vr € Pg: m[r] > Pre[r,t]; i.e. m—m’,
m’ € M;.

It has been proven that an isolated token can be carried from mg[FPp] to any
arbitrary p € Ps. If p belongs to a circuit, we can take that token and make it travel
around the circuit. Since every t-semiflow corresponds to a circuit in a state machine
(as proven for the dual case of circuits of marked graphs and p-semiflows [Mur89]),
and PC?R nets are consistent by Lemma 2.22, the theorem holds. O

A marking which is 1-acceptable (Definition 2.30) is also 0-acceptable (Defini-
tion 2.13), although the opposite is not true in general, as proved by Fig. 2.9. Both

2.4. A cross-sectional view on the liveness analysis problem 65

8 A A¢ A
+ -
\\\\‘ I -
Level 0 of -5
acce‘;)tability I t= Level 1 of
of initial acceptability of
markings I initial markings
(0-acceptable) I (1-acceptable)
)
& I
EO | Some >
transition is .
No transition
dead at mg i
\ is dead (yet?)
1
)’\’ \ atmg
/r > —
/ — >
r'e
o Frontier: For every p-semiflow y, process place p: y™-mg > y[p]

0 mo(Rj) +o

Figure 2.10: Schematic of the 0-1 zone of acceptable initial markings for general PC?R.
nets. It is assumed that ||mo|| \ Pr = Po and that mo[FPy U Ps] remains fixed

frontiers (that of 0-acceptable initial markings, and that of 1-acceptable ones) collapse
into the definition of acceptable initial markings for the S°PR and lower subclasses.
Unfortunately, for general PC2R nets out of those subclasses, there exists a ‘dark
region’ in which it may be very difficult to determine if there exist dead transitions:
we name this the 0-1 zone. Figure 2.10 depicts how such 0-1 zone might look like.

At this 0-1 zone, it is worth noting the monotonicity (with respect to the marking
of the resource places) of properties such as the absence of transitions which are
already dead at my or the eventual firability of a t-semiflow. This is due to the fact
that increasing the initial marking of a resource place preserves every firing sequence,
although some new firing sequences may be added. However, liveness is not monotonic
there. Indeed, there may exist live systems in the 0-1 zone, but increasing the marking
of resource places can make them non-live due to the addition of firing sequences
which lead to deadlocks, while still staying at the 0-1 zone. The net in Fig. 2.11
illustrates this. As depicted, the net system is live. But if the initial marking of R2
is increased from 1 to 2 tokens, then a new reachable marking appears which is a
deadlock ([A2,B2]).

66 2. The resource allocation problem in software applications

A0, BO, R2
Tl T4

Al, BO, R1, R2 A0, B1, R2, R3

T1

T4
Al,B1,R1,R2,R3
T6 T3
T5 2

T
Al, B2, R3 A2,B1, R1

Figure 2.11: Live PC?R net system with a O-acceptable initial marking. Increasing the

initial marking of R2 makes the system non-live while staying at the 0-1 zone

2.4.2 Liveness characterisation and siphons

Traditionally, empty or insufficiently marked siphons have been a fruitful structural
element for characterising non-live RASs. The more general the net class, however,
the more complex the siphon-based characterisation is. The following results can be
easily obtained from previously published works. The originality here is to point out
the strict conditions that the siphons must fulfil.

Theorem 2.32. Let (N, mg) be an SPPR net system with an acceptable initial mark-
ing. (N,mg) is non-live iff Im € RS(N, mo) and a minimal siphon D : m[D] = 0.

Proof. Tt has been proved that (N, mg) is non-live iff 3m € RS(N, mg) and an empty
siphon D at m, i.e. m[D] = 0 [ECM95]. Hence, the sufficient part is straightforward.
Now suppose that the empty siphon D is not minimal. Then there must exist a
minimal siphon D’ C D. Since m[D’] = 0, an empty minimal siphon exists. O

For instance, the S?PR net system in Fig. 2.12 is non-live with Ky = K; = 1,
K3 = 2. From this acceptable initial marking, the marking [A4, B4, R2,R3%] can be
reached by firing 0 = TB1 TA1 TB2 TA2 TB3 TA3 TB4 TA4. This firing sequence
empties the siphon {A1,B1, A5, B5,R1,R4}.

However, this characterisation is sufficient, but not necessary, in general, for S*PR
net systems. Hence, the concept of empty siphon had to be generalised. Note that the
following theorem was already stated in Sect. 1.4 (see Definition 1.3 plus Theorem 1.4),
although it is reminded here for the sake of self-containment of the section.

Theorem 2.33. [TGVCEO05] Let (N, mg) be an S*PR net system with an acceptable
initial marking. (N, mg) is non-live iff 3Im € RS(N, mg) and a siphon D such that:
i) There exists at least one m-process-enabled transition; i) Every m-process-enabled

2.4. A cross-sectional view on the liveness analysis problem 67

Figure 2.12: S*PR net which is non-live iff (Ko > K1, K3 > 2) V (Ko -K; -K3 = 0). Note
that mo is an acceptable initial marking iff (Ko - K - K3 # 0)

transition is m-resource-disabled by resource places in D; iii) Process places in D are
empty at m.

Such a siphon D is said to be insufficiently marked at m. In Theorems 2.32 and
2.33, the siphon captures the concept of circular wait, revealing it from the underlying
net structure. In contrast to the S?PR class, it is worth noting the following fact
about minimal siphons in S*PR net systems, which emerges because of their minimal
p-semiflows not being strictly binary.

Property 2.34. There exists an S*PR net system with an acceptable initial marking
which is non-live but every siphon pointing out the non-liveness is non-minimal, i.e.,
minimal siphons are non-sufficient to characterise non-liveness.

For instance, the S*PR net system in Fig. 1.4 is non-live, but there is no mini-
mal siphon containing both resource places R1 and R2. Note that the siphon D =
{R1,R2, A3,B2} becomes insufficiently marked at m, where m = [A1,B1,R1,R2],
but it contains the minimal siphon D’ = {R2, A3,B2}. D’ is not insufficiently marked
for any reachable marking. The problem is that the unique resource place of D’ (i.e.,
R2) is not disabling every m-process-enabled transition. Thus the resource place R1
is needed to decide that all m-process-enabled transitions are m-resource-disabled.
Another interesting peculiarity of this net system is that no siphon is ever emptied.

Thus non-minimal siphons must be considered in order to deal with deadlocks in
systems more complex than S?PR.

On the other hand, insufficiently marked siphons (even considering those non-
minimal) are not enough for characterising liveness for more complex systems such as

68 2. The resource allocation problem in software applications

S°PR models. This means that siphon-based control techniques for RASs do not work
in general for concurrent software, even in the ‘good’ case in which every wait-like
operation precedes its complementary signal-like operation.

Property 2.35. There exists an S°PR net system with an acceptable initial marking
(N, mg) which is non-live but insufficiently marked siphons do not point out non-
liveness (dead markings).

The S°PR net system in Fig. 2.13 evidences the claim stated above. The fig-
ure depicts a non-live system with three possibly bad minimal siphons. These
siphons are Dy = {A2/A3,A4,A5 A6,B2,B4,B5,B6,FORK2,BOWL}, D, =
{A2,A4, A5 A6,B2,B3,B4,B5,B6, FORK1,BOWL} and D3 = {A2 A4, A5, A6,
B2,B4,B5, B6, FORK1, FORK2, BOWL}. Besides, every transition in the set Q =
{TA2, TA3,TA4,TA5, TB2,TB3, TB4, TB5} is an output transition of Dy, Dy and
Dj3. After firing transitions TA1 and TBI starting from myg, the state [A1, B1, BOWL]
is reached. This marking belongs to a livelock with other six markings. The reader
can check that (i) there exists a firable transition in for every marking in the live-
lock, (ii) the rest of transitions cannot be fired anymore (the net is non-live), and (iii)
in any case there is no insufficiently marked siphon.

Revisiting Example 2.1 and its associated Algorithm 2.1, it is not difficult to see
that, if every philosopher enters the room, sits down and picks up the fork on the
left of himself, the philosophers will be trapped in a livelock. Any philosopher can
eventually take the bowl of spaghetti and heat it up in the microwave. This pattern
can be repeated infinitely often, but it is completely useless, since no philosopher will
ever be able to have dinner.

This behaviour is obviously reflected in the corresponding net representation at
Fig. 2.2. Let us construct a firing sequence o containing only the first transition of
each state machine (i.e., the output transition of its idle place). The firing order of
these transitions is irrelevant. Now let us fire such a sequence, and the net falls in a
livelock. The internal cycles are still firable in isolation, but no idle place can ever
be marked again. Unfortunately, the net has several bad siphons, but none of them
is empty or insufficiently marked in the livelock. In other words, for every reachable
marking in the livelock, there exist output transitions of the siphons which are firable.
As a result, the siphon-based non-liveness characterisation for earlier net classes (such
as S*PR [TGVCEO05)) is not sufficient in the new framework.

2.4.3 Deadlock-freeness, liveness, reversibility and livelocks

By carefully observing the net in Fig. 2.13, it might seem that the difficulty in finding a
liveness characterisation for PC2R net systems lies in the appearance of certain types
of livelocks. In general, livelocks with dead transitions are not a new phenomenon in

2.4. A cross-sectional view on the liveness analysis problem 69

A6 BO, BOWL />(A0 BO, FORK1, FORK2, BOWL)Q\ (A0, B6, BOWL)w
TB7

A TBS—
,—TAL TB1

4
/(AL, BO, FORK2 BOWL) (A0, B1, FORK1, BOWL D\

TA2 TB1 TAL
AO, BZ, FORK1
B2
TALl B3

A2, BO, FORK2
(AO B3, FORKl, FORK2>

TA2
TAS TA3 Mpy

;

<A3 B0, FORK1, FORK2> TA

TB3

< \TBl{A3 B1, FORK (Al B3, FORKZ}TAl >

T84 TB4

TA4

TB1
A4 BO, FORK2 \‘CM

Figure 2.13: Non-live S°PR net system modelling two postmodern dining philosophers

the context of Petri net models for RASs. Figure 2.14 shows that, even for L-S?PR
nets, deadlock-freeness does not imply liveness.

Property 2.36. There exists a L-S°PR net system with an acceptable initial marking
such that it is deadlock-free but not live.

This L-S3PR net system has no deadlock but two reachable livelocks:
Livelockl = {[A0,B2,C0,D1,R1], [A1,B2,C0,D1]}

Livelock2 = {[A0, B1,C0, D2, R3], [A0, B1,C1,D2]}

70 2. The resource allocation problem in software applications

TAL

A0

TA2[]

Figure 2.14: Non-live but deadlock-free L-S*PR net system

Nevertheless, these livelocks are captured by insufficiently marked siphons. Unfor-
tunately, this no longer holds for some kind of livelocks in S’PR or more complex
systems. Indeed, PC?R nets feature some complex properties which complicate the
finding of a liveness characterisation.

Another relevant property for studying liveness is its monotonicity. In spite of
the seeming simplicity of S?PR nets, the following negative result regarding liveness
monotonicity applies:

Property 2.37. There exists an S°PR net such that liveness is not monotonic, either
with respect to the marking of the idle/process places, or that of the resource places,
i.e., liveness is not always preserved when those are increased.

The net depicted in Fig. 2.12 illustrates this fact:

e With respect to Pgr: The system in Fig. 2.12 is live with Ko = K; = K3z =1
and non-live with Ko = Ky = 1, K3 = 2 (however, it becomes live again if the
marking of R1, R2 and R4 is increased enough so as to make every resource
place an implicit place).

e With respect to Py: The system in Fig. 2.12 is live with Ko =1, K; = K3 =2
and non-live with Ko = K; = K3 = 2.

Note that liveness is monotonic with respect to the marking of the resource places
for every net belonging to the L-S3PR class [GV99]. But, from S*PR nets upwards,
there is a discontinuity zone (i.e., a range of initial markings where the property is
fluctuating) between the point where the resource places are empty enough so that
every transition is dead (also held for lower markings), and the point where every
resource place is implicit (liveness is preserved if their marking is increased). Markings
within these bounds fluctuate between liveness and non-liveness. The location of those
points also depends on the marking of the idle/process places: the more tokens in
them, the farther the saturation point (i.e., the upper bound).

2.4. A cross-sectional view on the liveness analysis problem 71

8 A A A
+ .
\;—-
1
\/’} ,\'
Level 1 of 1.
acceptability of / Frontier: Every
initial markings resource place is
(1-acceptable) implicit
et._é e netis
£ non-live >
(but no transition
is dead yet at mg) The net
is live
Some
transition
is already >
dead at mg
o

0 mo(Rj) e

Figure 2.15: Schematic of the liveness discontinuity zone for marked PC?R nets. It is
assumed that ||mgl| \ Pr = Po and that mo[FPy U Ps] remains fixed. Note that there may

exist mop making the system non-live at the 0-1 zone (i.e., below the ‘1-acceptable’ frontier)

Note that, as discussed in Subsection 2.4.1, for PC?R nets liveness is also neither
monotonic for those markings in the 0-1 zone (more exactly, above the frontier of
markings which separates those systems with dead transitions and those without).
Figure 2.15 depicts this.

Nevertheless, an interesting property of S*PR net systems is that liveness is a
necessary and sufficient condition for reversibility. This, along with the fact that the
idle place does not belong to any p-semiflow y.,., is a powerful feature. If every token
in a process net can be moved to the idle place, then the net is not dead (yet).

Theorem 2.38. Let (N, mg) be an S*PR net system with an acceptable initial mark-
ing. (N,mpo) is live iff mg is a home state (i.e., the system is reversible).

Proof. =) Let us suppose that mg is not a home state, i.e. Im’ € RS(N,mp)
such that mg ¢ RS(NV,m’). Let m € RS(NV, m’) obtained by moving forward
all the active processes (firing transitions T\ Py°®) until no process enabled
transition can be fired. Since mg ¢ RS(N,m’), m # myg, and the set of m-
process-enabled transitions is non-empty, and each one of these transitions is
m-resource-disabled. Hence, by Theorem 2.33, (N, mg) is non-live.

72 2. The resource allocation problem in software applications

<=) Let m be a reachable marking from mg, m € RS(N, mg), and ¢ a transition
of the net. It will be proved that there exists a successor marking of m, m’,
from which ¢ is firable. Since mg is a home state, there exists a firable sequence
from m such that m-Z,mg. Taking into account that every t-semiflow can
be fired in isolation from an acceptable initial marking of an S*PR net [Tri03],
then there exists a sequence o’ whose characteristic vector o’ is equal to the
t-semiflow containing ¢ (this t-semiflow exists because the net is consistent by
Lemma 2.22). Let o/ = o to} be a decomposition of the firing sequence o’ to
point out the first firing of ¢. Therefore o o] is firable leading to a marking m’
from which ¢ is firable. Because m and ¢ have been selected without constraints,

the net is live.
O

However, Theorem 2.38 is false in general for S°PR nets. In fact, the directedness
property [BV84] does not even hold. This implies that an S°PR net system may not
have a home state, even being live.

Property 2.39. There exists an S°PR net system with an acceptable initial marking
(N, mg) such that the system is live but there is no home state.

The net system in Fig. 2.16 is a SPR which has no home state in spite of being
live. It is worth noting that this net is ordinary. The reachability graph is illustrated
in Fig. 2.17.

Having said that, S°PR nets still retain an interesting property: its minimal t-
semiflows are eventually realisable from an acceptable initial marking.

Theorem 2.40. Let (N,mg) be an S°PR net system with an acceptable initial
marking. For every (minimal) t-semiflow x, there exists a reachable marking m €
RS(N, mg) such that x is realisable from m, i.e. o such that m- 7., o = x.

Proof. This is straightforward from Theorem 2.31, since an acceptable initial marking
for an S°PR net is also a l-acceptable initial marking (both definitions collapse for
this subclass).

O

However, for PC2R net systems there may not exist minimal t-semiflows being
eventually realisable; even for live systems.

Property 2.41. There exists a PC*R net system with a 0-acceptable initial marking
(N, mg) such that the system is live and there exists a minimal t-semiflow x such
that Ym € RS(N,mg), Po such that m—7 and o = x, i.e. x is not realisable from
any m € RS(V, my).

2.4. A cross-sectional view on the liveness analysis problem 73

T11 A9\T12
A5 T8 A7 T9 A8\T10,

T2A2 T3 A3 T4 A4 T5

R2 RI2ZR4A R2
R4 R10 R9
RO R1 R9 R6 R5 R7 R6 R5 R7, R6 R5 R7 R6 R9 R1 R14 Ri2
2%91 R5 R14 R8 f R11R8 R8R11 R14 R7

3 R2 R2 R3 R8

R
R10R4 R4 R10

AN ¥ ¥ AN Y 4
SEEtc e T

R14 R14 R12 R12
R11R12 R12R11 R11R10 R10R11
R4 R10 R10 R4Rg R9 R9 R4 R13
R12 R13 R14 R5R14 R5 R9 R6 R9
R10 R5 R8 R6 R5 R7 R6 R3 R7TR6 R3 R3R9 R7 R3 R8 R7 R12
R8 R10 R8
R4 R2 R4 R2

* T14».B2 T15 B3 T16 B4 T19 B6 T20 B7 T23 B9 T24 B1l 25*

Tl%‘\ Bl ()BO 6 B11T27

Figure 2.16: Live S°PR net system which has no home state. The arcs from/to Pg are
omitted for clarity. Instead, the set of input and output resource places are listed next to

each transition

The reader can check that the PC2R net system in Fig. 2.9 has no home state
in spite of being live. Depending on which transition is fired first (either T1 or
T8) a different livelock is reached. Besides, for every reachable marking, there is
no minimal t-semiflow such that it is realisable, i.e. firable in isolation. Instead,
both state machines need each other to progress in an interleaved way from the very
beginning.

T-semiflow realisability is, however, guaranteed when the initial marking is a 1-
acceptable initial marking, by Theorem 2.31. Obviously, the initial marking in the
net of Fig. 2.9 does not hold this, in spite of being a 0-acceptable initial marking.

Counterintuitively, the impossibility of realising every t-semiflow in a live PC2R
net system cannot be directly linked to non-reversibility. The net system in Fig. 2.9
has no home state. However, the net system in Fig. 2.18 is reversible, live, but no
minimal t-semiflow is realisable.

In fact, these two properties (reversibility and t-semiflow realisability) are usually
strongly linked to the property of liveness for many Petri net classes. Particularly,
reversibility is powerful since its fulfilment implies that the net is live iff there are
no dead transitions at the initial marking. This last property is often easy to check
(although that statement is not true in general for PC?R net systems, as discussed in

software applications

1

ource allocation problem

The res

2

74

T1 v\\ J T5——

A0, A8, B0?, R3, R4%, R5, R6, R9 A0, AL, B0?, R, R3, R4%, R5, R6, A0%. BO?, RL, R2, R3, R4°, R5, R6, R7 A0 BO, B1, R1, R2, R3, R4% R5, A0? BO, B10, R1, R2, R3, R4?,
R10% R11, R12, R13, R14 R7, R8, R10% R11, R12, R13 3 R6, R7, R9, R10%, R11, R13, R14 R5, R6, R8, R10% R11, R14
PR RS RS e R RS R8, R9, R10°%, R11, R12, R13, R14 1O RS [
A0, A2, BO?, R3, R4%, R6, R7, R T2 T11 ka/Sq T14__/A0? BO, B2, R1, R2, R3, R4,
R9, R10? R11, R12, R13, R14 T R7,R8, R9, R10% R11, R14

T15—¢
A0?, BO, B3, R1, R2, R3, R4% R!

R7, R8, R9, R10% R11, R14
T1

A0, Al, BO, B3, R1, R3, R4,
R5, R7, R8, R10, R11

T
A0, A3, B0? R3, R4%, R5, R7, R
R9, R10% R11, R12, R13, R14
——T13

T4

% A0, A3, BO, B1, R3, R4, R5,

R7, R9, R10, R11, R13, R14
A0, A4, B0?, R3, R4%, R5, R6, R8

R9, R10%, R11, R12, R13, R14
T5: T1
AO, A5, B0? R3, R4%, R6, R7,
R9, R10%, R11, R12, R13, R14
T9 T6 5 ~T7
A0, A6, B0?, R2, R4°, R6, R7, R8

R9, R10, R11, R12, R13, R14

A0, A9, BO?, R1, R3, R4°, R5, R6, A0 B1, B11, R1, R3, m%
R7, R8, R10% R11, R13, R14 R6, R7, R, R10°, R11, R13, _ﬁ

A0, A1, BO, B1, R1, R3, R4, 4|\|\|\|\
R5, R6, R7, R10, R11, R13

T16

0, Al, BO, B2, R1, R3, R4,
R6, R7, R8, R10, R11

A0, A2, BO, B1, R3, R4, R6,
R7,R9, R10, R11, R13, R14

A0, A8, BO, B3, R3, R4, A0% BO, B4, R1, R2, R3, R4?,

R5, R9, R10, R11, R14

A0, A8, BO, B2, R3, R4,
R6, R9, R10, R11, R14

A0, A3, B0, B10, R3, R4,
R5, R8, R10, R11, R14

A0, A2, BO, B10, R3, R4,
R6, R8, R10, R11, R14

A T17

A0%, BO, BS, R1, R2, R3, R4, RS,
R6, R8, R9, R10% R12, R14

T14
4
A0, A4, BO, B1, R3, R4, _»mU A0, A3, BO, B2, R3, R4,

A0, A2, BO, B4, R3, R4,
R6, R8, R9, R10, R11

A0, A2, BO, B3, R3, R4, R7,

R6, R9, R10, R11, R13, R14 /\ R7, R8, R9, R10, R11, R14 /T24 R8, R9, R10, R11, R14

Ti4
A0, A4, BO, B2, R3, R4, R6
R8, R9, R10, R11, R14

A0, A1, BO, B5, R1, R3,

A0, A3, BO, B4, R3, R4,
R5, R6, R8, R10% R12

R5, R8, R9, R10, R11

A0, A2, BO, B5, R3, R6,
RS, R9, R10%, R12, R14

A0, A2, BO, B9, R4, R7,
715 \R8, R9, R10, R11, R14

A0, A4, BO, B3, R3, R4, R5,
R8, R9, R10, R11, R14

T12

A0, A3, BO, B5, R3, R5,

AL, A6, B0?, R4% R6,
RS, R9, R102 R12, R14 Jkid

R7,R8, R11, R12, R13

A0, A9, BO, B5, R1, R3, R4,

A0, A3, BO, B6, R4,
R5, R6, R8, R10°, R14

R7, R8, R10, R11, R14

T27 Ti3 & 15
b A0, A5, BO, B3, R3, R4,_T6.4/A0, A6, BO, B3, R2, R42 A0, A4, BO, B7, R3, R4, (D, 4, 150, B A0? BL, B5, R1, R2, R3
A, A9, BO’, R4%, R6, R7, R7, R9, R10, R11, R14 R7, R8, RY, R11, R14 A0, A4, B0, B9,Y pg pe R10, R11, R14 R, (7, (R, () RS, R6, R9, R10% R14
RS, R10, R11, R13, R14 T7 R4, R5, R8, R, Ltk LR U R10°, R12, R14
T16 Ti6 R10, R11, R14

A0, A6, BO, B1, R2, R4%, R6,
R7, R9, R11, R13, R14

A0, A5, B0, B7, R3,
R4, R7, R10, R11, R14

A0% BS5, B11, R1, R3, R4,
R5, R6, R9, R10°, R14

A0, A5, BO, B4, R3,
R6, R9, R10, R11

A0, A6, BO, B4, R2,
R4% R6, R8, R9, R11

R4, R7, R9,
R10, R11, R14

A0?, BO, B6, R1, R2, R4?,
R6, R7, R8, R10%, R11, R14

A0, A6, BO, B8, R2
R4, R7, R8, R9,
R10, R12, R14

A0, AB, BO, B11, R4%, R6,
R7,R9, R10, R11, R13, R14

A0, A5, BO, B8, R3, R7,

A0, AS, BO, B5, R3, RS, R9, R10% R12, R14

A0, A6, BO, B5, R2, R4, R6,
R9, R10%, R12, R14

R8, R9, R10, R12, R14

T2

T13| A0, A9, BO, B8, R1, R3,

R4, R5, R7, R8, R10°, R14

A0, A1, BO, B8, R1, R3,

A0, A7, B0?, R3, R4%, R5, R6, R9 2
R5, R7, R8, R10?, R11

R10% R11, R12, R13, R14

AL, A6, BO, B5,
R6, R8, R12 T27 (AO, A6, B, BS5,

R2, R6, R9, R14

»—T1 T20
A0% B, B8, R1, R2, R3, A% BO, B8, R1, R2, R3, R4, R5
R5, R7, R9, R10%, R14 R7, R8, R9, R10% R12, R14

T26 A T227 %121

A0% B8, B11, R1, R3, R4, A0?, BO, B7, R1, R2, R3, R4,
R5, R7, R8, R10°, R14 R5, R7, R8, R10% R11, R14

A0, A6, B1, B8,
R2, R7, R9, R14

Al, A6, BO, B8,
R7, R8, R12

A0, A7, BO, B4, R3,
R4, R5, R8, R9, R10

A0, A6, B5, B11, R4,
R6, R9, R10, R14

A8, A9, BO, B5, R4,
R6, R8, R10, R14

T19

A0, A7, BO, B2,
R3, R4, R7, R8,
R9, R10, R14

A0, A5, BO, B10,
R3, R4, R6,
R10, R11, R14

A0, A8, BO, B7, R3,
\1 R4, R5, R10, R11, R14

T20

A0, A8, B0, B9, R4,
R5, R9, R10, R11, R14

A0, A7, BO, B6, R4,
R7, R8, R10, R14

A0, A7, BO, B1, R3, R4,
R5, R7, R9, R10, R13, R14

A0, A7, BO, B10, R3,
R4, R5, R8, R10, R14

A0%, BO, BY, R1, R2, R4?, R5,

A0, A8, BO, B6, R4,
R7, R8, R9, R10% R11, R14

R6, R10, R11, R14

A0, A8, B0, B8, R3, R5,
R9, R10%, R12, R14

A0, A1, BO, B9, R1, R4
R5, R7, R8, R10, R11

T13

Figure 2.17: Reachability graph of the net system in Fig. 2.16. The net has two livelocks. Markings are coloured depending on the

strongly connected component they belong to. The initial marking is stressed with a thicker border around it

2.4. A cross-sectional view on the liveness analysis problem 75

A0, B2, R3 T6 A0, BO, R2
Tl

T3
A2, B2, R1 Al, BO, R1
T5 T4

A2,B1,R2 J&T2 Al, B1, R3

Figure 2.18: Live and reversible PC?R net system with a O-acceptable initial marking such

that no minimal t-semiflow is ever realisable

Subsection 2.4.1). Both properties (reversibility and t-semiflow realisability) together
imply that the net is live, as the next theorem states.

Theorem 2.42. Let (N, mg) be a PC*R net system with a 0-acceptable initial mark-
ing. If the net system is reversible and every (minimal) t-semiflow x is eventually
realisable (i.e., there exist m € RS(N,mg),o such that m-Z,, o = x) then the net

1s live.

Proof. By reduction to absurd: assume that the net is non-live. Then there exists
m € RS(N,mp) and a transition ¢ such that ¢ is dead at m. But since the net is
reversible, there exists a sequence o such that m-Z,mg. Since the net is consistent by
Lemma 2.22, there exists a t-semiflow x that contains ¢, and x is eventually realisable,
so t is eventually firable from a successor marking of m. But then ¢ cannot be dead,
reaching a contradiction. O

Nevertheless, it is notorious that those properties are almost unlinked for gen-
eral PC?R net systems, with the exception of the rule established by Theorem 2.42.
Table 2.1 illustrates in a concise way the relation between these three properties (live-
ness, reversibility, and eventual firability of all t-semiflows) in the context of general
PC2R net systems with 0-acceptable initial markings. The table highlights the fact
that those properties are not totally independent because of PC?R nets being consis-
tent, as proved by Theorem 2.42. It also reveals that the simpler the subclass, the
less combinations of the three properties are possible (up to the point that liveness is
a necessary and sufficient condition for reversibility for S*PR and simpler subclasses).
Figure 2.21, which has not been introduced before, is used to complete the table.

76 2. The resource allocation problem in software applications

LRT
From L-S?PR upwards PC2R only From S°PR upwards
Fig. 2.12 with Ko = K; = K3 = 1 Fig. 2.18 Figs. 2.16 and 2.17
PC2R only IMPOSSIBLE PC?R only
Fig. 2.9 Theorem 2.42 Fig. 2.8
[LRT| | [LRT
From L-S?PR upwards PC?R only
Fig. 2.12 with Ko = K; = 1 and K3 = 2 Fig. 2.21

Table 2.1: Summary of possible combinations of liveness (L), reversibility (R), and eventual
realisability of every t-semiflow (T) for PC?R net systems with a 0-acceptable initial marking.
For each cell, the first line indicates which (sub)class such properties combination is possible

from. The second line references a proof of such behaviour

Since, by Theorem 2.31, 1-acceptable initial markings grant the firability of every
t-semiflow, a new corollary can be extracted from Theorem 2.42:

Corollary 2.43. Let (N,mg) be a PC?R net system with an 1-acceptable initial
marking. By Theorem 2.31, if the net system is reversible then it is also live.

Once more, it should be stressed that the reverse of Corollary 2.43 does not hold
in general, as Figs. 2.16 and 2.17 prove. The same thing applies for the PC2R net in
Fig. 2.19. Note that this net only has one single elementary iteration block per process
subnet (i.e., no internal loops). The reachability graph is depicted in Fig. 2.20.

Table 2.2 synthesises the relation between liveness and reversibility in general
PC?R net systems with 1-acceptable initial markings.

2.5 An insight on the problem of RASs with lender
processes

Finally, it is worth bringing to attention the existence of yet another class of Petri net
models for RASs, named SPQR [LGCO06]. This class is interesting from the point of
view of RAS analysis and synthesis in the domain of multithreaded programming. In
the following subsections, this is made obvious since it is tightly related to the PC2R
class.

As a class on its own, SPQR nets feature an appealing syntactic simplicity and

2.5. An insight on the problem of RASs with lender processes 77

R1+2-R2+ T15
R3+R7

R5+2-R6

4-R4+5-R5

R1 @ R3+2-R5+R6
3-R1+5.R2

2.R2+2.R3+R5 R2 R7 2.R2+3-R4+2-R

T11

4-R3+2-R5+2-R6

@ R3 R R1+2-R5+4-R6+2- R
2.R4+3.R6 i)

3-R2+R

2.R1+2-R3+2-R6+R T10
@ @ R2+2-R3+4-R4+2.R5

4.R4+2.R7 T6

Figure 2.19: Live PC2R net system which has a l-acceptable initial marking but it has
no home state. The arcs from/to Pr are omitted for clarity. Instead, the set of input and

output resource places are listed next to each transition

From L-S?*PR upwards From S°PR upwards
Fig. 212 with Ko = K; =Kz =1 Figs. 2.16 and 2.17
IMPOSSIBLE From L-S®PR upwards
Corollary 2.43 Fig. 2.12 with Ko = K; =1 and K3 =2

Table 2.2: Update of Table 2.1 (i.e., possible combinations of liveness (L) and reversibility
(R) for PC?R net systems) assuming an I-acceptable initial marking. It should be stressed
that the eventual realisability of every t-semiflow is guaranteed in this context. Hence this

table is smaller than that presented for 0-acceptable initial markings, i.e., Table 2.1

2. The resource allocation problem in software applications

78

A0, B2, CO
R1°, R2, R3%, R4, R6%, R

A0, B1, CO
R1° R3% R4% R5%, R6°, R7?

A2, BO,CO
R1’, R2’, R3% R5%, R6% R7

72 j—T7-

T6 A0, BO, CO v/ AL, BO, CO
ﬂ_,dm_ R, R3', Ra, RS?, R6', R T s oo, rat met, RS, RS, xw‘s

A4, BO, CO
R2®%, R5%, R6°®

T8

T3

A3, B0,CO
R1% R2% R4% R5’, R6%, R7

A0, B3, CO
R1’, R2% R3% R4% R5% R6% R7

A0, B4, CO
R1°% R2% R3°% R4% R5®

T6

~ A3,B1,CO
R1°, R3", R4, R5°, R6°,

AL, B3, CO
R1°, R3’, R4°, R5%, R6’

Al,B3,C1

~ A3,BLCl
R1°, R2? R3% R4°, R5, R6% R72

® R2? R4%, R5', R6®, R7°

R7
'Y

A0, BO, C1
R1°, R2’, R4, RS®, R6%, R7*

T1

A2, B3, CO

, B3, A0, B3, C1
R1° R2*, R3°, R4, R5°, R6

A0, BL, C1
R1’, R2* R3‘, R4, R7° 2

1% R2?, R3*, R4°, RS%, R6, R7*

T3 T5 T12

A3, B3, CO

, B3, A4, B3, C1
R1°, R2? R3’, R4% R5', R6*

R1, R2’, R4*, R5®, R6% R7

A1, B1,C1)
° R4°, RS%, R6°% R7®

A2,B1,C1

",R3 R1° R2‘, R3? R4 R5°, R7®

T4

T7

A0, BO, C2
R1% R2?% R3, R4’, R5°, R6°, R7* /115

A2,B2,C1
R1° R2°% RS, R7®

A3,B3, C1
R2*, R4°, R5?, R6%, R7°

Al,B4,C1

R1°, R1% R2° R3, R4%, R5% R7 ® R3, R5°, R6, R7®

T8
Ti5 T12: T1 s
T13
Al,B4,C2 10 A1, B0, C2 A2,B3,C3 13 ~ A2,B3,C2)
R1, R3? R4°, R5*, R6, R7 R1% R4’, R5°, R6°, R7° R1% R2°% R3°, R6% R72 R1% R2, R3®, R4’, R5°, R7?
T13 To
A0, BO, C3 «

R1°, R2’, R3‘, R4% R6°, R7*

A2, B4, C3
R2°, R3", R5, R7

A3, B4, C3

Al,B1,C3 . s
R2’, R3? R4% R6° R7

R3', R4? R6°

A1, B0, C3
R1%, R2°, R3®, R4%, R5, R6', R7°

R1%, ,R7®

T14

A3,B0,C3
R1, R2’, R4, RS, R6', R7°

A3, B1,C3

Al, B2, C4 o e 6 s
R1%, R2% R3", R5, R6°, R7*

R1, R2, R3®, R5, R6, R7®

Al, B1, C4
R1, R3’, R4% R5°, R6, R7°

T8

Al, B3, C4
R2?, R3', R4’, R5°, R7?

A0, BO, C4
R2’, R3% R4% R5% R7*

A3, B1, C4
R2?, R3*, R5°, R6, R7°

Figure 2.20: Reachability graph of the net system in Fig. 2.19. The net has two livelocks. Markings are coloured depending on the

strongly connected component they belong to. The initial marking is stressed with a thicker border around it

2.5. An insight on the problem of RASs with lender processes 79

T8 B1 T9 B2 T10 B3 T11 B4 T12 B5 T13 B6 T14

11—(R0, BO, CO, R1, R2, R3)—Ts
v v —y
@IEOICOIRTIR2IRY A UL T RE RO ST /0. 1. CO. R2, R3, RS A0, B3, CO, R1, R2, RS
T3 T14 A0, BO, C1 T7 i T10
A2, BO, CO, R1, R3, R4)11, AO, B2, CO, R1, R3, RS
Al, B6, CO, R2, R5 A6, B1, CO, R2, R4 JEES
rTS \ T1
2 T13 To
T6 A6, B2, CO, R1, R4 X Al, B2, CO, R3, R4, RS
T10

18 (A2,B1,C0,R3, R4,R5) (A2, B6, CO, R1, RS)dT/ T
AS, B1, CO, R3, R4, R5 Al B3, CO, R2, R4, R5

1

T3
~
A3,B1,C0,R2,R4,R5) (AL, B5, C0, R3, R4, R5)
To A T2
14»(A4, B2, CO, R3,R4) T1 Y A2, B4, CO, R3,R5 Lol
A3, B2, CO, R1, R4, R5 A2, B3, CO, R1, R4, RS

T10 5, BO, CO, R1, R3, R4 }J

11 \AS B3, CO. R1, R4, RS }4T5 (a4, B3, CO, R2, R4) T7 LI A3, B4, CO, R2, RS T12T4
J
\‘<A5,B4,CO. R3, R5)-Tom(A6, B4, C0, R2)-T12»(A6, B5, C0, R1, k1) (LD« (D « - LD

Figure 2.21: Non-live PC?R net system with a 0-acceptable marking. The net is not

reversible and no minimal t-semiflow is ever realisable. No transition is dead at mg, though.

expressive power though they are very challenging from an analytical point of view
(even more than PC?R nets). They can be roughly described as RAS nets in which
the process subnets are acyclic and the processes can lend resources in any possible
(conservative) manner. Every PC?R net can be transformed into an SB SPQR. net.
Note that SB SPQR nets are conservative since they are consistent by construction,
and consistency plus structurally boundedness implies conservativeness [Sil93]. In
spite of the existence of a transformation rule, it must be remarked that PC?R is not
a strict subclass of SPQR nets.

The transformation of PC?R nets into SB SPQR nets can be useful to understand
the above phenomena from a structural point of view. Intuitively speaking, the con-

80 2. The resource allocation problem in software applications

cept of lender process seems a simple yet powerful instrument which still remains to
be fully explored. Yet SB SPQR net systems can present very complex behaviour, as
discussed in Subsections 2.5.3 and 2.5.4.

2.5.1 Constructing systems with Plain Lender Processes

SPQR is a subclass of RASs resulting from a different abstraction process than in
the case of PC?R nets. Historically, they were proposed previously to the definition
of PC?R in an attempt to provide an answer to the need for a generalisation of the
systems considered in the domain of FMSs. This generalisation proceeds from two
different motivations: (1) The consideration of open systems, that is, process plans
that have no limitations on the number of processes following these process plans.
This generalisation was partially visited in the PhD thesis of Fernando Garcia-Vallés.
As a result, SPQR nets have no idle places and unboundedness is a property that
can appear in these systems. (2) Resources can be used in more general ways. In the
previous classes they are used in a conservative way in the sense that the contents
of a set of process places, named holders of a resource r, and the tokens in the place
corresponding to the resource remain constant and equal to the initial number of
copies of resource r. The generalisation allows another kind of conservation laws than
those induced by the p-semiflows of resources. Now, for example, it is possible for a
resource r to induce invariant relations like this:

mi+ Y vl ompl=moll - Y y.lpl-mip)

PE|lyrll:yr[p]>0 pEllyrll:y-[p]<0

Observe that in this case we have a marking invariant but different to those arising
from S*PR nets. The left hand side of the invariant contains the resource place
r and the holder places p € y, such that y,[p] > 0: this is similar to the S*PR
case. But now this quantity is not constant because of the marking of the places
p € {lly-|l | yrlp] <0} appearing in the right hand side of the invariant. They are
called lender places as opposed to the holder places. This means that, in order to
maintain the invariant, if the marking of a lender place is increased then the marking
of the resource place r must also be increased. This is the reason why these places are
called lender places of the resource r. This allows to model the starting of processes
with allocated resources.

All these generalisations are very natural in the context of FMS or external lo-
gistic systems in order to model the RAS view of more general or complex systems.
Nevertheless, in the context of multithreaded software these generalisations are not
so natural. For example, structuring of code is a primary requirement that in the
case of FMS has never been considered and even is not a common requirement at all.

2.5. An insight on the problem of RASs with lender processes 81

We will see that these two subclasses are independent and the justification comes
from the application domain but the bridges between the two subclasses give rise to
interesting interpretations of many phenomena using the categories of other domain.

In fact, the SPQR class provides a consistent and very general framework for the
study of the RAP in Sequential RASs. It generalises previous, well-known models for
modelling the RAS view of FMSs. The assumption of the analytical results developed
for the S"PR family is derived: these can be easily mapped into the new class. On
the other hand, the expressive power of previous models is enriched by the addition
of some new elements. Some of these elements are already introduced for the PC2R
class. In particular, it is intended to address the following types of systems:

e Systems in which there exist nested internal circuits within the control flow of
the processes. This is typical in, e.g., software systems (iterative processes),
which are the subject of this thesis, but also in manufacturing systems with
recirculating circuits, among others.

e Systems in which there are resources which are already allocated in the initial
state.

e Open systems in which it is known the processes structure, but not the number
of concurrent instances.

e Systems in which the number of resources is variable; despite the fact that
processes use them in a conservative way (i.e., a process neither creates nor
destroys resources in the system after completing its execution).

These enhancements can be captured by the new class definition, but they also
raise unexpected properties and interesting questions regarding liveness analysis that
will be studied in the following subsections.

Many of these enhancements are also considered in the definition of PC?R nets.
However, there exist two significant differences. First, SPQR nets are focused to
model open systems. This means that the process subnets lack an idle place, so the
number of concurrent processes is only limited (if anything) by the number of available
resources. And second, and even more importantly, the iteration blocks or circuits
which are internal to the processes are not directly supported by the structure of the
process subnets (as opposed to the usage of iterative state machines in the construction
of PC?R nets). Instead, they are simulated by the introduction of virtual resources,
as discussed in Subsection 2.5.5. As a result, SPQR nets are constructed around two
orthogonal and very simple elements (acyclic state machines and resources), which
seemingly allows us to focus on the very core of the liveness problem.

We first present SPQR nets in a compositional way, by introducing the kind of
subnets which describes a process along with the resources it uses.

82 2. The resource allocation problem in software applications

Definition 2.44. A Plain Lender Process (PLP) is a connected generalised pure P/T
net, N = (P, T, C), where:

1. P=P;U PR where P;, PR #0, P, N Pg = 0.
2. The subnet generated by P;, T is a connected acyclic state machine.

3. For each r € PR, exists a unique p-flow y, € Z'"! such that {r} = |yl N Pr,
Iyl NPy # 0 and yolr] = 1.

Places in P; are called process places, while places in Pr, resource places. Tran-
sitions with no input process place, i.e. {t € T|*t N P, = (0}, are called trigger
transitions. Transitions with no output process place are drain transitions.

An SPQR net is the result of merging a non-empty set of PLPs via fusion of their
common resource places.

2.5.2 The SPQR class: Definition

An SPQR net is, in rough words, an S*PR net [Tri03] without idle places, extended
in a way such that processes can hold some resources in the initial state, or even when
they are inactive. From a structural point of view, this means that every resource
place of the net induces a unique p-flow y,., instead of a minimal p-semiflow.

Similarly to S*PR nets, there exists an invariant relation which rules how the
resources are used by the processes. Consequently, a process eventually destroys (re-
turns) all the resources created (acquired) during its lifetime. In S*PR nets, however,
the idle place is an absolute minimum with relation to the resource usage state of
the process. But an SPQR net may lack an absolute minimum, and this can severely
complicate liveness analysis. In fact, due to the absence of the idle place, an SPQR
net system can also be unbounded.

The following is the formal definition of the SPQR class:

Definition 2.45. [LGCO06] Let Iy be a finite set of indices. A System of Processes
Quarrelling over Resources (SPQR) net is a connected generalised pure P/T net N' =
(P, T, C) where:

1. P = PsU PR is a partition such that:

(a) [process places| Ps = ;¢ Pi, where:
Viely:P#0 andVi,j e Iy,i# j: PNP; =0;

(b) [resource places| Pgx = {rs,...,mn},n > 0.

2.T=U T;, where Vi€ In: T; # 0, and Vi, j € In,i #j:T,NT; = 0.

i€ln

2.5. An insight on the problem of RASs with lender processes 83

3. For each i € Iy the subnet generated by restricting N to (P;,T;) is a connected
acyclic state machine. This is called the i-th process subnet.

4. For each r € PR, there exists a unique p-flow y, € Z"! such that {r} =
”yrH N Pg, ”yrH N Ps 7é Q)’ and Yr[T] =1

The reader can easily check that the composition of a non-empty set of PLPs
by fusion of the common resource places is always an SPQR net, assuming that the
various sets P; (T;) are disjoint. Equivalently, any SPQR net can be seen as the
composition of a non-empty set of PLPs by fusion of some shared resource places.

The concept of holder and lender places will be frequently used in the following.
A holder place is a process place in which processes use one or several instances of a
type of resource r, i.e. {p € P;|yr[p] > 0}. As PLPs can have non-positive p-flows,
it is necessary to introduce a new concept: lender places.

Definition 2.46. [LGC06] Let N be a PLP, p € Ps , and r € PRr:
e p is a holder place of r iff y.[p] > 0. The set of holders of r is denoted H,.
e p is a lender place of r, iff y[p] < 0. The set of lenders of r is denoted L,.

The term lender process refers to a process subnet which contains at least one
lender place of some resource. Conversely, the term borrower process refers to a
process subnet which does not contain any lender place of any resource.

For historical reasons, a particular subclass of SPQR, called borrower SPQR. (b-
SPQR), is identified in the following:

Definition 2.47. [LGC06] A borrower SPQR (b-SPQR) net is an SPQR net such
that, for every r € Pgr, the p-flow y, (see point 4 in Definition 2.45) is a minimal
p-semiflow, i.e., y, € NIPL

In other words, a b-SPQR net is an SPQR net without lender processes. Note that
any S*PR or S?PR net belongs to the b-SPQR class, taking its idle places as resource
places. A significant subclass of b-SPQR is the subclass of Open L-S*PR. [GV99).

2.5.3 The SPQR class: Some structural properties

In this subsection, we present a review of some structural properties of the SPQR
class, with a special focus on properties which are relevant to liveness analysis. Some
of these properties are yet unseen within the family of well-known Petri net models
for analysing RASs. As a contrast to the PC?R class, for instance, it is revealed that
SPQR nets are not, in general, Structurally Live (SL).

In the last part of the subsection, it is formally proved that the process subnets
of b-SPQR nets hold that ‘acquire’ operations always precede ‘release’ operations.

84 2. The resource allocation problem in software applications

Conservativeness and consistency

First it will proved that SPQR nets are consistent:
Proposition 2.48. SPQR nets are consistent, i.e. 3x >0 s.t. C-x=0.

Proof. Acyclic state machines are consistent. Therefore, Ix > 0 s.t. C[Ps,T]-x = 0.

It will be proved now that C[Pg,T]-x = 0. For each r € Py, C[r,t] = —y.[Ps] -
C[Ps,T] by point 4 in Definition 2.45. Thus, for each r € Pg, Clr,t] - x = —y,.[Fs] -
C[Ps,T] - x = 0. 0

Corollary 2.49. The set of t-semiflows of an SPQR net is equal to the union of
t-semiflows of each process subnet (which are acyclic state machines).

A well-known general result of Petri nets is that conservative nets are SB [SC88].
However, the inverse may not be true. In SPQR nets, nonetheless, conservativeness
and structurally boundedness are equivalent. This is due to the fact that SPQRs
nets are consistent by construction, and consistency plus SB implies conservative-
ness [Sil93]. Consequently, the acronym SB SPQR (or SB b-SPQR) denotes the
subclass of nets in which every place of the net is covered by a p-semiflow.

Structural Boundedness and Structural Liveness

It can be inferred from the above discussion that an SPQR net N is SB iff every
process place is SB. A process place is SB only if it is holder of at least one resource
place, but this condition is only necessary, not sufficient, e.g., in Fig. 2.22.c), place E
is a holder place of R5, while place F is a holder place of R6. However, both places
E and F are unbounded if R5 or R6 are initially marked (i.e., non-empty). Note that
R5 and R6 are SB. This result differs from S*PR nets, in which every net of the class
is conservative (and hence SB).

Another interesting difference is that resource places are no longer structurally
implicit places. In the S*PR class, this property was derived from the fact that every
place was covered by a p-semiflow y,. plus the existence of the idle place, which induced
an additional p-semiflow which covered every process place. Here both conditions
disappear.

As a consequence, SPQR nets are not, in general, SL; even despite they are al-
ways consistent. S*PR nets were SL because every resource place could be made
implicit taking an initial marking higher enough. Doing so, the system became a
set of isolated marked strongly connected state machines, hence being live. How-
ever, even some very simple SB b-SPQR nets are not structurally live, as the Open
L-S3PR [GV99] in Fig. 2.22.b) proves. Regardless of the initial marking, this net can
always be deadlocked by emptying places C2 and D2 by firing transitions T9 and T12
as many times as possible, and subsequently emptying R3 and R4 by repeatedly firing

2.5. An insight on the problem of RASs with lender processes 85

Tll?l [T6 T7|?|
| R3

NG

T2

R4
a2)

L

Figure 2.22: a) Non-live SB SPQR net system with one lender process on the left, and one
borrower process on the right. b) Open L-S*PR (therefore, SB b-SPQR net) which is not
structurally live, i.e., it is non-live for every possible initial marking. ¢) SPQR net with two
lender processes. The net is not SB (places E and F are unbounded iff mg[R5] 4+ mg[R6] # 0)

a [T9|£| b)

transitions T7 and T10. This scenario raises interesting questions regarding liveness
synthesis that, in some subclasses, are yet to be fully addressed.

Structural Directedness

The Structural Directedness (SD) property [TS93] states that for every pair of poten-
tially reachable markings of a live system there is always a common successor marking.
SD is, indeed, a stronger, structural version of the directedness property [BV84], which
will be studied among the behavioural properties, and holds for classes such as Equal
Conflict (EQ) systems [T'S93]. SD is very interesting from the standpoint of liveness
analysis since it implies the absence of killing spurious solutions or, in other words,
of live systems with potentially reachable markings being non-live.

It has been proven that SD is satisfied for the L-S*PR class [GV99], but unfortu-
nately it is not for any other known superclass, including the S?PR class. The lack
of this property hardens liveness analysis, due to the emergence of killing spurious
solutions, and is obviously extensible to the more general SPQR class; although the
reachability space of live SB SPQR net systems is not always directed either, as shown
in Fig. 2.9 and discussed later.

On the processes structure

Finally, it will be shown how b-SPQR nets differ from general SPQR nets in the way
their processes are constructed: nets belonging to that subclass can be identified at
a glance.

Since each process subnet is an acyclic state machine, a partial order can be
established for its set of transitions. The operator < will serve the purpose.

86 2. The resource allocation problem in software applications

Definition 2.50. Let N = (PsUPR, T, C) be an SPQR net. We define < as a binary
relation in T such that t; < to (t1 precedes ty) iff exists a directed path from ty to to
in a process subnet or, in other words, in the subnet generated by Ps,T.

Further technical details on this operator are provided in a previous work of
ours [LGCO6]. For notational convenience, t; < t3 denotes t; < to and ¢; # t5. The
following corollary establishes the relation between t-semiflows and the new prece-
dence operator.

Corollary 2.51. By Corollary 2.49, for every pair ti,to € T exists a minimal t-
semiflow x such that t1,ta € ||x|| iff t1 <ty orts <t;.

The precedence operator will now prove very handy to show how resources are
used in b-SPQR nets. In these nets, transitions that take tokens from Py always
precede those that put tokens into Pr, in such a way that every resource instance has
been borrowed before than released. In other words, resources are always used in an
acquire-before-release basis. This is a corollary of the following proposition:

Proposition 2.52. Let x be a minimal t-semiflow of an SPQR net with no lender
places in the t-component induced by x. Then, for every u € ||x||, C[Pr,T] -1, <0,
where T = {t € ||x|| | t < u}. In other words, the sum of weights of the incoming arcs
from Pgr to the ‘prefix’ T, is above or equal to that of the outgoing arcs.

Proof. Let 7 = ||x|| \ 7, and let Py be the set of process places in the t-semiflow
induced by x, i.e. P, = (*||x]| U [|x]|*) N Ps.

By point 4 in Definition 2.45, for every r € Pr, C[r,T] + y.[Ps] - C[Ps,T] = 0. If
both terms are multiplied by 1z, it is obtained: Clr,T]-17+y,[Px] C[P,T]- 17 =0
(note that Ps has been replaced by Py due to the fact that C[p,7] = 0 for every
p € Ps\ Px). Taking into account that, by Corollaries 2.49 and 2.51, the subnet
generated by Py and ||x]|| is a directed path of a process subnet (from a trigger to
a drain transition), and 7 is the set of transitions of a suffix of that directed path,
then C[Py,T] - 17 < 0. Since there are no lender places in Py, y,[P] > 0 and then
C[Pr,T]-17 > 0.

By Corollary 2.49, C[Ps,T]-x = 0. Since C-x = 0, then C[Pr,T]-x = 0. Also
by Corollary 2.49, x = 1| = 1; + 1=. Thus C[PRr,T]-1; = —C[Pr,T]-17 < 0. O

Corollary 2.53. b-SPQR nets do not have lender places. Thus, every ‘prefix’ T of
a minimal t-semiflow holds C[Pgr,T] - 1, < 0; therefore it can be said that resources
are always used in an acquire-before-release basis.

2.5.4 The SPQR class: Some behavioural properties

Having presented some basic structural properties of the class, we address on the
following a review of relevant behavioural properties regarding liveness. Some of the

2.5. An insight on the problem of RASs with lender processes 87

findings are shared with the PC?R class, although they are still somewhat surprising
in a class of such syntactical simplicity (for instance, SPQR net systems do not hold
the directedness property). The conclusion is that finding efficient liveness analysis
methods for SPQR nets is presumably much harder than for previous classes such as
the S*PR class.

Liveness vs. deadlock-freeness

One of the characteristic properties of the S"PR family (including the L-S3*PR class)
is that deadlock-freeness does not imply liveness [GV99]. In this sense, they are
trickier than other well-known Petri net classes such as strongly connected free choice
systems [Hil85], bounded strongly connected EQ systems [TS93] or CSS [LT79], where
both properties are equivalent.

On the contrary, liveness is not even monotonic with respect to the initial marking
(neither to the marking of the process places, nor that of the resource places), with
the L-S*PR as the unique exception [GV99]. In fact, for S°PR and S*PR nets, there
is a discontinuity zone between the point where the resource places are empty enough
so that no transition is ever firable (all the lower markings imply a deadlock), and the
point where every resource place is implicit (higher markings in them imply liveness).
The markings within these bounds switch discontinuously between liveness and non-
liveness. Of course, the location of those points also depends on the marking of the
process places. However, SPQR and b-SPQR nets are not (in general) SL, not even
being SB, and this implies that there may no longer exist an upper liveness region
(e.g., the net in Fig. 2.22.b).

Reversibility and directedness

In an S*PR net system with an acceptable initial marking, reversibility is a neces-
sary and sufficient condition for liveness [Rev03]. However, the class considered here
(SPQR) is more general so, in particular, reversibility is not necessary for liveness.
Figure 2.9 depicts an SB SPQR net system which is live but not reversible. Besides,
reversibility is neither sufficient for liveness, provided that it is no longer required
that all the t-components are firable in isolation from myg.

The directedness property [BV84] states that, for every pair of reachable mark-
ings in a live system, there is always a common successor marking. Although the
directedness property obviously holds for the S*PR class (reversibility is a necessary
and sufficient condition for liveness), it is not verified, in general, for the SPQR class,
as once more Fig. 2.9 reflects. The reachability space of the net has two terminal
strongly connected components, being the net live.

For bounded marked nets, the directedness property is equivalent to the existence
of home states [BV84]. Hence, live S*PR net systems have home states; indeed,

88 2. The resource allocation problem in software applications

every reachable marking is a home state, including the initial marking mg, since the
net is reversible?. This is very useful for determining if the net is non-live, since
the death of the system can be reduced to: “Is mg unreachable from some reachable
marking?”. Even more, if it is reachable, a path that leads to mg can be systematically
constructed, and the length of this path is not higher than the size of the net, due to
the structure of the S*PR class.

The “bad” news here is that, since the directness property is not held by the
SPQR class, not even if the net is SB, it cannot be inferred (in general) that a home
state will exist, whether the net is live or not. Again, Fig. 2.9 is a good example of
this kind of behaviour. This is a severe problem for determining non-liveness in an
efficient way.

2.5.5 Transformations and class relations

The SPQR class was defined as a general framework in which the philosophy and
results on previous RAS subclasses could be deployed while providing some innovative
elements for modelling much more complex systems [LGCO06]. This includes all the
necessary elements for modelling RASs in multithreaded software systems in similar
terms to the definition of the PC?R class.

However, two important remarks are in place. First, the modelling power of gen-
eral SPQR nets is high enough (unboundedness, etc.) so as to make liveness analysis
a very difficult task in the general case. Therefore, common sense dictates that sim-
pler subclasses must be identified in order to succeed in finding structural liveness
characterisations. Second, SPQR nets are somewhat ‘raw’ models. Remarkably, their
process subnets are acyclic state machines, while software threads can have internal
iterations in which resources are allocated or released, as discussed in Sect. 2.3.

In fact, these models are not thought as the optimum target for a first abstraction
of software systems into Petri net models. However, PC?R nets or simpler models can
be transformed or even directly mapped into the framework of the SPQR class. Once
a model has been ported into the transformed space, the appealing syntax simplicity
of SPQR nets can be helpful from a theoretical point of view in order to explore
whether the system is live or not, and why. Somehow, they can work very well as
‘low-level’ models. Obviously, this requires that an appropriate subclass has been
defined so that the focus is on an workspace equivalent to that of the original class,
not on that of a more general class of systems.

In this subsection we relate PC?R nets and other subclasses of the S"PR family
with those subclasses of the SPQR framework, and describe precise net transformation
rules to travel from one to each other.

21t is interesting to note that, in live L-S?PR net systems, a stronger condition holds: every
potentially reachable marking is a home state [GV99].

2.5. An insight on the problem of RASs with lender processes 89

Lemma 2.54. Let N = (PyU Ps U PR, T,C) be an S*PR net [Tri03]. Then N' =
(Ps UPL,T,C), where Py, = Py U Pr, is an SB b-SPQR net.

Proof. Let N, i € I, be the i-th process subnet in A [Tri03]. The subnet generated
by restricting N; to (P;,T;) is a connected acyclic state machine, since by Defini-
tion 1.1, condition 3, every cycle contains the idle place pp,. Note that this idle place
is not removed, but ‘moved’ to Pj. Moreover, there exists a unique p-semiflow yo,,
llyo;|l = P U{po,}. Since po, € P, and P; N P} = 0, yo, holds the condition 4 in
Definition 2.45. Hence every process subnet in N is a borrower process in N’, and N’
is a b-SPQR net. Since N is SB by construction, then N’ is an SB b-SPQR net. O

However, the inverse of Proposition 2.54 is not strictly true: not every SB b-SPQR
net is an S*PR net. However, any SB b-SPQR net can be easily transformed into
an S*PR net by introducing a structural implicit place per process subnet connect-
ing its drain transitions (transitions without output process places) with its trigger
transitions (transitions without input process places). Obviously, the initial marking
of this place (the new idle place) must be made high enough so as to make the place
implicit. Fortunately, this can be accomplished thanks to the fact that the original
net is SB.

Obviously, S?PR [ECM95] and L-S*PR [EGVC98] nets can be also redefined as
SB b-SPQRs nets, since they are children of the S*PR class. Similar redefinitions in
terms of the SPQR class can be applied to any previously defined Petri net model
for Sequential RASs, except for S"PR nets, since the SPQR class does not directly
deal with internal cycles. Note that all the above transformations are presented for
completion (i.e., as a proof that previous subclasses can be easily mapped into the
new framework), although they have no interest from a practical point of view.

On the other hand, transforming PC?R nets into SPQR nets can make much
sense for the aforementioned reasons. Significantly, it is always possible to transform
a PC?R net system into an equivalent SB SPQR net system, preserving its behaviour
with relation to liveness (indeed, the language of firing sequences is equivalent in the
transformed net system).

The transformation rule is based on the idea of converting every while-do block
into an acyclic process which is activated by a lender resource place. This lender
place gets marked once the thread reaches the while-do block. The token is removed
at the exit of the iteration. This transformation must be applied from the innermost
loops outwards. Figure 2.23 depicts the transformation rule. The rule preserves the
language accepted by the net (and thus liveness) since it basically consists in the
addition of a implicit place (place P1 in the right hand net of Fig. 2.23, since R_P1
can be seen as a renaming of P1 in the left hand net).

Figure 2.24 illustrates the transformation of the PC?R net system in Fig. 2.13 into
the corresponding SB SPQR net system.

90 2. The resource allocation problem in software applications

Figure 2.23: Transforming PC?R into SB SPQR nets: From iterative to acyclic processes

Structurally speaking, it is also possible to transform an SB SPQR net into a PC?R
net. In the same vein than for S*PR nets, it is just necessary to add a structural
implicit place per process subnet connecting its drain transitions with its trigger
transitions, which will be the idle place of the process subnet of the resulting PC2R
net.

Out of curiosity, the concept of acceptable initial marking has not been defined
for the SPQR class, since it was conceived as a model to support generalised FMSs
which support warm booting or where the processes are open plans. On the other
hand, the concept of (0/1-) acceptable initial marking does have a physical meaning
in the context of PC2R nets modelling real-world systems in software engineering.
As a lateral effect, the transformation of an SB SPQR net system (N, mg) into a
PC?R net system (N’, mg’) may not produce a net system with a 0-acceptable initial
marking mg’, even when mg[Ps] = 0.

2.6 Conclusions

Although there exist a variety of Petri net classes for RASs, many of these definition
efforts have been directed to obtain powerful theoretical results for the analysis and
synthesis of this kind of systems. Nevertheless, the process of abstraction is a central
issue in order to have useful models from a real-world point of view, and therefore
requires careful attention. In this chapter, that path has been followed, constructing
a list of requirements for obtaining an interesting Petri net subclass of RAS models
applied to the software engineering domain. Considering that list, the class of PC2R
nets has been defined. It fulfils those requirements while respecting the design phi-
losophy on the RAS view of systems. Some useful transformation and class relations
have also been introduced so as to locate the new class among the myriad of previous
models.

2.6. Conclusions 91

TA2 A2 TA3 A3 TA4 A4 TA5 TBS8

TB3 B2 TB2

Ta7—»(A6, BO, BOWL) />CAO, BO, FORK1, FORK2, BOWL)<\ A0, B6, BOWL TB7
e — Tes ’.>
TAL TB1
AS, BO J#. 6 ,// — e A0, BS

Al, BO, FORK2, BOWL, R_Al CAO, B1, FORK1, BOWL, R_B1
_~—TB1 TAL——
p—TA2 ——a— TB2—¢

e AL, A2, BO, FORK2) r<A1, B1, BOWL, R_AL, R_Bl)T—l;z(AO, B1, B2, FORKQ>
TA3 TA2y TB3

|
x TBl{Al,AZ,Bl,R_Bl)T (AL B1, B2, R_AL j&TAL {

-
(AL, A3, BO, FORKL, FORK2) L™ TasTs B3 (A0, B1, B3, FORK1, FORK2)

L
TA4 TB1—»(AL, A3, B, R_B1, FORK1) (AL, B1, B3, R_AL FORK2 j&TAL 157

TBlg TA4
Al, A4, BO, FORK2 Al, A4,B1,R_B1

& TB4 L TAL
Al, B1, B4, R_Al (Ao, B1, B4, FORK1>

Figure 2.24: From PC?R to SB SPQR nets: Two postmodern dining philosophers

Furthermore, it has hopefully been proved that the problem of liveness in the new
context is non-trivial and presented some cases of bad behaviour. In some cases,
the results are surprising and clearly reveal the inherent complexity of the class.
Remarkably, it is revealed that the previous siphon-based characterisations for liveness
analysis are no longer valid in this domain. Finally, a Petri net class called SPQR
has been introduced for modelling a very general category of Sequential RASs. This
allows to model abstractions of FMSs where the number of processes following the
process plans is not limited and these processes can have already allocated resources

92 2. The resource allocation problem in software applications

Property ‘ L-S*PR ‘ S*PR ‘ S'PR ‘ S°PR ‘ PC’R [1] ‘ PC’R [2] ‘ SPQR ‘
Structural

Well-formedness v v v v v v X
Struct. directedness v X X X X X X

Behavioural (for an mg acceptable for the class)

RS = PRS* X X X X X x X
Deadlock-free = Live X X X X X X X
Liveness monotonicity v X X X X X X
Directedness v v v X X X X
Reversible = Live v v v X X
Realisable t-semiflows v v v v v X X

Table 2.3: Comparison of some basic structural and behavioural properties related to
liveness. All behavioural properties are presented for net systems with acceptable initial

markings, except for [1] (1-acceptable) and [2] (0-acceptable).

from the start. The new SPQR framework colligates previous models and theoretical
achievements for dealing with the RAP. Additionally, the generalisation is enriched
providing support for other types of Sequential RASs which were not supported by
previous classes. A subclass of SPQR has been identified which looks promising so
as to provide a simple yet powerful theoretical framework in which study the liveness
analysis problem for multithreaded software systems.

To sum up, Table 2.3 highlights some similarities and differences between the dif-
ferent members of the S”PR family, while Fig. 2.25 introduces the inclusion relations
between the Petri net classes for Sequential RASs which have been introduced so far.

3Reachability Set = Potentially Reachability Set.

2.6. Conclusions 93
o T _\ """" +
PC’R SBSPQR " o
,,,,, * “-.—.’/./.%-;-i'i", R
B L L e " Legend:
S' PR S°PRe—— S*PR > -
"""""" fg isincluded
S3PR 5 into"
(@]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 8 -—7— —"— >b
L-S*PR = tr:ansf(c:)?nmeg
into"
+ process structure -

Figure 2.25: Inclusion relations between Petri net classes for RASs (first update of Fig. 1.5)

94

2. The resource allocation problem in software applications

Chapter 3

The liveness problem:
Characterisation, analysis and
synthesis

Summary

The long interest in finding efficient solutions to deadlock occurrence induced by re-
source sharing is strong and persistent in the context of parallel/concurrent software
production. Among the myriad of techniques discussed over the years, the import
of Petri net-based correction techniques which were traditionally applied in the con-
text of FMSs constitutes a promising new approach. In order to properly tackle the
problem in this domain, however, it is necessary to introduce a Petri net superclass
generalising previous FMS models, as discussed in Chap. 2. The unprecedented be-
havioural phenomena observed there prove that the well-known siphon-based liveness
characterisation falls short in the new context. In this vein, it is necessary to push
past boundaries in the quest for new analytical results characterising the deadlock
situations in the general case. In this chapter, we take that road to introduce new
necessary and sufficient liveness conditions for general PC2R nets. Unfortunately,
there still remains an unexplored gap between both conditions which remains unex-
plored for some complex subclasses. A basic methodology is therefore proposed which
deploys a toolbox of heuristics to approach complex multithreaded software systems
and propose corrections to prevent non-liveness in such troublesome scenarios.

95

96 3. The liveness problem: Characterisation, analysis and synthesis

3.1 Introduction

Petri net-based methodological approaches in deadlock prevention are a success story
in the domain of FMSs. Along the years, diverse Petri net classes for dealing with
the RAP have emerged in the field. These are usually derived from the physical
constraints of different plant configurations and are specifically adapted to their mod-
elling necessities. Taking these syntactic restrictions into account, it is usually pos-
sible to find a structural characterisation of the liveness property (L-S*PR [GV99),
S3PR [ECM95], S*PR. [Tri03]), captured through the concept of insufficiently marked
siphon, as succinctly introduced in Chap. 1.

Notably, the identification of insufficiently marked siphons as structural elements
characterising non-liveness has traditionally led to iterative prevention techniques
based on the addition of monitors that prevent the siphons from being emptied.
Unfortunately, these monitors can occasionally cut off legal markings which do not
lead to any factual deadlock. For these more general Petri net classes, a deeper
insight into the permissiveness of the deadlock prevention policy is required so as
to not obtain a system with too many unnecessary control elements. Consequently,
many works deal with different strategies of computation of monitors, in the quest for
an appropriate tradeoff between permissiveness, computational efficiency and control
simplicity.

In effect, considering this blooming of publications around Petri net-based RAS
approaches in the context of FMSs, it can be observed that the most significant
proliferation of works emerges in the context of synthesis. Most of these papers are
related to siphon computation [CRC12, LZ08] as well as to applying Integer Linear
Programming (ILP) to liveness enforcing [TGVCE(05, HZL11]. Another family of
works focuses on synthesis based on reachability state analysis and on the theory of
regions [GRX03, PCF09].

Recent works in the context of the design of minimal adaptive deadlock-free rout-
ing algorithms [Rov11] rely on the privatisation of resources as a mean to correct any
potential deadlock without restricting the system concurrency. This crystallises in
the Petri net through the splitting of some resource places, being ‘duplicated’ in such
a way that the original bad siphons become broken. In the case of routing algorithms
in interconnection networks, these new resource places are materialised through new
virtual channels in the system. Again, these results are grounded in the concept of
siphon as a mechanism to characterise deadlocks.

The resource pruning graph [CRC12] is a powerful artifact that not only allows
the computation of every minimal siphon in a S*PR net, but also provides a concise
insight on how these siphons are constructed. For SOAR? nets (a subclass of S*PR
which deals with the aforementioned problem domain [Rov11]), minimal siphons are
enough to characterise deadlock situations. Therefore, the information provided by

3.2. On siphon-based liveness enforcing in FMSs 97

the resource pruning graph can be highly valuable to prevent deadlocks from happen-
ing by breaking any malicious siphon through the privatisation of some resources.

The multithreaded software domain, however, imposes limitations and challenges
to those previous approaches. First, the manifestation of insufficiently marked siphons
is not necessary for the existence of deadlock situations. Second, even when insuffi-
ciently marked siphons reveal that a deadlock exists, it may happen that none of these
siphons is minimal. Both of these anomalies are illustrated in Chap. 2 and imply that
the previous techniques must be extended or adapted to be applicable in the new do-
main. On the other hand, the technique of privatisation of resources must be revised
and interpreted on the domain of multithreaded programming. Particularly, it must
be analysed under which conditions a resource can be privatised in this context.

In short, the goal of this chapter is to draw the boundaries that the multithreaded
software domain imposes to the application of analysis and synthesis techniques and
results for RASs derived from other domains. At the same time, it seeks to generalise
and extend the exploitation of these results to the extent possible. Accordingly, the
chapter is completed with the presentation of a methodological proposal to address
the correction of liveness problems in these systems through a synthesis toolbox that
encompasses the prior knowledge of such systems as well as the new results developed
throughout the chapter.

Section 3.2 describes the siphon-based techniques mentioned above with a greater
profusion of details. Section 3.3 deals with the analysis of PC?R models using siphons,
as well as the limits of this type of approach. Namely, the boundaries of the liveness
characterisations proposed for simpler subclasses are presented with examples. An
efficient ILP-based test condition for liveness is also proposed. In addition, some prop-
erties of the siphons in this kind of models are introduced. Finally, Sect. 3.4 assembles
a toolbox of synthesis techniques for these models along with their interpretation in
terms of the application domain.

Note that some additional figures are provided in Appendix B which complement
some of the examples throughout the chapter with further information.

3.2 On siphon-based liveness enforcing in FMSs

3.2.1 The synthesis flow for liveness enforcing

Traditionally, Petri net-based deadlock prevention techniques for RASs have been
based on the exploitation of the siphon as a structural element that captures the
causal essence of a deadlock through its emptying. As discussed in Chap. 2, this
emptying of a siphon is manifested in absolute terms for the most simple RAS net
classes (L-S*PR, S?PR) while for more complex types of systems (S*PR) deadlocks
are characterised through the concept of insufficiently marked siphon, in which some

98 3. The liveness problem: Characterisation, analysis and synthesis

tokens may permanently remain in the siphon, yet still being insufficient to allow an
eventual firing of certain transitions.

Fruitful results have been obtained in the field of FMSs by exploiting such concept.
Siphon inspection allows determining which system processes may block each other
and because of which allocations of resources. This allows introducing controllers
in the system which inhibit the possibility of the system reaching such undesired
states. These controllers are naturally represented in the Petri net as new resource
places introducing Generalized Mutual Exclusion Constraints (GMECs) [GDS92] that
forbid certain firing sequences. The incarnation of these monitors as resource places
allows easy integration of the controlled system in the theoretical framework already
developed. This has led to the proposal of iterative control methodologies which
deploy strategies of incremental correction of potential deadlocks [TGVCE05].

Most works that approach the problem of live FMSs synthesis from this perspec-
tive usually exploit the fact that these monitors are represented by resource places
in the Petri net. For sufficiently general net classes for RASs, such as S*PR, this
means that the Petri net that models the resulting system after the addition of the
monitor still belongs to the same class of nets. In this case, it is possible to approach
the augmented model using the same tools. This has facilitated the introduction of
iterative correction methods which address possible deadlocks in a gradual manner
until obtaining a live system [TGVCE05].

Often, each monitor that is added to the model is capable of removing a family of
markings that belong to the same terminal strongly connected component, be it from
the reachability space of the net or at least from the solution space of its net state
equation. In terms of the net structure, this is achieved by monitoring the transitions
that substract tokens from the siphon, so that it is not possible to drain the siphon
beyond a certain threshold from which it cannot regain its initial marking. In other
words, these transitions which potentially empty the siphon will request tokens from
the new monitor place, and therefore always have a minimum of two input resource
places, wherein at least one of them belongs to the siphon. That is why in the case
of more restrictive Petri net subclasses such as S?PR the addition of monitor places
takes us out of the class studied, since in them, each transition has at most one input
resource place (indeed, only one resource is allocated to each active process in S*PR
nets) [ECM95].

On the other hand, the addition of the monitor may cause the appearance of new
siphons that include this new resource place in them. Those new siphons can eventu-
ally be insufficiently marked, making it necessary to consider the need to control them.
Behaviourally, this can be explained by the conversion of non-terminal strongly con-
nected components that inevitably lead to deadlock into terminal strongly connected
components that contain now actual deadlocks, having removed the leaf components
that hung from them. Consequently, iterative approaches need to consider not only

3.2. On siphon-based liveness enforcing in FMSs 99

the siphons of the original net, but also those new siphons which appear when others
are being controlled.

Furthermore, this kind of techniques have a major handicap. Although the strat-
egy of addition of monitors works fine for simple RASs classes, such as those that are
structurally safe [GVTCE9S8], such approaches have deeper problems in more general
circumstances. Not only happens that sometimes there does not exist a single place
to cut a terminal strongly connected component in a complete and isolated way, but
occasionally the elimination of one of its markings through a monitor place requires
removing legal markings from other strongly connected components. This happens
even for RAS classes whose net models are ordinary and their processes are linear,
i.e., which lack on-line decisions [GV99]. Later in Subsection 3.2.2 we will see an
example of this type of phenomenon.

This circumstance is due to the fact that monitor places introduce linear marking
constraints (i.e., the weighted sum of tokens in a set of places is limited by some
number), while some of those unwanted markings may be trapped in the convex hull
of the space of legal markings. This means that (to make a clean excision) we need a
non-linear constraint that can cut this kind of markings. In this context, it has been
proposed the introduction of disjunctive constraints through control mechanisms that
are no longer a single place, but instead a subnet which overcomes the aforementioned
obstacle [TA07]. A major difficulty in this kind of approaches is, again, the fact that
the subnet introduced to control the siphon may leave the resulting Petri net out of
the class of networks that can be analysed with the classic theory of siphons in RASs.

Another common approach for liveness enforcing through the addition of monitors
is based on the exploration and manipulation of the state space of the net, leaving
aside siphons as a structural means of approaching non-liveness. In this context, it is
essential that bad states are categorised, taking into account not only those in which
there exist dead transitions, but also those markings which are doomed to deadlock.
Nevertheless, the biggest obstacle that this kind of approaches manifest is to handle
the state explosion problem, aggravated especially in highly concurrent RASs.

Due to the computational complexity of dealing with the reachability set, the
use of symbolic representations of sets of markings through Ordered Binary Decision
Diagrams (OBDDs) has been proposed in order to obtain a compact representation
of the set of forbidden markings [GVTCE9S8]. This ultimately allows the definition
of a temporal logic and the efficient computation of the control logic (i.e., the set of
monitors) through model checking techniques.

A different subfamily of approaches on the problem relies on the Theory of Regions
(or variations of it) to tackle the state explosion problem and the addition of monitors
that forbid bad states [GRX03, UZ07]. Recent works address the classification of the
reachability space through non-linear classifiers, tackling the problem of bad markings
that become trapped in the convex hull of the space of legal markings [NR12].

100 3. The liveness problem: Characterisation, analysis and synthesis

A different set of techniques is based on the structure of the Petri net as a graph.
Typically, they consider the relations among resources and they look for dangerous
relations, as circular waiting relations among resources. The Petri net structure typi-
cally reflects the relations of use among resources (which are the main problem when
dealing with deadlocks) and, in this sense, several approaches have been presented
trying to exploit this. One of the most common approaches is based on the usage
of digraphs [FZ04]. In this vein, railway networks originally modelled by means of
coloured Petri nets have been approached by way of digraphs from a RAS perspec-
tive [FGS06]. The resulting control logic is incorporated to the original net system in
the form of colored monitor places.

The approaches based on the relation among bad states and structural compo-
nents of the Petri net have their starting point in the seminal work of J. Ezpeleta,
J-M. Colom and J. Martinez [ECM95]. That paper presented a characterisation of
the liveness problem in S®PR in terms of empty siphons. Many papers have later
tried to either extend those results to more general classes of Petri nets or to explore
them [Tri03, PRO1, TGVCEO05, HIXCO06, Rev07, HZL11].

A first family of approaches to the problem of synthesising live FMSs from a
structural perspective is based on the computation of all siphons that may be involved
in a deadlock, in order to control them. In the context of S?PR nets, this often results
in the need for algorithms for computing the set of minimal siphons since, for this
kind of models, any deadlock situation is associated with at least one minimal empty
siphon. This is essentially the approach originally presented in the aforementioned
seminal work [ECM95].

Some work has been done later to avoid the computation of all minimal siphons,
trying to reduce the computational complexity by only controlling a significant subset
of them [LZ08]. The core of this kind of approaches is to try to obtain truly indepen-
dent siphons by means of its interactions via transitions (dependency is measured by
linear combinations of transitions related to the siphon). Other works try to avoid
the computation of all minimal siphons through the introduction of hybrid strategies
in which the state space of the net is also explored [PCF09).

The pruning graph [CRC12] is a powerful artifact that not only allows the com-
putation of every minimal siphon in a S*PR net, but also provides a concise insight
on how these siphons are constructed. For S?PR nets, minimal siphons are enough
to characterise deadlock situations. The pruning graph will be further introduced in
Subsection 3.2.3.

An alternative route for structural control based on siphons passes through the
introduction of iterative synthesis strategies based on the individual search of poten-
tially dangerous siphons and their control through monitors. This scheme is repeated
until a live system is obtained, which sometimes means avoiding the computation of
a significant number of siphons.

3.2. On siphon-based liveness enforcing in FMSs 101

A0, BO, R1%, R2?

y—TAL TB1 AW
TA4<A1' BO, R1’, R2) (A0, BL, R1, R2?)
TA2 TB1 TAL—/ T

TA4 TB2

A2, BO, R2 A1, B1, R1, R2

marking

Figure 3.1: A non-live S*PR net system to be controlled

In this vein, several studies have appeared that address the computation of
problematic siphons and monitor places through techniques based on ILP [Tri03,
TGVCE05, HZL11]. In the next subsection we will discuss an approach based on this
last family of techniques, which will be illustrated through examples.

3.2.2 Managing siphons for the computation of virtual re-
sources

Computing virtual resources through mathematical programming

Fernando Tricas et al. [TGVCEOQ5] present an iterative algorithm for deadlock pre-
vention based on ILP which is reviewed on the following. This result is grounded
on the structural characterisation already presented in Theorem 1.5 and deployed
in the context of supervisory control of FMSs for the rather general class of S*PR
nets. With the help of the net state equation, a set of Integer Linear Programming
Problems (ILPPs) can be constructed which prevents the costly exploration of the
state space. As far as we know, other works on ILP-based liveness enforcing depart
from a similar strategy even though the objective function to be optimised may dif-
fer. To illustrate the algorithm, the S*PR net system in Fig. 3.1 (which was already
introduced in Chap. 1 as Fig. 1.4) will be used.

In each iteration, this algorithm searches for a bad siphon and a potentially reach-
able marking under which the siphon is insufficiently marked. If found, a control
place is suggested to prevent that siphon from ever becoming insufficiently marked.
Such control place will be a virtual resource, in such a way that the resulting Petri
net remains into the S*PR class. Thanks to this, a new iteration of the algorithm can
be executed. The algorithm terminates as soon as there do not exist more siphons to
be controlled, i.e., the system is live.

102 3. The liveness problem: Characterisation, analysis and synthesis

Prior to the introduction of the algorithm and its related ILPPs, some basic no-
tation must be established.

In the following, for a given insufficiently marked siphon D, Dg = D N Pr and
YDr = D e py Yr- Notice that yp, expresses the total amount of resource units
belonging to D (in fact, to Dg) used by each active process in their process places.
Also:

Definition 3.1. [TGVCE05] Let (N, mg) be an S*PR net system. Let D be a siphon
of N. Then, Thp = |lypg ||\ D is the set of thieves of D, i.e. the set of process places
of the net that use resources of the siphon and do not belong to that siphon.

The next system of restrictions relates the liveness characterisation introduced in
Theorem 1.4 with the ILPPs which are used in the forthcoming algorithm. Essentially,
the characterisation is reformulated into a set of linear restrictions given a reachable
marking and a related bad siphon.

Proposition 3.2. [TGVCE05] Let (N, mg) be an S*PR net system. The net is
non-live if and only if there exist a siphon D and a marking m € RS(N,mg) such
that the following set of inequalities has, at least, one solution:

m[Ps] % 0 -- 3 eT:t is m-p-e
Vte T\ Py with {p} = *t N Ps,

mlp|] > e; -- ¢=0:¢ is m-p-d

e > ;E[[f,}] -- ¢=1:7 is m-p-e
Vr € Dr,Vt € r® \ Py*: % > e -- ¢4=0:t is m-r-d by r

m[r]—Pre[r,t]+1

Crt Z m - ert=1 :t is m-r-e by r

Vr € PR\ Dgr,Vt €r*\ P*: ey =1 -—eq=1l:17¢D
VEET\P®: Y conpy €rt <[*tNPr|+1—¢ -- if t is m-p-e then

e, € {0,1} t is m-r-d by Dg
Vr € Dr,Vt € r® \ Py*: et € {0,1}.

(3.1)
where sblp] denotes the structural bound of p [CS91]

Note that m-p-e (m-p-d) stands for m-process-enabled (m-process-disabled) and
m-r-e (m-r-d) stands for m-resource-enabled (m-resource-disabled).

The following proposition introduces a set of additional restrictions on the system
(3.1) that characterise the condition of siphon for the set of places whose respective
variables v, equal zero (observe that, for notational simplicity, we use v, for process
places and v, for resource places). Note that the minimality of the siphon is not

3.2. On siphon-based liveness enforcing in FMSs 103

required, which makes sense considering that no minimal siphon characterises liveness
for the class of S*PR nets, as introduced in Sect. 2.4. Therefore, the new proposition
captures the characterisation introduced in Theorem 2.33 with a system of linear
inequalities.

Proposition 3.3. [TGVCE05] Let (N,mg) be an S*PR net system. The net is
non-live if and only if there exist a siphon D and a marking m € RS(N, mg) such
that the following set of inequalities has a solution with D = {p € PsU Py | v, = 0}:

Vp € P\ Po,Vt € pruy >3 coyvg— |t +1 -- D is a siphon
Y per\p, Up < |P\ Pl -- DI > 1
m[Ps]% 0 -- JHeT:t is m-p-e
Vee T\ P : with {p} = *t N Ps,
mip| > e; -- €=0:t is m-p-d
e 2> :tl,[[z;]] -- e=1:t is m-p-e
Vr € Pr,Vt €r®\ P*: Pl:;[[:{t] + U > et -- e4=0:1 is m-r-d by r
and r€ D

m[r]—Pre[r,t]+1

Crt > m - €7~t=1 :t is m-r-e by r

ert 2> Uy -— eq=1:7r¢D
VEET\R®: Y coinpy €t <|*tNPr|+1—e —- if t is m-p-e then
Vpe P\ Fy: vp € {0,1} t is m-r-d by Dpg
Vie T\ P®: e, €{0,1}

Vr e Pr,Vter®\ Py*: e €{0,1}.
(3.2)
where sblp| denotes the structural bound of p [CS91].

Note that m-p-e (m-p-d) stands for m-process-enabled (m-process-disabled) and
m-r-e (m-r-d) stands for m-resource-enabled (m-resource-disabled).

Thanks to the addition of the net state equation as another linear restriction,
the following theorem constructs an ILPP which can compute a marking and a bad
siphon holding System (3.2). Nevertheless, that marking can be a spurious solution
of the state equation. Since this kind of nets can have killing spurious solutions (i.e,
spurious solutions which are non-live when the original net system is live) then the
theorem establishes a necessary but not sufficient condition. This is usually not a
problem when the objective is to obtain a live system: the only consequence can be
that some harmless, unnecessary control places are added. These control places would
forbid some markings which are not really reachable.

104 3. The liveness problem: Characterisation, analysis and synthesis

Since one siphon must be selected, the ILPP selects that with a minimal number
of places, hoping that controlling the smallest siphons first may prevent controlling
the bigger ones. Other works present analogous techniques with a different objective
function for this ILPP [HZL11].

Theorem 3.4. [TGVCE05] Let (N,mg) be an S*PR net system. If the net is
non-live, then there exist a siphon D and a marking m € PRS(N, mg) such that the
following set of inequalities has, at least, one solution with D = {p € PsUPg | v, = 0}:

max 3¢ p\p, Up

s.t. m=mg+C-o
m>0,0 € N7
System (3.2)

The previous theorem can compute a marking m and a related bad siphon D.
However, siphon D can be related with a high number of deadlocks, and not only with
that represented with m. For that reason, the aim is to compute a control place able
to cut every unwanted marking which the siphon D is related to. Consequently, two
different strategies are raised from the observation of the set of unwanted markings: (i)
adding a place that introduces a lower bound of the number of available resources in
the siphon for every reachable marking (D-resource-place), or (ii) adding a place that
introduces an upper bound of the number of active processes which are withdrawing
tokens from the siphon (D-control-place).

In order to define the initial marking of such places, two constants must be com-
puted which are the result of two ILPPs. These ILPPs evaluate every unwanted
marking that a bad siphon is related to:

Definition 3.5. [TGVCE05] Let (N, mg) be an S*PR net system. Let D be an
insufficiently marked siphon, m%®* and mB™ are defined as follows, with vp = 0 iff

peD:

mp™ = max 3 . p mlr] mp™ = min 2 perh, MP]
st. m=mg+C- o s.t. m=mg+C - o
mZO,UE]N'T| mEO,O'GIN‘T‘
m[Ps\ Thp] =0 m[Ps\ Thp] =0

System (3.1) System (5.1)

The next definition establishes the connectivity and the initial marking of the
control place proposed for a given bad siphon D, both whether that place is a D-
process-place or a D-resource place.

3.2. On siphon-based liveness enforcing in FMSs 105

Definition 3.6. [TGVCEO05] Let (N',;mq) be a non-live S#PR net system. Let D be
an insufficiently marked siphon, and mB** and m'%™ as in Definition 3.5. Then, the
associated D-resource-place, pp, is defined by means of the addition of the following
incidence matriz row and initial marking: CPP[pp,T] = —3_ 1, ¥Ypg[p] - Clp, T},
and mEP [pp| = mo[D] — (m'B** + 1). The associated D-process-place, pp, is defined
by means of the addition of the following incidence matriz row and initial marking:

cre [pD’T] - ZPGThD C[p, T]; and ng [PD] = mlz)lin - 1.

Finally, we can state the algorithm that computes the control places for a given
S?PR net system. In those cases in which a D-resource-place with an acceptable
initial marking cannot be computed, the algorithm proposes the corresponding D-
process-place, which always has an acceptable initial marking [TGVCEO05].

Algorithm 3.1 [TGVCEO05] Synthesis of live SPR net systems

1. Compute an insufficiently marked siphon using the ILPP of Theorem 3.4.
2. Compute m3** (Definition 3.5).

(a) If the associated D-resource-place (Definition 3.6) has an acceptable initial
marking according to Definition 1.2, then let pp be that place, and go to
step 3.

(b) Else, compute m5™" (Definition 3.5). Let pp be the associated D-process-
place (Definition 3.6).

3. Add the control place pp.

4. Go to step 1, taking as input the partially controlled systems, until no insuffi-
ciently marked siphons exist.

Theorem 3.7. [TGVCE05] Let (N, mg) be an S*PR net system. Algorithm 3.1
applied to (N, mg) terminates. The resulting controlled system, (N©,m§), is a lLive

S4PR net system such that RS(NC, m§) C RSN, my).

Let us now apply Algorithm 3.1 to the net depicted in Fig. 3.1. There exists
one deadlock (m = [A1,B1,R1,R2]) and two insufficiently marked siphons in m,
Dy = {R1,R2,A3,B2} and Dy, = D; U {A2}. None of these is minimal. When
applied step 1 of Algorithm 3.1, the ILPP of Theorem 3.4 returns D = Dy, since D1
has less places than Ds. In step 2, we compute m5** = m[R1] + m[R2] = 2. Since
the associated D-resource-place has not an acceptable initial marking (only one token
in it is insufficient at mg), then we compute m5™ = m[A1] + m[A2] + m[B1] = 2.
In step 3, we add the associated D-process-place pp to the net. And finally, we go

106 3. The liveness problem: Characterisation, analysis and synthesis

A0, BO, R1%, R2?, pp

4(A1, B0, R1% R2) (A0, B1, R1, R2% B3

TA4 182 X x—

Figure 3.2: The controlled system after applying Algorithm 3.1 on the net in Fig. 3.1

back to step 1. But now the net is live and the ILPP of Theorem 3.4 has no solution,
so the algorithm finishes after its first iteration. The resulting controlled system is
depicted in Fig. 3.2.

Limits on permissivity

Nevertheless, these techniques have certain limitations. For general S*PR nets, adding
extra monitors to cut ‘bad’ states off and enforce liveness may also entail the removal
of some legal markings. This happens when some unwanted marking can be obtained
by a linear combination of two reachable markings which are legal (i.e., those which
are not doomed to deadlock, and therefore ideally should not be forbidden). Then the
unwanted marking is trapped in the convex hull of the space of legal markings. That
means that any additional linear constraint that could be added to effectively forbid
that marking necessarily would involve removing some legal extreme points. In other
words, any GMEC which eliminates the unwanted marking also requires removing
some legal marking.

This type of limitation has already been addressed from the standpoint of general
Petri nets [GVTCE9S]; in fact, the net in Fig. 3.3 is a variation of an illustrative
example presented in that work. Hereinafter, we will address the correction of this
net system by means of Algorithm 3.1. This net contains a unique (minimal) bad
siphon D = {R1,R2,A2 B2} which is insufficiently marked (in the sense derived
from Theorem 1.5) at the following reachable markings:

[A0,A1,B0,B1,R1,R2] = my
[A1%,B0, B1,R2]
[A0,A1,B1% R1]

3.2. On siphon-based liveness enforcing in FMSs 107

spurious

2 2 2 2
T3 A0?, BO?, R1?, R2 T6
TL Toi—

—
12—(A0, A1, B0% R1,R?®) (A0 BO, B, R1%, R2 —5

T ;

I]
A0, A2, BO?, R1? T I ? 2
A0, AL BO, BL, R, R2 ATREOIEZIRS
T1 T (Tl T~ T4 16 T4
2 2
AL, A2, BO?, R1 (Alf' BO& BL,R2) (A0, Al'}Bl *Rl) A0% B1, B2, R2
T4 Tl
T2_(ar? B0 RZ)—T4 AR B)« = T (A0% BIZRE)®

Figure 3.3: A non-live S*PR net system with a non-convex permissible marking space

[A0?, B0%] = m,

Indeed, the siphon D is empty at mg, which is a deadlock. Note that the other
three markings are doomed to deadlock, and therefore should be forbidden as well.
When applied step 1 of Algorithm 3.1, the ILPP of Theorem 3.4 returns D. In step
2, we compute mB** = 2 (this value is obtained because of my). In step 3, we add
the associated D-resource-place pp to the net. And finally, we go back to step 1. But
now the net is live and the ILPP of Theorem 3.4 has no solution, so the algorithm
terminates. The resulting controlled system is depicted in Fig. 3.4.

As shown in Fig. 3.4, the proposed solution includes the addition of a resource
place pp cutting the four unwelcome markings that are shaded in a different color in
both figures. However, this place also forbids two additional markings which do not
inevitably lead to deadlock: [A1%,B0? R2%] and [A0% B1%,R1?]. Note that mg is still
reachable from those markings.

This last observation might suggest that the new resource place is not the optimal
so as to cut the unwanted states off. However, it is easy to check that the marking
[AO, A1,B0,B1,R1, R2], which inevitably leads to deadlock, lies in a midpoint between
the two legal markings which have been eliminated. Certainly:

[A1%,B0% R2?] 4 [A0%,B1% R1?]
2

Therefore, any linear constraint added to remove such marking inevitably requires

= [A0, A1, B0, B1,R1, R2]

the elimination of any of those two legal markings.

This example also illustrates another limitation of these techniques: by adding
linear constraints that merely inhibit reachable markings, and therefore possible firing
sequences, the system concurrence is reduced. In many cases, this negatively affects
the system performance. The proposed control logic depicted in Fig. 3.4 not only

108 3. The liveness problem: Characterisation, analysis and synthesis

spurious
marking

2 B2 2 2
T3 A0%, BO%, R1%, R2%, pp T6.
T1 T4\‘

12—(A0, AL, B0 R1, R2%) (A% BO, BL, R1% R2)15

\ ;
X 2 2
1, R2 A A0%, BO, B2, R2%, pp

X x e T4

A0?, B1, B2, R2

b

Figure 3.4: The controlled system after applying Algorithm 3.1 on the net in Fig. 3.3

inhibits completely the possibility that a process of type A (left process subnet) and
a process of type B (right process subnet) ever coexist in the system, but even the
circumstances under which two processes of the same type concur are reduced.

Non-redundant virtual resources

Another possible undesired consequence of using this type of approach is that of
obtaining a set of places wherein some of them may be redundant for the control of
the net, in the sense that their removal would preserve the language of firing sequences
of the net. In other words, some of the control places may be implicit places.

As introduced in Lemma 2.27, every resource place of an S*PR net is structurally
implicit. Therefore, every monitor place added to prevent a siphon from becoming
insufficiently marked is also an SIP. This does not necessarily mean that these places
are implicit, as this depends on their initial marking. In fact, usually the last resource
place added with this type of iterative approach is not an implicit place. This is
due to the fact that it must cut at least one bad marking that was allowed so far.
Provided that at least one such marking is not a spurious marking we can state that
the introduction of the monitor place restricts the language of firing sequences of the
net, and thus the place is not implicit.

However, the introduction of a new resource place, even not being implicit, can
make redundant (i.e., implicit) some of the previously existing monitor places in the
net [Tri03]. From the standpoint of the control engineer, this is an undesirable situa-
tion that can lead to the introduction of unnecessary control mechanisms involving a
cost overrun or overcomplicate the system maintenance.

For this reason, post-processing techniques should be applied to cut implicit places
after obtaining the control logic. Despite the NP-completeness of determining, in the
general case, the minimum initial marking that makes an SIP implicit [GVC99], there

3.2. On siphon-based liveness enforcing in FMSs 109

still exist efficient techniques based on sufficient conditions for determining if a control
place with a given initial marking is implicit. Remarkably, a technique based on Linear
Programming which allows to determine it with a polynomial time cost in the worst
case has been proposed [GVC99].

Such kind of techniques can be used iteratively on the set of control places in order
to eliminate redundancies. In the worst case, this involves solving the above Linear
Programming Problem at most as many times as control places exist in the net, which
still implies a cost in polynomial time in the size of the net.

3.2.3 Siphon computation via the resource pruning graph
The resource pruning graph

The resource pruning graph [CRC12] is a powerful artifact that allows an efficient
computation of the set of minimal siphons of an S*PR net. In this graph, nodes
represent the minimal siphons containing a single resource place, while the arcs rep-
resent the pruning relations between those ‘seed’ siphons. Particularly, such ‘seed’
siphons are unique, and every minimal siphon of a S*PR net containing more than
one resource place can be obtained by observation of the pruning relations between
the set of minimal siphons containing each of its resource places in isolation [CRC12].
Note that two minimal siphons are in a pruning relation if their union contains places
that are non-essential.

For more restrictive classes of nets, such as S’PR or SOAR?, it is even possible
to obtain the set of minimal siphons by purely algebraic methods for the different
combinations of the ‘seed’” minimal siphons [Rov11]. But in general, the technique
requires the search and identification of strongly connected subgraphs under certain
conditions to ratify the minimality of the resulting siphon.

Figure 3.5 depicts a S®PR net that illustrates the technique above. The net has
already been introduced in Chap. 2 (Fig. 2.12), although here has been instantiated
with an acceptable initial marking that makes the system non-live. Indeed, Fig. 3.6
displays the reachability graph of the net system, in which a reachable deadlock can
be observed: [A4,B4,R2,R3?|.

Figure 3.7 exposes the resource pruning graph of the net in Fig. 3.5. The figure
reveals that the net has four minimal siphons containing a single resource place (Dgj,
Dga, Dgrs, DRr4), symbolised by the four nodes of the pruning graph. Each one of
these minimal siphons fits exactly the support of the minimum p-semiflow y,. induced
by the corresponding resource place of the net. This always happens in the case of
S3PR nets, but it is not necessarily so for general S*PR nets: although the support
of a p-semiflow is always a siphon, it does not necessarily have to be a minimal one.

The figure shows that every arc of the graph is labelled with at least one pair
(transition, process place). Nonetheless, an arc can be, in general, labelled with a

110 3. The liveness problem: Characterisation, analysis and synthesis

Figure 3.5: A non-live S®PR net

number of these pairs. This set of pairs describes the pruning relation between the two
siphons involved. For instance, the directed arc from the node corresponding to Dgy
(labelled with R1 in the figure for the sake of simplicity) to the node corresponding to
Dra (labelled with R4) is labelled with the pair (TB5,B4). This label indicates that
siphon Dgy, through transition TB5, has the ability to make B4 from siphon Dgr4 a
non-essential place (and, eventually, make the same for some of the preceding process
places) in the joint construction of any minimal siphon containing the resource places
R1 and R4. In fact, the figure reveals that the unique minimal siphon containing
places R1 and R4, Drirs = {R1,R4,B1,B5, A1, A5}, can be obtained from the union
of the siphons Dgr; and Dgr4 minus the places B4 and A4, which are the ones in the
labels of the arcs between those nodes labelled R1 and R4. In that sense, it is said
that siphon Dgr; purges place B4 from siphon Dgy, while siphon Dry4 does the same
with place A4 from siphon Dgj.

From the above it is easy to deduce that the mutual purge of at least one essential
place by two siphons is a necessary and sufficient condition for the existence of a
minimum siphon containing only the corresponding resource places. Similarly, the
purging of a place for every ‘seed’ siphon in relations that involve more than a siphon
through a strongly connected component of the graph is a sufficient condition for the
existence of the corresponding minimal siphon, involving all (and only those) resource
places derived from the component. However, this condition is no longer necessary
due to the possible existence of embedded minimal siphons, being necessary, in the
general case of S*PR nets, the study of the strongly connected subgraphs contained
in it.

111

3.2. On siphon-based liveness enforcing in FMSs

INOJ0D JUSISYIP © UO PIsSaI)s ‘SDO[PeIP U0 sey 42U oY [, ‘¢'¢ "SI, ul waysks 1ou ayy Jo yderd Lyiqeypesy] :9°¢ 2anSrg

eaL “9vL.
V.1 9gl
L cal odL
(ed'za T e 'sv e (£ T za‘sy) (v 2y 18 ‘v
sl A
sal_evl—»{(,£d'Td ‘'va ‘ev LYV oyl gg Cot ¢

€4 ‘2d 'Td 'v8 2V) pg

£ 2d 'TH ‘v 'OV) g, (v¥ ‘2 T 'e8 ‘2v
ST R YL ,.
% WNd\._. mm._.j m”<|_| Y mmn_.
paL \jﬁ*@ ‘24 'Y 'eq .H®4O& ‘24 'TH 28 2V) w7l £ T8
PRTETE— J ealL A evL
v ‘€ ‘2 ‘T ‘€8 OV 4LV 1 ﬁ NHP Sl RN

4 £ ‘T ‘28 TV v ‘€Y ‘2 ‘18 2V 81
edL e i v\ﬁﬁm “ Tl

Q\m ‘€Y ‘zd ‘Td ‘09 ‘¢v

N ™(vu'edcd Td0d oV

9v.1

112 3. The liveness problem: Characterisation, analysis and synthesis

R1 (TB2, B1)
(TA4, A3)

A
N

Dry = {R1, A4,B1,B5}
Dro = {R2, A3, B2}
Drs = {R3,A2,B3}
Dry = {R4, A1, A5, B4}

A

(TBS, B4)
(TAS, A4)
(TA3, A2)
(TB3, B2)

Ke(R1) = {Ad)
K¢ (R2) = {A3}

KA « ——(TA2, A1) K¢ (R3) = {A2,B3}
R4 (TB4, B3) R3 Ke(R4) = {B4}

Figure 3.7: Resource pruning graph G of the net in Fig. 3.5

A quick reading of the above could lead to the wrong conclusion that the existence
of, for example, a cycle between two nodes necessarily implies the existence of a
minimal siphon comprising only the corresponding two resource places. At this point,
it is important to note that the appearance of a particular resource place on the label
of an arc does not necessarily imply its non-essentiality in any siphon that includes
the union of the two minimal siphons involved. On the contrary, it can be observed
in the net of the example that there exists no minimal siphon containing the resource
places R1 and R2, despite the existence of a cycle between the nodes corresponding
to Dry and Dgrs. This is due to the fact that Dgro cannot ever purge place Bl of
DR, since transition TB7 makes place B1 essential for every siphon containing the
resource place R1.

That is why from the pruning resource graph depicted in Fig. 3.7 it follows that
the only minimal siphon possible for the net in Fig. 3.5 is precisely the siphon Drigra.-
An algorithm has been provided to compute the set of minimal siphons of a S*PR
net from the resource pruning graph [CRC12].

Note that Fig. 3.7 includes the value of a labeling function (K¢) associated with
each node of the resource pruning graph G. This function actually gives us informa-
tion about what should be pruned from each node in the eventual construction of a
minimal siphon containing all resource places in the graph G. In general, it may be
necessary to recalculate this function for each of the strongly connected subgraphs
contained in G. The latter can potentially return different values for the same ‘seed’
siphon. For example, for the subgraph G’ that only contains the nodes R2 and R3, the
computation of K¢/ (R2) returns the empty set, which contrasts with Kg(R2) = {A3}
and shows us that there is no minimal siphon containing only R2 and R3, since Drs

3.2. On siphon-based liveness enforcing in FMSs 113

Figure 3.8: Controlled version of the net in Fig. 3.5

is not able to purge anything from Dgs by itself.

The value returned by this labelling function is essential in the algorithm for
computing the minimal siphons of the net. This function is approached in more
detail (and also the algorithm to compute it) in subsequent sections of this chapter.

In the case of S3PR nets, the computation of the set of minimal siphons is es-
pecially useful as a tool for controlling the net system since, as we have seen in
Chap. 2, non-liveness can be characterised by the existence of a minimal siphon con-
taining more than one resource place and becoming eventually empty. In that sense,
the information provided by the resource pruning graph guarantees the possibility of
controlling this type of siphons to prevent any eventual emptying and obtain a live
system. Indeed, for the net of Fig. 3.5 it is possible to control the minimal siphon
DRir4, computed through the resource pruning graph, by means of the correspond-
ing Dgirg-resource place. Obviously this is the only bad siphon containing more
than one place of resource and therefore the siphon which empties in the deadlock
[A4,B4,R2,R32] that can be observed in Fig. 3.6 for the given acceptable initial
marking. The net that results from adding the control place pp is shown in Fig. 3.8.

However, the above approach presents some inconvenience. In particular, it should
be noted that the introduction of place pp, a new resource place, implies the mod-
ification of the resource pruning graph by adding a new node that can close new
cycles through the pruning relations that induces in the other siphons. Therefore,
the addition of the place can introduce new recomputation needs in the general case.
Similarly, it emerges the need to ensure the existence of a breakpoint for the algorithm
that computes the control logic so that it always converges in obtaining a live system.

114 3. The liveness problem: Characterisation, analysis and synthesis

In this regard, it is worth paying attention to a recently introduced synthesis ap-
proach [Rov1l]. Despite being based on the resource pruning graph, this novel control
policy does not entail the introduction of new cycles in it. Although the results are
also relevant in the domain of FMSs [LGCT14], these were originally presented in the
context of the development of minimal adaptive routing algorithms in interconnection
networks [Rov11], and presented for the class of SOAR? nets. SOAR? is a superclass
of S3PR (but subclass of S*PR) of particular significance in the aforementioned ap-
plication domain because of the physical restrictions regarding resource usage in this
kind of systems.

Such an approach is based on the idea of privatising the use of resources by the
processes. In algorithmic terms, this is achieved by breaking the resource pruning
graph to make it acyclic and thus avoiding any possibility of deadlock due to the
allocation of shared resources. This is obviously a conservative approach which leads
to obtaining a live net system for any acceptable initial marking, which is particularly
interesting in a context like that of multithreaded software engineering, in which, for
example, an upper bound of the number of concurrent threads in the system may be
unknown at compile time. Therefore, this kind of techniques is of particular relevance
considering the field of study of this thesis.

This type of approach is further addressed in subsection 3.2.4.

Putting all together

Throughout the last two subsections, an overview on some cutting edge approaches
on structural-based synthesis techniques based on the addition of monitors has been
presented, with a detailed look on an iterative technique based on ILP and a novel
technique for computing the whole set of minimal (bad) siphons.

This kind of techniques have their origin in the classic control theory, in the sense
that the objective is to constrain the behaviour of the FMS by monitoring the system
so as to forbid unwanted states or event sequences. Such strategies are specially
valuable when trying to strictly comply with the original design of the FMS, i.e., the
production plans are fixed and it is not possible or desirable to increase the number
of system resources or privatise their use.

Nonetheless, such approaches still present some disadvantages. One obvious draw-
back exists on the fact that by constraining the language of event occurrences (i.e.,
firing sequences in the net model) the system concurrency is reduced. This can be
detrimental to the overall system performance.

Another metric that can be degraded is the resource utilisation rate. In effect, since
the control logic prevents some resources from being used under certain circumstances
(i.e., when a deadlock may occur) the involved resources may result underused in the
long term.

3.2. On siphon-based liveness enforcing in FMSs 115

Another problem which was illustrated in Subsection 3.2.2 is that the strategy of
adding linear restrictions through monitors to enforce liveness may inevitably imply
that some legal behaviour is prevented from happening. This was already illustrated
through the net in Fig. 3.3 and Fig. 3.4.

Finally, the computation cost of computing all siphons that can be problematic
so as to control them (and remove the redundant control logic) can be specially
demanding for systems in which there exists a high number of types of resources.

In the next subsection we present a different family of structural synthesis tech-
niques which somehow transgress some of the principles of classic control theory but
can provide a different category of solutions which can be complementary in certain
scenarios.

3.2.4 Structural regions and the privatisation of resources
Principles of the technique

So far we have reviewed the structural synthesis methods directly derived from the
characterisation of the liveness property. In this context the reason for the non-
liveness appearing is in the bad siphons with a small number of tokens inside. The
synthesis strategy consists of the control of the siphon in such a way that the number
of tokens inside the siphon always is greater than or equal to a value guaranteeing the
liveness of the transitions covered by the siphon. Therefore the basis of the strategy
is a control-based strategy where we introduce extra constraints to the transitions
allocating new copies of the resources of the siphon that prevent that the number of
these copies go under a dangerous value. Given the iterative nature of the method, the
constraints are constructed as new (virtual) resources of the system whose availability
represents the constraints to the allocation of the original resources. This procedure
allows us to maintain the net controlled in an intermediate iteration within the class
of nets for which a siphon-based characterisation of the liveness property exists, and
so we can proceed with the next iteration.

We must point out here that these techniques adhere to some common rules or
characteristics. The infringement of such rules gives rise to the new techniques intro-
duced later in this section. The rules or characteristics shared by those techniques
based on virtual resources are:

e The controlled net respects the original state machines (the production plans)
and the initial marking of the state machines (the initial marking of the idle
places). For the designer, this means that the original system is completely
maintained and so s/he can identify his/her original design.

e The same happens with respect to the original resources of the net system.
The controlled net contains the same resource types (resource places) as in the

116 3. The liveness problem: Characterisation, analysis and synthesis

original net, and the initial marking of these resource places is the same (the
number of copies of each type of original resource is maintained).

e Liveness enforcing by means of virtual resources is based on the addition of
some places that represent additional constraints to the transitions in charge of
the allocation of some original resources when a request of a process (a token
in a process place) arrives to the controller of the resource. The effect of these
additional virtual resources is to forbid some occurrence sequences of transitions
of the original net to prevent an excessive decay in the marking of a bad siphon.
In other words, it is the classical approach inside control theory, where the goal
is to forbid states or occurrence sequences. Therefore, the constraints reduce the
concurrency inside the system because some occurrence sequences are forbidden
and the resource utilisation rate is reduced because some states where resources
are in use are forbidden.

Observe that these three characteristics are shared by all techniques inspired in
the use of siphons. Nevertheless, in this section, for a particular subclass of nets,
we present a technique in which the three previous characteristics are not respected.
That is, we propose a technique where the central point is the addition of copies of the
original resources. It is well known that in bounded systems, if we are able to increase
the number of copies of resources then all deadlock problems disappear because the
resource places become implicit places and can be removed. Nevertheless, we try to
add a minimum number of copies of resources because they can be expensive, then
in order to minimise this we specialise the original copies of a type of resource in the
sense that certain copies only can be used by a subset of processes and the other copies
of resources are used only by the rest of processes. This idea will be implemented by
splitting a type of resource (a resource place) into two new types of resources each
one used in a private way by a a disjoint subset of processes of the original system.
Therefore, we increase the number of copies of the original resources but increasing the
degree of privatisation of the use (or, in other words, reducing the degree of resource
sharing). We will see that this technique, from a structural point of view, breaks the
original bad siphons, and then if we are able to break all bad siphons the net cannot
have deadlocks.

At our best knowledge, this is a completely novel strategy [Rov11]. The positive
effect in the global behavior of the system is that concurrency is not reduced. In
fact, all original states of the system remain reachable and new states are added
representing the recovery states from the deadlocks to the safe states of the system.
Therefore, these techniques are not based on the forbidden state strategy coming from
control theory.

In the following, the non-live S?PR net depicted in Fig. 3.9.a is used to illustrate
the different techniques of liveness enforcing presented in this work and the different

3.2. On siphon-based liveness enforcing in FMSs 117

A0, BO, R1, R2
T4 T 4, T6
A1, BO, R2 A0, BL, R1

T2 T4, T T5

Al, B1

A2, BO, R1 A0, B2, R2

a)

A0, BO, R1, R2, CP1
T3 T 4 6
Al, BO, R2 A0, B1, R1

T2 T5

A0, B2, R2, CP1

#

A2, B0, R1, CP1

b)

A0, BO, R1%, R2
6,
T3’ TL 4
AL, BO, R1, R2 A0, B1, R1?

T4, T T5

A0, B2, R1, R2

T5, T1'

AL, B2, R2

T6 T2

NGy —"
A0, BO, R1, R1', R2
6,
I T4

Al, BO, R1', R2 A0, B1,R1, R1'

1, T s

e, 5,

Tl
Al, B2, R2
T6

T2

0 —GE—"

AL, B1, R1

A2, BO, R1?

[

>
i)
@
N
x
2

)

T3

Figure 3.9: a) S*PR net which is non-live. b) The net in a) enforced to be live by the
addition of the virtual resource CP1 computed from the bad siphon {A2, B2, R1,R2}. ¢) The
net in a) that becomes live by the addition of an extra copy of the type of resource R1. d) The
net in a) that becomes live by splitting the resource type Rl into two new resource types,

R1 and R1’, and each one is used in a private way by one of the process plans.

118 3. The liveness problem: Characterisation, analysis and synthesis

effect produced by each one in the behavior of the corrected net. The net in Fig. 3.9.a
is non-live because of the reachable marking [A1+ B1] (a total deadlock) that appears
in the reachability graph depicted on the right of the Petri Net. Figure 3.9.b illustrates
the result of the application of the liveness enforcing technique presented in Subsec-
tion 3.2.2. In effect, in this net there exists the bad siphon {A2,B2 R1,R2} that
becomes empty at the marking [A1 4+ B1]. Therefore, from this siphon and the initial
marking of the net the method computes the virtual resource place CP1 depicted
in the figure with an initial marking equal to 1. This virtual resource (constraint)
produces the removal of the deadlock marking [A1+ B1] as the reachability graph on
the right of the figure points out. In other words, CP1 forbids the reachability of the
state [Al+ B1].

In this section we propose the increase of the number of copies of some original
resource place. A first approach would advocate for increasing in one unit the initial
marking of one of the resources involved in the formation of the deadlock. In this case
the two resources R1 and R2 are involved in the deadlock because they belong to the
unique minimal bad siphon of the net: {A2,B2,R1,R2}. In order to enforce liveness,
the resource R1 is selected and one extra token is added to the initial marking, i.e.,
one extra copy of the resource type R1 is added to the system as it is illustrated in
Fig. 3.9.c. The effects on the behavior of the corrected model is that all states of
the original net are preserved in the corrected net or at least can be identified. The
other effect is that new states appear in the reachability graph allowing to recover
the system from the deadlock state to a safe state. The result is that the net becomes
live. Nevertheless, the reader can observe that with this technique the bad siphons of
the original net persist in the corrected net model, and then from a structural point of
view the problem has not been fixed. In effect, if you increase the initial marking of
the idle place A0 making it equal to 2 tokens, then the net system becomes non-live.

The method proposed in this section is illustrated by means of the net in Fig. 3.9.d.
We increase the number of copies of resources, but in order to fix the problem at a
structural level this extra copy is of a resource type different to the preexisting copy.
In other words, the resource type Rl is split into two different resource types R1
and R1’, each one containing one copy (one copy more than in the original situation
with only the resource type R1), and each one of these resource types is used in a
private way from only one process plan. The resulting behavior is very similar to the
previous one: the original states are maintained and new states appear allowing to
recover from the deadlock state to a safe state. Nevertheless, the reader can observe
that with this approach the split of R1 has broken the original bad siphon and now
there are not bad siphons in the net. This means that if we have an acceptable initial
marking in the net, the net will be live.

Finally, it is interesting to observe that the techniques based on the addition of
copies of resources allow to maintain or even increase the existing concurrency in

3.2. On siphon-based liveness enforcing in FMSs 119

the original net. The other interesting effect is that the method of virtual resources
constrain the allocation of resources sequentialising the processes and therefore the
resource utilisation ratio is lower than in the case of the additional copies of existing
resources.

The implementation of this technique requires the analysis of the structure of the
net identifying the structural regions (also called zones) in the net wherein a copy of
a resource is used in a continuous way. These structural regions are the candidates to
use the copies of the resource they need in a private way. In the following section, in
order to illustrate the approach we introduce a subclass of S*PR nets named SOAR?
nets that were originally introduced to model minimal adaptive routing algorithms of
AGV systems [Rov11]. In this class of nets we define the concept of structural region
as an structural object wherein a copy of a type of resource is used in a continuous
way, the relations between those objects and the relations of the structural regions
with the siphons of the net. The latter allow to identify the structural regions where a
privatisation of the use of the copies of some resources would break all the siphons of
the net. Taking into account that the method will maintain the corrected net inside
the class of the S*PR nets, and the corrected net has an acceptable initial marking,
then the net will be live.

The class of nets SOAR? and its related properties

The SOAR? class of nets is a strict subclass of the S*PR nets. The acronym stands
for “S4PR with Ordered Allocation and Release of the Resources”. This class was
introduced in the PhD thesis of C. A. Rovetto to model minimal adaptive rout-
ing algorithms of objects or data between a source station/node and a destination
station/node throughout a system for the guidance of automated vehicles or an inter-
connection network composed of communication channels. Therefore, the constraints
imposed to define the class from the S*PR class come from the application domain
and are justified by the application domain.

The main properties characterising this subclass with respect to the general class
of S*PR are the following:

e The order in which the resources (rails or channels) are requested and allocated
following a given route, is the same order in which these resources are released.

e A process in an intermediate step can have allocated simultaneously a set of
resources.

e In a change of the state of a process (occurrence of a transition) only one single
operation of allocation or release over a unique copy of a type of resource can
be executed. In other words, it is not possible to have concurrency between
operations of allocation/release of copies of resources.

120 3. The liveness problem: Characterisation, analysis and synthesis

e For each type of resource there is only a unique copy of resource belonging to
this type of resource.

The translation of the previous characteristics to Petri net terms related to the
superclass of S*PR gives rise to the following structural constraints and to some
constraints for the acceptable initial markings valid for these nets.

1. In each circuit of each state machine of the net, the resources are released in
the same order than they were allocated.

2. In each transition of the net, it is only possible to find a unique resource place
connected to the transition. If the arc connecting the place inputs in the tran-
sition, this represents an allocation operation. If the arc connecting the place
outputs from the transition, this represents a release operation.

3. A net of the SOAR? class is an ordinary Petri net, i.e. the weight of all arcs is
equal to one.

4. The acceptable initial marking of all resource places in SOAR? nets is equal to
1.

In the above constraints on the class of S*PR to obtain the SOAR? class, the three
last constraints are more or less easy to understand and to manage. Nevertheless, the
first constraint requires the introduction of some new objects named structural regions
of continuous use of a copy of resource (shortened: s-regs). Structural regions were
originally called zones of continuous use of a copy of resource or simply resource
zones [Rov11]. This concept is not only renamed, but generalised, in the context of
this PhD thesis. The properties of these structural objects individually considered,
and the relations defined over the set of s-regs are the basis of the new deadlock
prevention technique intuitively introduced in the previous subsubsection. In the
following, these concepts will be introduced with the aid of some examples.

An structural region j of continuous use of a copy of the resource r in the i-th
process subnet of an SOAR? net is a maximal set of process places that are holders

and output transitioﬁjs is a connected state machine. In the upper process subnet of
the SOAR? net of Fig. 3.10 it is possible to find the following set of s-regs: 8113:11 =
{A1, A2, A3}, 811:{7?[= {A2,A3, A4} and Slff’i = {A3,A4,A5}. In a similar way, the
s-regs of the bottom process subnet are: 8§} = {B1,B2}, 8§31 = {B2,B3,B4} and
Sgﬁ = {B4,B5}. For a resource r we can find s-regs that belong to different process

subnets, and obviously they will be disjoint because they belong to disjoint state

of the resource r, 8! ., such that the subnet generated by the s-reg and its input

machines. It is also possible to find, for a resource r, several s-regs belonging to the
same process subnet. Obviously, in this last case the s-regs must be disjoint. Other

3.2. On siphon-based liveness enforcing in FMSs 121

Figure 3.10: A SOAR? net with two process subnets. The set of contained s-regs is depicted

in shadowed boxes

important property is that the idle place cannot belong to any s-reg because the idle
place cannot be a holder place of a resource (recall that the SOAR? class is a strict
subclass of the S*PR class of nets). The set of all s-regs of a net will be denoted as
g, and the set of s-regs associated to a resource r will be denoted as "

The first important relation between s-regs is the overlapping relation between
s-regs. We say that a set of s-regs A C S, A # () is a set of overlapping s-regs if
and only if (g., 8 # 0. That is, the set of places belonging to the intersection of
a set of s-regs are simultaneously holder places of all resource places associated to
the s-regs of the set. In other words, the places of the intersection are process places
and a token inside one of these places (a process) is using a copy of each resource
associated to the s-regs of the set. Therefore, the computation of the maximal sets of
overlapping s-regs is important for the study of the ordering relations in the allocation
and release of the set of resources that simultaneously are held by a process inside
one of the places in the intersection. For example, for the upper process subnet in
Fig. 3.10 there is only one maximal set of s-regs: {81',81'3,81"1}. Observe that,
Slfﬁ N 8%21 N Slff’i = {A3}. In other words, when we have a token inside the place
A3, the process is using simultaneously the resources R1, R2 and R3. Observe, that

122 3. The liveness problem: Characterisation, analysis and synthesis

Maximal set of Order
overlapping s-regs relation
(611,51 i1 <18
{81, 811 811 < 81
(2,51 1 < st
{831,857, 851 85% < 831 < 8%i
R1 R2
S1,1 81,1
R3 R1
Si1 Si>
O« O« O
R3 R2 R1
Sa Sy Sy

Figure 3.11: A SOAR? net, the maximal sets of overlapping s-regs and the order relation

between s-regs

in order to reach this situation the allocation of these resources happened in the
order R1 —R2—R3. The moving of the token outside the set of overlapping s-regs
release the three resources in the same order: the condition imposed for SOAR?
nets. However, in the bottom process subnet in Fig. 3.10 there are two maximal
sets of overlapping s-regs: {851,857} and {857,854 }. In these two maximal sets the
allocation order of the resources is respected in the release process.

The order relation in the allocation of resources and its further release, induces
an order relation on the set of s-regs that is called pruning relation between s-regs.
Taking into account that it is a total order relation in a maximal set of overlapping s-
regs we are only interested in the maximal chains of ordered elements in the set. This
order relation can be represented by means of a graph. In Fig. 3.11 the reader can
find a SOAR? net and in the first column of the table the maximal sets of overlapping
s-regs. The second column represents the maximal chains of ordered elements in the

3.2. On siphon-based liveness enforcing in FMSs 123

RL b)

R2

" R3

Figure 3.12: Pruning graph of the s-regs of the SOAR? net in Fig. 3.11 and the agglomer-

ated resource pruning graph of the net

set. This ordering relations can be represented in a graphical way in the pruning
graph of s-regs.

Observe that the union of all s-regs associated to a same resource gives as result
the set of holders of the resource that together with the resource allow to obtain the
support of the minimal p-semiflow associated to the resource. The agglomeration, in
the pruning graph of s-regs, of all s-regs of a same resource in a single node allows
to obtain the pruning graph of resources used to characterise the siphons [CRC12].
This agglomeration operation in the pruning graph of s-regs is illustrated in Fig. 3.12.
The left figure represents the pruning graph of s-regs, wherein the nodes inside the
shadowed boxes correspond to the s-regs associated to the same resource and are the
nodes to be fused in a single node. Therefore each box gives rise to a node of the right
figure in Fig. 3.12. The arcs in the right figure have its origin in the order relation
(pruning relation) between two s-regs associated to different resources but overlapped.

We must recall that a necessary condition to obtain a siphon containing a given set
of resources is that the subgraph of the pruning graph containing the nodes associated
to the considered resources and the arcs among them is a strongly connected subgraph.
Therefore, if we transform our net in such a way that the resulting pruning graph
is acyclic, then we cannot obtain siphons with more than one resource (i.e., the bad
siphons of the net causing the non-liveness problems). That is, the acyclic pruning
graph obtained after the transformation evidences that the liveness property has been
enforced.

124 3. The liveness problem: Characterisation, analysis and synthesis

A new deadlock prevention policy based on the specialisation of resources

In this section we present a new deadlock prevention technique for the previously
introduced class of SOAR? nets. We have presented the advantages of the technique
from the point of view of the maintenance (or even increase) of the concurrency of
the system and the improvement of the resource utilisation ratio in comparison with
other deadlock prevention techniques. Nevertheless, there is another reason for the
introduction of this technique: the implementation of the control places added to
enforce liveness. In effect, in the methods presented in the previous section, the
new control place computed for the liveness enforcing property can be difficult to
implement because our new virtual resource is used to control the number of tokens
inside a siphon and the arcs of this virtual place can need to be connected to several
transitions that are not local. This non-locality of the transitions connected to the
new resource place can give rise to new problems with respect to a distributable
implementation. The technique we summarise in the following respects this locality
principle because the area of intervention in order to enforce the liveness property is
constrained to an s-reg and then the implementation issues related to distributability
are solved.

The basis of the method to correct the model consists of, in the case we have
deadlock states, the transformation of the Petri net in such a way that the pruning
graph of resources of the transformed net becomes acyclic. Therefore, and according
to the characterisation of the minimal siphons of a S*PR net on the pruning graph
of resources, there exist no minimal siphons containing more that one resource since
there are not strongly connected sub-graphs containing more that one node. This is
the basis of the method because in this way we enforce the net to be live since the
Petri net has an acceptable initial marking and there are not bad siphons in the net.

In order to reach this final goal the designer must follow the steps stated in the
following for SOAR? nets:

Step 1. Construction of the pruning graph of the s-regs of the met. The net in
Fig. 3.13, used as illustrative example in this subsection, is a non-live SOAR?
net. In effect, the graph on the right hand of the figure is the pruning graph
of resources that, as the reader can observe, contains one cycle. In this case,
the cycle exists because of a bad siphon containing the resource places R1 and
R2: the minimal siphon D = {R1,R2, A2, A3,B2,B3}. This siphon is emptied
by firing the transitions T1 and T5 from the initial marking. In general, the
existence of cycles in the resource pruning graph is only a necessary condition
for the existence of bad siphons, but if we can make acyclic the graph then it is
ensured that no bad siphon exists, and the resulting net is live. To accomplish
this, we first must compute all the s-regs, and after that we must compute the
maximal set of overlapping s-regs. This lets us construct the pruning graph of

3.2. On siphon-based liveness enforcing in FMSs 125

Ks(R1)={A1}

R1

(T2,A1)
(1g91)

R2

Ke(R2)={B1}

Figure 3.13: A non-live SOAR? net and the corresponding pruning graph of resources of
the net

s-regs, which contains four s-regs. The resulting graph is depicted in Fig. 3.14.

Step 2. Construction of the pruning graph of resources of the SOAR? net from the
pruning graph of s-regs. By aggregating the s-regs which are shadowed in their
pruning graph on the right hand of Fig. 3.14, we obtain the pruning graph of
resources which is depicted in Fig. 3.13. As already explained in Step 1, if the
resulting pruning graph of resources is acyclic, then the net system is live for
any acceptable initial marking and no changes are required. Otherwise, the
pruning graph of resources provides valuable information on how liveness can
be enforced.

Step 3. Computation of a minimal number of arcs of the pruning graph of resources
whose removal makes it acyclic. Essentially, we must strive to select a minimal
set of arcs whose removal requires as few changes as possible in the original
net. This is often related to the intuitive idea of selecting a set of arcs which
involve the smallest possible portion of the original net. Such information can
be extracted from the pruning graph of s-regs. In this vein, it must be remarked
that a unique arc in the pruning graph of resources may map into several arcs of
the pruning graph of s-regs. These arcs would connect different pairs of s-regs
involving the same pair of resources. In some cases, the removal of some arc
may require the duplication of some places and transitions, so a proper selection
of the set of arcs is fundamental to avoid this. Due to the simmetry of the net

126 3. The liveness problem: Characterisation, analysis and synthesis

KG($E})={A1} Ke(851)=0

R1 R1
51,1 52,1

O0——(T2,A1)—>0

O«——(T6,B1)—/—o0

R2 R2
31,1 Sy

Kol SI2)=0 Kol S12)={B1}

Figure 3.14: Structural regions of the SOAR? net in Fig. 3.13 and the corresponding
pruning graph of s-regs of the net

of Fig. 3.13 we can select any of the two arcs of the pruning graph of resources
to make it acyclic. In this example, we select the arc drawn from R2 to R1.

Step 4. Remowal of the arcs of the pruning graph of resources by the addition of
virtual resources between the overlapping s-regs that generate these arcs. Having
obtained a candidate set of arcs, the net is transformed in order to incorporate
the new resource places which break the siphons, and the pruning graph of
resources is updated accordingly. In the example, the source node R2 in the
selected arc is replaced by a new resource place R2’. In the original net, this
means that the resource place R2 is splitted in such a way that R2’ will be used
in the old s-reg 813 (now: 81'1) while R2 will still be used in the s-reg 8§3. The
result is depicted in Fig. 3.15.

Observe that the concept of s-reg can be generalised beyond the class of SOAR?.
Moreover, the order relation over s-regs can be extended in such a way that it is
possible to construct a pruning graph of s-regs from which it is possible to obtain
the corresponding pruning graph of resources. To complete the picture portrayed in
this section, the example of Fig. 3.5 will be reviewed in the light of the new synthesis
technique presented, and compared with previous approaches.

Figure 3.16 shows the s-regs for the net of Fig. 3.5. In this case, every s-reg is trivial
in the sense that it contains a unique place, and besides they are all disjoint. That is,
every maximal set of overlapped s-regs contains a single s-reg, since the net belongs
to the S?PR class. Thus, resources are allocated and freed in consecutive transitions

3.2. On siphon-based liveness enforcing in FMSs 127

Ke(R1)={A1}

{:)Rl
f\/

!
R2'
KG(R2|)=¢

R2
Ks(R2)={B1}

(19°91)

Figure 3.15: A live SOAR? net obtained from the net in Fig. 3.13 by splitting the resource

R2 into two resource types used in a private way by each state machine.

and in an exclusive way. This allows an easy extension of both the concept of s-reg
and pruning graph of s-regs. Therefore we can informally discuss the application of
such techniques over the example, despite falling beyond the SOAR? class. However,
in the general case of PC?R nets the s-regs may extend for several consecutive places
of the process subnets and be consequently overlapped in many ways; indeed, PC?R
is a strict superclass of SOAR? (while S®PR is not).

Figure 3.17 depicts the pruning graph of the s-regs of the net in Fig. 3.5, as ob-
tained in Step 1 of the method. Despite the triviality of all maximal sets of overlapped
s-regs, some chains can be observed in the graph of the figure. This is because some
pairs of s-regs, despite not being overlapped, are still connected by their source and
sink transitions, respectively. This applies, for example, for the s-regs 8%, and 83?.
In this case, there is an arc from S%’Ql to S%h because both are connected by the
transition TB2. I.e., there exists a pruning relation between both s-regs despite not
being overlapped.

The shaded areas in Fig. 3.17 represent the nodes that should be merged to build
the pruning graph of resources in Step 2. The resulting graph is obviously identical
to that already depicted in Fig. 3.7. At this point, the importance of the algorithm of
arcs selection used in Step 3 is further evident. As discussed above, only one cycle of
the resource pruning graph corresponds to a bad siphon: the one that interconnects
the siphons Dgr; and Dgy corresponding to the resource places R1 and R4. If the
goal of our algorithm is the construction of an acyclic resource pruning graph then the

128 3. The liveness problem: Characterisation, analysis and synthesis

Figure 3.16: Structural regions of the net in Fig. 3.5

""" Ka(Sih) = {Ad}
KG(SE}I) = {Bl}
KG(SE}Q) =0
Ka(83%) = {A3}
Ka(8§3) = {B2}
KG(SFA{?H) = {A2}
KG(SE,Sl) = {B3}
Ka(8ih) = {A1}
KG(S%E) =10
Kea(85h) = {B4}

Figure 3.17: Pruning graph of the s-regs of the net in Fig. 3.5

3.2. On siphon-based liveness enforcing in FMSs 129

(25,80 fo grI'™, TB2, B1
C \ OB2 | R1 ()

A
N

(TA4, A3) q\
I RY N
< 6%&—0 < M
s A EE
(TA2, A1)
R4 (TB4, B3) R3

Figure 3.18: Pruning graphs of the s-regs and resources of the net in Fig. 3.5 after intro-

ducing resource place R1’

algorithm necessarily must select at least three different arcs between distinct pairs
of connected nodes, where two of these arcs would go in clockwise direction, while
the other would go in anticlockwise direction (or vice versa). Actually, this would be
the solution obtained by applying an analogous control policy to the one developed
in the PhD thesis of C. A. Rovetto [Rov11]. The final result would be the splitting
of three resource places.

However, this example shows that this policy can be optimised in certain situa-
tions, as long as the splitting of the fewest possible resource places is considered as a
target. Indeed, in this case it would be sufficient to break the cycle between R1 and
R4 by the selection of one of the two arcs between them in Step 3; for example, the
arc from R1 to R4. Figure 3.18 shows the resulting pruning graphs after the addition
of a new resource place (R1’) that privatises the use of a resource of type Rl in the
last operation of the processes of type Al.

Figure 3.19 presents the net after the transformation. Following the addition
of this resource place, there is no longer any cycle in the pruning graph of resources
originating a bad siphon, and the system is live. Figure 3.20 illustrates the reachability
graph of the resulting net. As can be seen, the concurrence of the system has not
been weakened, in contradistinction to the net of Fig. 3.8 (i.e., the system controlled
through the classic approach of addition of monitor places).

1Processes of type A are those that traverse the left-hand subnet of the figure.

130 3. The liveness problem: Characterisation, analysis and synthesis

Figure 3.19: Controlled version of the net in Fig. 3.5

3.3 Liveness analysis of PC2R models through

siphons

3.3.1 Towards a liveness characterisation of PC?R models

So far, there have been presented a number of synthesis results for real-world systems
abstracted and modelled through certain subclasses of PC?R: particularly through
the S*PR subclass and subclasses of the latter (e.g., SOAR?). All these techniques
are based on a well-known result that has already been presented and discussed in
previous chapters. Theorem 1.5 characterises the liveness of a S*PR net system by
way of the reachability of a marking in which there exists an insufficiently marked
siphon. This result has also been presented from a different perspective through
Theorem 1.4. This last theorem presents liveness characterised by the reachability of
an equivalent marking condition that does not use (insufficiently marked) siphons yet
ultimately explains how these are constructed from it.

Throughout Chapter 2 it has been evidenced that such characterisations do not
apply in the case of more general nets as those belonging to the S°PR subclass or
the PC?R class discussed in this thesis. In this section, we discuss the limits of
those classic characterisation results when trying to extend them to more general net
classes such as those that emerge from the abstraction of the resource allocation logic
in multithreaded software systems.

Next, some useful basic terminology that has been previously defined in Subsec-
tion 3.2.2 for the S*PR subclass will be extended to the PC?R class. In the following,

131

siphons

3.3. Liveness analysis of PC?°R models through

INO[0Y JUSISHIP B UO POSSOI)S oIk S9JRIS MAU oY, "6 ¢ "SI Ul WoISAS jou oAl o1} Jo ydeid Ayjiqeroesy :0g ¢ 2In3i g

,€d 'zd ‘14 'sg IV

mww_ ‘ed ‘zd ‘1Y 'sg ‘ev
sl eVl ,£4 T 'Td 'v8 'ev mme ‘24 \Td 'va 'vv GVl

mm_._.rhmm ‘24 \Td ‘T 'vE .o@@m_._. Qm ‘24 \TH ‘TY ‘€8 .N,@ v ‘€Y 2y \TH ‘€8 PV
=
% - F\A V/mm 1 EVL S
pal \?P €4 ‘zd T ‘T ‘eq 4@40& ‘ed \TY 'TY ‘28 »N<v ‘@x »

Vi
MN_ ‘ed ‘zd T ‘Td ‘eq 'OV AlN(n_u\ mmﬁn_- N«HF)NEC‘]wmn_u

€dlL

VL £ 4T ‘TY ‘28 4@\ VO& ‘e ‘2 1Y ‘T8 _N/\UAEF Lal
N

mvw_ ‘ed ‘zd T ‘Td ‘09 ‘ev
91— A »

[AAN

,€d ‘24 T 'Td ‘08 'TV

N O

V.1

132 3. The liveness problem: Characterisation, analysis and synthesis

for a siphon D, Dg = D N Py and:

Definition 3.8. Let (N, mg) be a PC*R net system, and D be a siphon of N such
that Dr # 0. Thp = U,.cp, lly=II\ D is the set of thieves of D, i.e. the set of process
places of the net that use resources of the siphon and do not belong to that siphon.

Similarly, the definition of m-process-enabled/disabled and m-resource-
enabled/disabled transition is generalised, so that, for the S*PR subclass, the new
definition is consistent with the one previously introduced at Section 1.4.

Definition 3.9. Let N be a PC?R net, and By the set of iteration blocks of N .
Given a marking m of N, a transition t is said to be:

e m-process-enabled iff it has one marked input process place which is not the idle
place of the elementary iteration block to which t belongs, i.e. t € (|lm| N Ps)®
and B(p, Psm, Tsm) € Bar:t € p® N Ty (otherwise, t is said to be m-process-
disabled).

o m-resource-enabled iff all input resource places have enough tokens to fire it,
i.e., m[PR,t] > Pre[Pg,t] (otherwise, t is said to be m-resource-disabled).

Note that the generalisation of the definition of m-process-enabled is done ad-
hering to the spirit of the original definition for S*PR nets. The original definition
captures if the input process place of the transition is marked ezcept for those tran-
sitions that trigger the execution of a minimal t-semiflow: the latter transitions are
always m-process-disabled. In the case of S*PR nets, the execution of a minimal
t-semiflow is triggered when a token is taken out of the idle place. Therefore, the
output transitions of the idle places are assumed to be m-process-disabled. In the
case of PC?R nets, there may exist minimal t-semiflows which do not traverse the idle
place. Therefore, the approach is generalised so that all transitions that trigger the
execution of a minimal t-semiflow within an elementary iteration block are perma-
nently m-process-disabled. Recall that the idle place of an elementary iteration block
is not necessarily the idle place of the corresponding process subnet. Obviously, for
SPR nets, both definitions are equivalent, since the process subnets have one unique
elementary iteration block.

Traditionally, the concepts of m-process-enabled/disabled transition and m-
resource-enabled /disabled transition have been tools primarily used to formulate a
liveness characterisation that applies to the S*PR subclass (Theorem 1.4). This char-
acterisation relates liveness with the reachability of a certain type of marking which
ensures that some active processes are permanently blocked for any future progres-
sion. The generalisation of these instruments for the PC?R class leads to a condition
for liveness that is sufficient, yet, as we shall see later, not necessary:

3.3. Liveness analysis of PC?R models through siphons 133

Theorem 3.10. Let (N, myg), be a PC°R net system with a 1-acceptable initial
marking. If (N,mg) is non-live then Im € RS(N,myg) such that the set of m-
process-enabled transitions is non-empty, and every m-process-enabled transition is
m-resource-disabled.

Proof. If (N, mg) is non-live then there exist a firing sequence o, a reachable marking
m; € RS(NV,myg), and a transition ¢ € T such that mg-Zsm; and ¢ is dead at
<N7 m1>.

Let By be the set of the elementary iteration blocks of A/, and let Tirigger b€
the set of transitions that trigger an elementary iteration block of N, i.e. Tirigger =
U(p,PSMTSM)GﬁN p® N Tsnm. Now we start at (M, my) and, as far as there exist enabled
transitions in the set T'\ Tiyigger, We select one of them (any) and fire it. We successively
repeat this operation until no transition is firable. Since the subnet induced by P, T\
Tirigger is acyclic and every path ends in P, this eventually happens, and a marking
m is reached such that either no token remains in the process places, i.e. m[Ps] = 0,
or for each token remaining, the output transitions of its process place are disabled
because of the lack of some resource(s).

In the first case, mg = m. Then, by Lemma 2.31, there would exist a firing
sequence o’ mOL/)7 containing the dead transition ¢, which is impossible. Therefore,
only the second case is possible, i.e., the set of m-process-enabled transitions is non-
empty, and every m-process-enabled transition is m-resource-disabled. O

Theorem 3.10 works for the non-live net system in Fig. 2.13. That net is an S°PR
net with an acceptable initial marking, and therefore it also is a PC?R with a 1-
acceptable initial marking (indeed, it is 0-acceptable as well). In this case, the only
reachable marking which holds the condition in Theorem 3.10 is [A1, B1, BOWL].

However, the live net system in Fig. 3.21 proves that the reverse of Theorem 3.10 is
not true in general for PC%R nets (in spite of being true for the SPR subclass). This
PC?R net with a 1-acceptable initial marking has one reachable marking that holds the
condition in Theorem 3.10, yet the system is live. That marking is [A1, B1, C0,R3].

In fact, the reverse of Theorem 3.10 does not hold even for the S°PR subclass. The
S°PR net in Fig. 2.16 has an acceptable initial marking and is live. However, each
one of the m-process-enabled transitions is m-resource-disabled at the marking m =
[AO,A1,B0,B1,R1,R3,R4,R5,R6,R7,R10,R11,R13]. Indeed, the only m-process-
enabled transitions are T11 and T26, and both of them are m-resource-disabled.
Note that transitions T2 and T14 are m-process-disabled since their respective input
process places are the idle places of the elementary iteration blocks T2 and T14 belong
to.

Unfortunately, the condition is neither necessary nor sufficient in general for PC?R
nets with a 0-acceptable-initial marking. The non-live PC?R net system depicted in
Fig. 2.7 reveals that we can have transitions which are dead from the initial marking,

134 3. The liveness problem: Characterisation, analysis and synthesis

A2, B0, C0, R1, R3 A0, B2, C0, R2, R3

T3»/('A0, BO, CO, RL, R2, R3):\Ts
T8 17

8y T2 1 ‘ v T4 T5
A2,BO, C1, R1, R2)
13

Al, B1, CO, R3

8

v
T4 Al,B1,C1,R2)j&—T1
A2, B2, C1,R2

T2

A2, B2, CO, R3

Figure 3.21: A live PC?R net system within ‘the gap’: it holds the condition of Theo-

rem 3.10. Every m-process-enabled transition is m-resource disabled at m = [A1, B1, C0, R3]

yet the system is reversible and no marking is reachable such that every m-process-
enabled transition is m-resource-disabled.

Historically, Petri net-based synthesis techniques for RASs in FMSs have been
based on the addition of GMECs that prevent bad markings such as those described
in Theorem 3.10 from being reachable; thus obtaining a live system. This is the kind
of approach described in Sect. 3.2.2 for S*PR nets. In that case, bad markings are
searched for among the superset of potentially reachable markings described by the
net state equation. This implies that occasionally new GMECs may be added to the
system when it is already live. However, two important aspects are present in the
synthesis algorithm [Tri03]: (i) Liveness is monotonic with respect to the iterations
of the algorithm: if the net is already live, any newly proposed GMECs does not
make it non-live, and (ii) The algorithm always converges in a system with no ‘bad’
potentially reachable markings. And Theorem 3.10 grants that a system with no ‘bad’
(potentially) reachable markings is live.

Unfortunately, an analogous synthesis approach in the context of PC?R nets would
introduce at least one new problem. The S°PR net in Fig. 3.22 illustrates this. In
this case, every m-process-enabled transition is m-resource-disabled for the reachable
marking m = [A2?,B1,R3], but the net system is live. Introducing the GMEC
m[A2] + m[B1] < 2 through a virtual resource (i.e., a monitor place) would turn it
into a non-live system. So liveness is no longer monotonic with respect to the addition
of such kind of GMECs.

In the context of S*PR net subclass, the characterisation of Theorem 1.4 is also
used to formally prove Theorem 1.5 [Tri03]. This last theorem relates the system

3.3. Liveness analysis of PC?R models through siphons 135

Al T2 A2 T5

T8 B1

T6 A0?, BO, R1, R2*, R3 T9
r/ y T T ﬁ
(A0, A4,BO, R2*, R3) A0, AL BO, RL, R2® }—T7—#{ A0, AL, B1, R2* }&—T1—(A0, B1, R2", R3)-T8»{ A0, B2, R1, R2*, R3)
X
To T1
TS5 . T2 T8 6
T6 T9 A0, Al, B2, R1, R2

A0, A4, B2, R2% R3

T5 5 o
A2, B0, R1, R3 T7 A2°,B1,R3
T3 T4T T3 T4T

8
T5—(A2, A3, B0, R, R2” —T7—»(A2, A3, BL, R22>——/ To

Figure 3.22: A live S°PR net system within ‘the gap’. The marking in a different colour is
the only one which holds the condition of Theorem 3.10

liveness with the existence of reachable markings with insufficiently marked siphons.
That theorem can be rewritten as follows:

Theorem 3.11. Let (N, mg) be a S4PR net system with an acceptable initial mark-
ing. (N,mg) is non-live iff Im € RS(N,mg) and a siphon D such that:

1. There exzists at least one marked thieve place of D at m, i.e., |m| N 7Thp # 0;

2. Every output transition of a marked thieve place of D is m-resource-disabled by
resource places in D, i.e., Vt € (|m||N7Thp)®: Ir € Dg : m[r] < Pre|r,t);

136 3. The liveness problem: Characterisation, analysis and synthesis

3. Process and idle places in D are empty at m, i.e., |m| ND C Pg.

Proof. =) Fernando Tricas proved that there exists a reachable marking m and
siphon D fulfilling the three conditions of Theorem 1.5, with D = Dg U Dsg:

e Dr={r e Pr|3ter®: mlr] <Pre|rt] and m[*t N Ps] > 0} # 0,
e Ds=DNPs={pe U’I'EDR ly-|l | m[p] = 0} # 0.

We prove independently the three points of Theorem 3.11:

1. All process places in D are empty at m. Suppose that no thieve place
of D is marked at m. Then, m[Dg] = mg[Dg] and, by the definition of
acceptable initial marking, V¢ € T.p € t* N (Py U Ps),r € Dg:m|r] =
mo[r] > y.[p| > Pre|r,t]. Therefore, no transition is m-resource-disabled
by resource places in D. But this contradicts the fact that, by Theorem 1.5,
at least one m-process enabled transition exists, and that it must be m-
resource-disabled by resource places in D. Thus, at least one marked thieve
place of D is marked at m.

2. By the definition of thieve place, Thp C Ps. Therefore, every output tran-
sition of a marked thieve place of D is m-process-enabled. By Theorem 1.5,
all such transitions are m-resource-disabled by resource places in D.

3. By the definition of Dg, all process places in D are empty at m. Besides,
DN Py ={. Therefore, |m||ND C Pg.

<=) The proof of Theorem 3.13 could be copied verbatim to prove this part, since
S*PR is a subclass of PC2R. For the sake of concision, it is omitted here.
O

Next it is proved that this siphon-based characterisation for SYPR nets is necessary
for the liveness of PC2R systems, but it is, in general, not sufficient. For this reason,
an intuitive lemma is presented first. That lemma holds for any initial marking of a
PC?R. The lemma is instrumental for the proof of the theorem that follows.

Lemma 3.12. Let (N,mg) be a PC’R net system, and r € Pr. Let m,m’ €
RS(N, mg) such that Vp € (|ly-|| \ {r}) : m’[p] > mlp]. Then m'[r] < m]|r].

Proof. From the invariant relation y, - m’ =y, - mg, it can be derived that:

m'[r] =molr]+ > molpl-yelp]— > m'[p]-y.[p]
pelly-l\{r} pelly-I\r}
<molr]+ Y mo[pl-yelpl— Y. mlplyelp] = m[r]
pelly-I\{r} pelly=l\{r}

3.3. Liveness analysis of PC?R models through siphons 137

The condition of Theorem 3.11 for the S*PR class is now evaluated for the PC2R

class in general.

Theorem 3.13. Let (N, mg) be a PC?R net system with a 0-acceptable initial mark-
ing. If (N, mg) is live then there does not exist a marking m € RS(N, mg) and a
siphon D such that:

1. There exists at least one marked thieve place of D at m, i.e., |m| N 7Thp # 0;

2. Bvery output transition of a marked thieve place of D is m-resource-disabled by
resource places in D, i.e., Vt € (||m| N 7Thp)®: Ir € Dg : m[r] < Pre[r,t];

3. Process and idle places in D are empty at m, i.e., |m||ND C Pg.

Proof. Proof by contrapositive: Assume that there exists a siphon D and a marking
m € RS(N, mg) holding the three conditions of the theorem. It will be proved that
(N, mg) is non-live.

Let t € (|lm||N7hp)®. In order to fire ¢t at least some more tokens are needed
in some places belonging to *t N Dy. Since tokens in the thieve places of D cannot
progress at m, the marking of such resources can only be changed by moving some
processes from (||m||\ (Zhp U PR))°*. Let m-Z.m’. It will be proved, by induction
over the length of o that: (i) ||o||N7hp® =0, and (ii) Vp € Thp : m'[p| > m[p].

Doing so, and since Vp € D\ D : m’[p| > m[p] = 0 and [ly,||\ {r} € (D \ Dr)U
Thp, it can be deduced that Vr € Dr,p € (|ly-|| \ {r}) : m’[p] > m[p]. But then, by
Lemma 3.12, Vr € Dy : m’[r] < m[r]. Therefore, no transition of (||m| N7hp)® can
be m’-resource-enabled. Such transitions are dead at m, and (N, mg) is non-live.

Case o = t. Since no transition of 7hp® is enabled at m, then t ¢ Thp®: in fact,
t € (|lml| \ (Thp U PRr))®. On the other hand, if t ¢ *Thp, Vp € Thp : m'[p] =
mp]. If t € *Thp, let t*N(PyUPs) = {q} € Thp. In this case, m'[q] = m[g] +1
and m’[p] = m[p] for every p € Thp \ {q}.

17
General case. m7m”_',m’, where ¢”, m” verify the induction hypothesis:

le”|| N Thp® =0, and Vp € Thp : m”[p] > m[p]. Since Vp € D\ D : m”[p] >
mfp] = 0 and [ly,|[\ {r} S (D\ Dr)U Thp, then Vr € Dg,p € ([lyr|\
{r}) : m”[p] > mp]. Taking into account Lemma 3.12, Vr € Dg : m"[r] < m][r].
Consequently, every transition of (|m| N7hp)® is m”-resource disabled, and
t ¢ Thp®. Therefore, Vp € Thp : m'[p] > m”[p] > m[p], and we can conclude.

"

O

Theorem 3.13 works for the live system in Fig. 2.18. The net is a PC?R net with
a 0-acceptable initial marking (which is not l-acceptable). This net contains four

138 3. The liveness problem: Characterisation, analysis and synthesis

minimal siphons apart from those induced by the isolated process subnets. However,
none but one of these minimal siphons has thieve places:

Dg; = {R1,A0,B1} Thpy, =0
Drs = {R2,A1,B2} Thpg, =0
Drs = {R3,A2, B0} Thpy, =0

Dri rors = {R1,R2,R3} Thpg, rars = 1A0, A1, A2,B0, B1, B2}

As a result, all siphons of the net that contain at least one thieve place are con-
structed by adding process or idle places to Dgi,r2,r3. Therefore they also contain
the three resource places of the net (i.e., R1, R2, R3). The reachability graph in
Fig. 2.18 reveals that for every reachable marking there exists an output transition of
one of these resource places such that it is enabled (therefore: m-resource-enabled).
Then Theorem 3.13 trivially holds.

Despite the condition of Theorem 3.13 is necessary and sufficient for the S*PR
subclass (see Theorem 3.11), note that it is not a sufficient condition of liveness for
general PC2R nets. The non-live PC?R net system in Fig. 3.23 proves that. In this
case, transition T2 is no longer firable from the markings of the livelock (i.e., from
the darkened markings in the figure). However, there exists no insufficiently marked
siphon holding Theorem 3.13.

The net has the following set of minimal siphons (excluding those induced by the
isolated process subnets):

Dry = {R1,A1,A2,B0, C2} Thpg, =0
Dgr2 = {R2,A2,B2,C0,C2} Thp,, = {Al,B1}
Drs = {R3,A0,A2,B1,B2,C1} Thpy, =

Dri gz = {R1,R2,A2,C0, C2}
Drirs = {R1,R3,A2,B1,C2}
Drors = {R2,R3,A2, B2, C2}

Thie, we = {A1,B1,B2}
77LDR1YR3 = {A0,A1,B0,B2,C1}
MDRZ,R,S = {A07 A]-v Bl, CO, C]-}

DRl,R27R3 = {Rl, R2,R3, A2, CQ} %DRI,RZ,RS = (PO U Ps) \ DRLRQ,Rg

No siphon containing the minimal siphons Dg; or Drs contains any thieve place.
All of these can be dismissed since they infringe point 1 of the condition in Theo-
rem 3.13. The set of siphons (be they minimal or not) having at least one thieve
place is: A = {D C P | 3Dwin € {Dr2, Dr1Rr2, Dr1,R3; DR2.R3, DR1.R2,R3} (Dmin C
D) A (Dmin N Pr = Dg) A (Thp,,,, € D)}. Note that we use the previous concise
notation in order to avoid enumerating the (rather large) whole set.

min

Now we evaluate the condition in Theorem 3.13 with every possible pair (m, D),
where m is a reachable marking belonging to the livelock and D a siphon belonging

3.3. Liveness analysis of PC?R models through siphons 139

" 6"
T5.
b T
*ERORED)
o
@%WW/” 6

Figure 3.23: A non-live PC?R net system within ‘the gap’: it holds the condition of
Theorem 3.13. Transition T2 is dead at the darkened markings

to A. If there exists no combination such that the condition is true, then we have

proved that the theorem is not sufficient.

Table 3.1 sums up every possible combination (m, D). For each marking, the
second column describes the subset of siphons of A whose idle and process places are
empty at m. For the sake of concision, this subset is described by way of a logical
expression. Note that this expression appears above the arrow, if any (i.e., above |}).
Bear in mind that if some idle/process place is marked then point 3 of the condition
in Theorem 3.13 is infringed. Therefore, those cases do not have to be considered.

140 3. The liveness problem: Characterisation, analysis and synthesis

The expression in the second column that appears below the arrow (i.e., below |}) is
a logical statement that holds for all combinations (m, D) considered in the current
row of the table. This logical statement trivially infringes the condition stated in
Theorem 3.13 (namely, it infringes point 2).

A quick glance at the table reveals that we cannot conclude that the net is non-live
(yet it is); therefore, the condition is not sufficient for liveness.

Table 3.1: Evaluating the condition in Theorem 3.13 for the PC2R
net in Fig. 3.23

Marking m Siphons D € A such that |m|| N D C Pg
Drors € D C Dragrs U {A0,B0,C1} Vv
Drirors €D C DgriyrorsU{A0,B0,B2,C1}
4
VD : T7 € (|m| N 7hp)® and T7 is m-resource enabled
Dgro € D C Dro U{A0,B0O} Vv
Drirz € D C Drire U {A0, B0, B2} v
Drars € D C Drars U {A0,B0,C0} v
[A1,B1,C1,R1,R2?%] Drir2r3 € D C DrirarsU{A0,B0,B2,C0}
!
VD : {T5,T8} C (|/m]| N7Thp)*
and both T5 and T8 are m-resource enabled
Drs € D C Dro U {A0,B1} Vv
Drire C D C Dripe U{A0,B1,B2} v
Drirs € D C Drigs U {A0, B2, CO} v

[A1,B1,C0,R1,R3?|

[A1,B0,C1,R2° R3] Dror3 € D C Drors U{A0,B1,C0} Vv
Drir2rs €D C DgriyrorsU{A0,B1,B2,C0}
(8

VD: T4 € (|m|| N7hp)® and T4 is m-resource enabled

Continued on next page

3.3. Liveness analysis of PC?R models through siphons 141

Table 3.1 — continued from previous page
Marking m Siphons D € A such that |m| ND C Py
Drir2 € D C Dgir2U{A0,B0,B1} Vv
Drirs € D C Dgy rsU{A0,B0,C0} v

[A1,B2,C1,R1,R2] Drire2rs €D C Dgirers U{A0,B0,B1,C0}
U
VD : T6 € (|m| N7Zhp)® and T6 is m-resource enabled
None
[A1,B1,C2,R3?| (Every siphon in A contains C2 except Dgs,

and Dgs contains B1)

Similarly, the condition is neither sufficient for the S°PR subclass. A counterex-
ample that proves it is that of the postmodern dining philosophers (see Sect. 2.3).
For the sake of concision, we take the most simple version of the problem in which
there exist only two philosophers. The corresponding net is depicted in Fig. 2.13.
The set of minimal siphons (excluding those induced by the isolated process subnets)
is enumerated next:

Drorki1 = [|yrorxi ||

Drorke = [|yrorxz||

Dgowr, = |lysowt|l
Dy1 g = {A2,A4, A5, A6,B2,B3, B4, B5,B6, FORK1, BOWL}
Drap = {A2, A3, A4, A5, A6, B2, B4, B5, B6, FORK2, BOWL}

Drpy ro = {A2,A4, A5, A6, B2,B4,B5,B6, FORK1, FORK2, BOWL}

Only the three last minimal siphons have at least one thieve place (namely,
Thpg, s = {Al,A3}, Thp,,, = {B1,B3} and Thp,, ., = {Al,A3,B1,B3}.
The set of siphons (be they minimal or not) having at least one thieve place is:
A= AFI,B @] AFQ’B U AFl,FQ,By where:

Ap1g ={D C P|(Dr1,8 C D) A (Dp1,8 N Pr = Dr) A (Thpy, 5 € D) A
(Ble D = B0€ D)},

Ao ={D C P|(Dr28 € D) A (Dra,g N Pr = Dr) A (Thpy, s € D) A
(Ale D = A0 € D)} and

142 3. The liveness problem: Characterisation, analysis and synthesis

Ap1r28 ={D C P| (Dp1,r2,8 € D) A (Dp1,r2,8 N Pr = Dr) A (Thpg, pa € D)}

Table 3.2 is constructed in a similar way to Table 3.1 and reveals that we can-
not conclude that the S°PR net system is non-live. Thus, the condition is also not
sufficient for liveness of S°PR nets.

Table 3.2: Evaluating the condition in Theorem 3.13 for the S°PR
net in Fig. 2.13

Marking m Siphons D € A such that |m| ND C Py
Drip C D C Dpip U {A0, A3, B0} V
Drap € D C Dpyp U {A0, B0, B3} v
[A1,B1, BOWL] Dy1r2,8 €D C Dyy pa,s U{A0,B0, A3, B3}
\
VD : TA2 € (|lm| N 7Thp)® or TB2 € (|m|| N Thp)®
and both TA2 and TB2 are m-resource enabled
[A2,B1] None (Every siphon in A contains A2)
[A1,B2] None (Every siphon in A contains B2)
Dp1 g € D C Dy g U{A0,A1,BO} V
(A3, B1, FORK1] Drpyr2,8 € D C Dpy o U{A0,Al, B0, B3}
\
VD : TA4 € (|lm|| N 7hp)® and TA4 is m-resource enabled
Drop C D C Dpo g U{A0,B0,B1} V
A1, B3, FORK?] Drp1 r2,8 €D C Dpy s U {A0,A3,B0,B1}
\
VD : TB4 € (|lm| N 7Thp)® and TB4 is m-resource enabled
[A4,B1] None (Every siphon in A contains A4)
[A1,B4] None (Every siphon in A contains B4)

Summing up, a necessary and a sufficient condition for liveness have been estab-
lished for the PC?R class through Theorems 3.10 and 3.13. These conditions are
again necessary and sufficient (respectively) for the S’PR subclass. However, they
converge in two characterisations of liveness for the S*PR subclass (Theorems 1.4 and

3.3. Liveness analysis of PC?R models through siphons 143

3.11). Finally, some examples of nets within the gap between the necessary and the
sufficient condition have been presented.

3.3.2 Liveness of PC?R models with 1-acceptable initial mark-
ings

Theorem 3.10 establishes a sufficient condition for the liveness of a PC?R net with a 1-
acceptable initial marking. This sufficient condition can be used to define an efficient
ILP-based test condition for deciding if further correction may be needed. This test is
analogous to the one proposed for S*PR nets in Sect. 3.2.2 (Theorem 3.4). However,
the test condition proposed there relied on a siphon-based liveness characterisation.
Since the condition proposed in Theorem 3.10 is strictly marking-based (no siphons
are used) the set of restrictions of the resulting ILPP slightly differs.

The following proposition is instrumental to the proposal of the test condition. It
is worth mentioning that the proof of the proposition is almost literally that presented
by F. Tricas for a rather similar proposition proposed for S*PR nets [Tri03].

Proposition 3.14. Let (N, mg) be an PC?R net system with a 1-acceptable-initial
marking, and Tivigeer be the set of transitions that trigger an elementary iteration
block of N, i.e., Tirigger = UV(p,PSM,TSM)eBN p®* NTsm. If the net is non-live, then
there exists a marking m € RS(N, mg) such that the following set of inequalities has,
at least, one solution:

m[Ps] % 0 - dteT:t is m-p-e

Vt € T'\ Tivigger : with {p} = *t N Ps,
mp| > e; -- e=0:7 is m-p-d
e > ;;[[Z]} -- e=1:t is m-p-e

Vr € Pr,Vt € 1°\ Tirigger P:e[[:],t] > et -- ¢4=0:%t is m-r-d by r
Ert > % --eq=1:¢ is m-r-e by r

Vt € T\ Tirigger - Zre'mPR ert <|"tNPr|+1—¢;

-- if ¢ is m-p-e then ¢ is m-r-d
Vit € T\ Tirigger : e, € {0,1}
Vr € Pr,Vt € 7* \ Tirigger 1 €7t € {0,1}.

(3.3)
where sblp] denotes the structural bound of p [CS591]

Note that m-p-e (m-p-d) stands for m-process-enabled (m-process-disabled) and
m-r-e (m-r-d) stands for m-resource-enabled (m-resource-disabled).

144 3. The liveness problem: Characterisation, analysis and synthesis

Proof. First of all, let us make some comments about the variables used in these
inequalities:

1. For each t € T'\ Tiyigger, €; indicates whether ¢ is m-process-enabled or not. It
follows immediately from the following facts:

e since sblp] > 0, m[p] > 0 iff m[p|/sb[p] > 0, which is equivalent to state
that e, = 1 (remember that e; € {0,1})

e mlp|=0iffe; =0

2. For each r € Pg and t € r® \ Tirigger, €r¢ indicates whether ¢ is enabled by the
resource place r at m:

e If ¢ is enabled by r at m (i.e., m[r] > Pre[r,t]), m[r]/Pre[r,t] > 1 and
1> % > 0; therefore, e, must be 1.
e If ¢ is not enabled by r at m (i.e., m[r] < Prelr,t]), m[r]/Prelr,t] < 1 and

r|—Pre|r,t]+1 .
% < 0; then, e,; must be 0.

3. The system of inequalities without the last one always has a solution, and the
value of variables e; and e,; is determined only by m. Therefore, the existence
of a solution of the complete system depends on the last inequality. Two cases
can be distinguished:

o If t € T'\ Tirigger is nOt m-process-enabled, e; = 0 and the inequality for ¢

is trivially fulfilled, because Zre’tﬁPR ert <|*tN Pg.

o If t € T'\ Tiyigger is m-process-enabled, e; = 1 and the inequality becomes
Zre'tﬁPR ert < |*tN Pr. Therefore, there is a solution if, and only if,
Jr € *t N Pg such that t is not enabled by 7.

If the net is non-live, Theorem 3.10 ensures that there exists a marking m €
RS(NV,mg), with m[Ps] > 0, such that each m-process-enabled transition is m-
resource-disabled. This means that there exist places with e; = 1. Since each one of
these transitions is m-resource disabled, there exists r € *¢t N Pg such that m[r] <
Pre|r,t], and then, e,; = 0. In consequence, for these transitions, it holds that:
Y reotnpg €t < TN PRI+ 1 — e O

The following theorem forms the test condition that can be used to evaluate if the
net may need further correction. If the resulting ILPP returns no solution, then the
net is live, and no correction is needed to ensure that the resource allocation scheme
is safe.

Theorem 3.15. Let (N,mg) be an PC*R net system with a 1-acceptable initial
marking, and Tiigeer be the set of transitions that trigger an elementary iteration

3.3. Liveness analysis of PC?R models through siphons 145

block of N, i.e., Tirigger = UV(p,PSM Tom)EBr p®* NTsm. If the net is non-live, then
there exists a marking m € PRS(N,mg) such that the following set of inequalities
has, at least, one solution:

min ZpGP\Po m|p]

s.t. m=mg+C- o
m>0,0¢ NG
System (3.3)

Proof. By Theorem 3.10, if (M, mg) is non-live, there exists a marking m €
RS(N, mp) such that the above set of inequalities has, at least, one solution. Obvi-
ously, m € PRS(N, mg). O

To the purpose pursued in this section (i.e., merely testing the system liveness),
the objective function in Theorem 3.15 is essentially irrelevant. For now we are just
interested on the existence (or not) of feasible solutions for the system of restrictions of
the ILPP: if none exists, we can state that the model is live. However, that objective
function is substantial if some of those solutions were subsequently used to compute
structural artifacts to enforce liveness such as, e.g., monitor places preventing those
markings from being reachable.

In fact, the technique introduced in Sect. 3.2.2 for the S*PR subclass follows that
rationale. The solution space to the set of restrictions of the ILPP in Theorem 3.4
establishes a representative set of undesirable markings. If the net is non-live, the set
is non-empty. Meanwhile, the heuristic implied by the objective function draws the
attention in some of those markings. This ultimately leads to the successive addition
of monitor places which forbids (at least) one of such markings and probably some
other reachable markings. Essentially, these monitor places sever those markings off
from the reachability space. Depending on the selection of the objective function, it
is possible to converge faster to liveness so that the control logic is minimised.

Please note, however, that there exists a dead transition in every solution of the
set of restrictions of the ILPP in Theorem 3.4. Therefore, the addition of the monitor
place grants that at least one ‘bad’ marking is removed, unless the optimal solution
to the ILPP is an spurious solution of the reachability space?. Unfortunately, this is
not necessarily the case for the solutions of the ILPP in Theorem 3.15. For instance,
the reachable marking [A1l,B1,C0,R3] is obtained as the optimal solution to the
ILPP applied to the net of Fig. 3.21. However, no transition is dead at that marking;
indeed, the net system is live. This observation is very relevant to the effect of liveness

2In case that the optimal solution is a spurious marking then the corresponding monitor place does
not remove any reachable marking: i.e., redundant control logic is inserted [Tri03]. Unfortunately,
deciding if a solution is reachable is NP-complete for general S*PR models, as we shall see in Chap. 5.

146 3. The liveness problem: Characterisation, analysis and synthesis

synthesis departing from that solution space. Indeed, the removal of such markings
may imply severing off purely ‘good’ behaviour or even turning a live system into a
non-live one.

That said, the objective function of the ILPP above aims at the marking with
the least number of tokens in the process places of the net (i.e., a marking with as
less active processes in the system as possible). This is obviously just one of the
many possible heuristics that could have been chosen. This heuristic is based on our
perception of the nature of deadlocks in multithreaded software systems. In many
scenarios in the domain, the activation of new threads does not help in unlocking those
threads which are m-process-enabled, m-resource-disabled. We claim here that, in
practice, holder threads (i.e., those that consume resources when active) are more
frequent than lender threads (i.e., those that produce them). Under such conditions,
the activation of new threads does not resolve the problem. Indeed, the number of
free resources is decreased. In those cases, we hope that by preventing those markings
from being reached we also get rid of many other feasible solutions, converging faster
to the synthesis of a live system. Yet, for the reasons expressed in the previous
paragraph, further work is needed to apply the solutions of the ILPP to this aim.
Synthesis techniques for the PC?R class are approached in Sect. 3.4.

3.3.3 Some properties of siphons in PC?R nets

As seen throughout this section, siphons are still very useful structural tools when
studying the liveness of a PC?R net system. This is true even though it is no longer
possible to use them to characterise liveness in this type of models. Indeed, the lack
of certain types of siphons is sufficient to ensure liveness.

In this subsection some properties concerning siphons are studied, as well as their
relation to other structural elements of such models, and particularly, to p-semiflows.
The study of these properties allows us to propose techniques that make use of siphons
to correct liveness problems in multithreaded software systems.

Some useful properties of p-semiflows

Some instrumental properties with respect to the form of p-semiflows are presented
below. These properties will be used later to unveil the close relationship between
p-semiflows and siphons for this class of Petri nets.

Given a PC?R net, Lemma 2.17 proves that B is a basis of the left null space of
the incidence matrix, where B is an integer matrix of dimensions (|Pr| + |In|) X | P|
such that its rows are the set of vectors {ys, |7 € In} U{y, |r € Pr}, where
Yr =Yr = D icr Y [po,] - ¥s,. This means that every p-semiflow y can be obtained
by a linear combination of this set of vectors. Due to the way y,. is defined, the same
applies for the set of vectors {ys, | i € In} U{yr |7 € Pg}. The following lemma

3.3. Liveness analysis of PC?R models through siphons 147

determines the parameters of this last linear combination in function of the actual
values of y[Py] and y[Pgr]:

Lemma 3.16. Let N be a PC?R net, y € NPl pe a p-semiflow of N

y= > ylrl-yr— > Ki-ys,

rePr i€y

where K; =3, p, ¥[r] - yrlpo.] = y(po,]-
Proof. By reordering columns in B such that the first ones correspond to Py U Pg,
and subsequently reordering the rows of B, a matrix of the form [I|B’] is obtained,

where I is the identity matrix of dimension |Pgr|+ |Ix7|. Since Lemma 2.17 proves
that B is a basis of the left null space of the incidence matrix:

y=>_ yll-ye+ Y vlpol-vs,

rePr i€l

Substituting y,. =y, — Zieb\/ yr[po,] - ¥s; we obtain:

y= Y ylrl-yr = > D ylrl-yelpo]-ys. + Y ¥lpo] - ys.
rePr rE€PR i€l i€l
= > vl yve+ > <}’[Poi] ys.— > yIrl-yrlpo,] -ysi>
rePr i€ln rePr
DR UBTEDY (Z y[r] - vrlpo] Y[poi]> - ¥ss

O

The following lemma is a direct consequence of the previous result. It refers to
the fact that every minimal p-semiflow y is covered by the union of each minimal
p-semiflow y, corresponding to a resource place r contained in its support ||y||, if
any. We will later see that a similar property holds for minimal siphons containing
at least one resource place (see Lemma 3.24).

Lemma 3.17. Let N be a PC?R net, y € Nl be a minimal p-semiflow of N such
that |y N Pr # 0. [¥1l € Ureyyjm Iyl

Proof. Considering the linear decomposition expressed by Lemma 3.16, and the fact
that the first component is non-negative (i.e., > . p ¥[r]-y» > 0) then the min-
imality of y implies that Vi € Iy : K; > 0. From this fact, it follows that,
despite some non-null components of the various y, p-semiflows can be annulled,
all positive components of y must also be positive components of some y,, i.e.,
vp e llyll: 3r € llyll N Pr:p € llyel. O

148 3. The liveness problem: Characterisation, analysis and synthesis

The next trivial lemma formalises the fact that a minimal p-semiflow containing
at lease one resource place cannot ever cover every place of a process subnet: at least
one idle or process place of each process subnet must be uncovered.

Lemma 3.18. Let N be a PC?R net, and y € NPl be a minimal p-semiflow of N
such that ||y||NPr # 0. For eachi € In : {po,} UP; € |ly||, i.e., Ip € {po,} UP;: p ¢
yll-

Proof. By Definition 2.12, each iterative state machine induces a p-semiflow ys, €
{0,171 |lys, || = {po,} U P;. Since y is minimal, Vi € Ix : ||ys, || Z |lyll- O

Properties on the uniqueness of siphons

The next set of results explores the uniqueness of the set of minimal siphons with
respect to the set of resource places covered. This is an interesting property because
it sets an upper bound regarding the number of minimal siphons in the net.

The proof of the following lemma about uniqueness is closely analogous to that
presented for the S*PR subclass [CRC12], with some slight variation.

Lemma 3.19. Let N be a PC?R net and D C P a non-empty minimal siphon of
N containing at least one resource place. D is the unique minimal siphon of N
containing exactly the set of resources Dr = D N Pg.

Proof. This result will be proven by contradiction. Let us suppose that there exist two
minimal siphons D and D’ such that D # D’ and Dg = DNPr = D'NPr # 0. Let 79
be the set of input transitions to the resource places belonging to Dg such that they
do not have input places belonging to Dr, i.e. 79 = {t € T |t € *Dg,*tNDg = (0}. If
79 = 0 then Dy is a siphon. But Dy C D and Dy C D’, contradicting the minimality
of D and D’. Then D = D’ = Dg. Otherwise, the set 79 must be non-empty. Taking
into account that D and D’ are minimal siphons of N, for all t € 7y there exists
p € DN (PsUP) and p' € D' N (Ps U Fy) such that p € *t and p’ € *¢t. But p
and p’ are process or idle places belonging to the same state machine containing the
transition ¢, therefore p = p’. Let Dg, be the set of process or idle places belonging
to both siphons that they are input places to the transitions of the set 7y. Moreover,
if p € Dg,, there exists a resource place r € Dy such that p € |ly,|. Let 7; be the set
of input transitions to the places belonging to D; = Dr U Dg, such that they do not
have input places belonging to Dy, ie., 7, ={t € T|t € *D;,*tN D; = 0}. Now,
two cases must be distinguished:

7; = 0. In this case we have proven that for all t € *D; = t € D;°*, that is, D,
is a siphon. We have also proven that D; C D and D; C D’, contradicting the
minimality of D and D’. Therefore, D = D' = D;.

3.3. Liveness analysis of PC?R models through siphons 149

7; # 0. Inthiscase t € 7, = t € *Ds,, and for the same reasons stated previously
for the transitions in 74, there exists a process place g belonging to both siphons
D and D’ such that ¢ € *t. Moreover, if the place p € t* N Dg, belongs to the
support of the p-semiflow y,., for some r € Dg, then ¢q € |y,|. Therefore, we
will obtain the sets Dg, and Dy = Dr U Dg, U Dg, as in the case of the set
Tg. We can iterate this procedure a finite number of times, k, reaching a set
7w = 0. In effect, from the iteration j to the iteration j + 1 we are making a
backward propagation from each place p € Ds; to a place ¢ € Ds,_, if and only
if 7, N *p # 0. Both places p and g belong to the support of a p-semiflow y,.
of a resource r € Dg. Therefore, this backward propagation from each place
p € Dg, always finishes in a place ¢ € r*® in at most k iterations, where k£ is the
maximal length of a sequence of process and idle places of y,., » € DR, in the
same state machine. In this case we have proven that for all t € * Dy, : t € D,.°,
that is, Dy is a siphon. We have also proven that D, € D and D; C D',
contradicting the minimality of D and D’. Therefore, D = D’ = Dy,.

O

As a result of Lemma 3.19, the set of minimal siphons of a PC?R net, A/, can
be partitioned into |Pr|+ 1 classes. Each one of these classes is characterised by
the number of resource places in its siphons. The partition of the set D of minimal
siphons of AV is denoted as D = ULZ‘B‘ D'; where D' is the subset of minimal siphons
that contain exactly i resource places; and for all 4,5 € {0,1,...,|Pr|}, with i # j,
DiNDI = .

This partition is consistent with the one devised for S*PR nets [CRC12]. Indeed,
as it happened with the partition of the minimal siphons of a S*PR net, the fact that
a class D' is empty does not necessarily imply that there all ‘higher’ classes D7, j > i,
are empty. This result is straightforward since PC?R is a superclass of S*PR [CRC12].

Class D° is completely characterised by Definition 2.12, so that it does not need
to be computed. Indeed, the only minimal siphons containing zero resources are the
respective sets of places of each process subnet, i.e., D° = {P, U {po,} | i € Ix}.

In the end, the bounds in the number of minimal siphons set for the S*PR. sub-
class [CRC12] remain valid for the more general PC?R net class:

Lemma 3.20. Let N' be PC?R net. The number of minimal siphons of N, np,
satisfies, ny + ng < np < ny + 2"F — 1, where ny is the number of strongly connected
state machines of N, and ng = |Pg|.

Previous examples of nets reaching these bounds [CRC12] are also valid in this
context, as PC?R is a superclass of S*PR. These bounds relate the number of minimal
siphons with that of resource places in the net. This is an interesting fact since the

150 3. The liveness problem: Characterisation, analysis and synthesis

number of potentially conflicting resources may be rather constricted when dealing
with real world situations in the context of multithreaded software systems.

Properties on the composability of siphons

The following set of results explore the fact that every minimal siphon D of a PC2R
net can be constructed starting from the set of siphons in D! which share a resource
place with D. In other words, the union of such siphons always contains the siphon.
However, this union may contain a non-empty set of non-essential places that must
be pruned in order to obtain the minimal siphon D.

Therefore, in some sense we can say that the set of siphons in D! can be used to
compose every minimal siphon in the net, except for those trivial minimal siphons in
D°. This result is exploited in the construction of the resource pruning graph of S*PR
nets [CRC12], which is introduced in Subsection 3.2.3. It is not difficult to derive,
from the results ahead, an analogous method to construct a resource pruning graph
of PC?R nets.

The next technical result states that every siphon in D' excludes at least one
place from each process subnet. The result about the composability of every minimal
siphon starting from those siphons in D' follows immediately below.

Lemma 3.21. Let N be a PC?R net, and D, C P a non-empty minimal siphon of
N such that D, € D1. For every i € In, ({po,} U P;)\ D, # 0.

Proof. By Lemma 3.18, ({po,} U) \ ly»|| # 0. And by Lemma 3.23, D, C [|y.||.
Therefore, ({po,} U P;) \ D, # 0. O

Lemma 3.22. Let N be a PC?R net, and D C P a minimal siphon of N such that
Dr=DNPr#0. DC U,epy Drs Dr D!,

Proof. D' = UTGDR D, is a siphon because each D, also is. Let us suppose that
D ¢ D'. Then 3p; € D\ D’ and p; € PyU Ps (otherwise, p; € DN Pgr = Dg C D’).
Besides, #r € Dg :p; € D, C D'.

Since D is a minimal siphon, p; is essential for D, i.e., 3to € p,* N*D:{p;} =
ty N D. Moreover, #r € t5 N Dg; otherwise, p; is essential for D, C D', reaching
a contradiction. Then Jpp € Py U Ps: {pe} = t2* N D. Since D is minimal, pyp is
essential for D.

Now we can reapply the same reasoning for p; over ps. Proceeding iteratively, we
construct a path p;te pats...pn,, where ng > 2 and Vi € [1,n9): ({p:} = *tixs N
D) A (tit1* N Dr =0) A ({pi+1} = ti+1* N D). The path is ended up as soon as one
of the following two conditions occurs:

(a) Ftena € pno. N®*DR: {pn{]} = ®ena N D.

3.3. Liveness analysis of PC?R models through siphons 151

(b) 3k €[1,n9) : pk = Pn,, i-e., we have constructed a circuit.

Such a path is finite since the process subnets are strongly connected state ma-
chines. In the case (a) we can backtrack and conclude that every place in the path
is essential for D,., for every r € tenq® N Dr. Therefore, p; is essential for D, C D',
reaching a contradiction.

In the case (b) there must exist a place p; in the circuit, where k < i < ng, such
that an output transition not belonging to the circuit “makes p; essential for D”, i.e.:

393ty s # tivr s ((pi} = *ths ND)A ("N D #0). (3.4)

Otherwise, the set of places D \ P, where Pg is the set of places in the strongly
connected state machine induced by the circuit, would for a siphon. Therefore, D
could not be a minimal siphon, reaching a contradiction. This is proved next.

First, we prove that *(D\ Pc) N Pc® C (D \ Pc)®. This is instrumental and it
will be accomplished in two steps:

1. *(D\ Pc)N(*PcNP:®) = 0, since, by construction, every transition in ®* PcNPc®
(i.e., every transition in the aforementioned strongly connected state machine)
does not output to Dy, and consequently, every output place belonging to D
also belongs to Pg.

2. *(D\ Pc)N(Pc**Pc) C (D)\ Pc)®, since by negating equation (3.4) we infer
the following fact: if some transition in Pc® \ *Pc has an output place in D
then it also has some input place in Dg, where Dg C D\ Pec.

Now we prove that *(D\ Pc) \ Pc® C (D\ Pc)®. Since *(D\ Pc) C *D C D*,
(D\ Pc) \ Pc® C D*\ Pc*. On the other hand, D* \ Pc®* C (D\ Pc)®. Thus,
(D\ Pc)\ Pc® C(D\ Pc).

Finally, *(D \ Pc) N Pc®* C (D \ Pc)® and *(D\ Pc) \ Pc*® C (D \ Pc)® together
imply that *(D\ Pc) C (D \ Pc)®, contradicting the minimality of D.

Next, following an analogy with the case of p; and t2, we can construct a new
path p;tj , pi,;...p,,, where n; > i+ 1, in an iterative fashion. Obviously, this
new path shares at least one node with the previous path, but at least one transition
(t;.;) was not visited before. The path is ended up as soon as a transition ¢, ; is
found (a contradiction is reached backtracking to p;) or a new circuit is closed. In
the second case, the new circuit is aggregated to the strongly connected state machine
and thus P/, represents the set of places of it after aggregating the new circuit.

Now there must exist a place p; € P/, such that an output transition not belonging
to the strongly connected state machine “makes p; essential for D”; otherwise, the

set of places D \ P5 would form a siphon smaller than D, for analogous reasons to
D\ Pe.

152 3. The liveness problem: Characterisation, analysis and synthesis

This reasoning pattern can be reapplied iteratively until either a contradiction
against p; not belonging to D’ is reached or the whole process subnet is reconstructed
by aggregating new circuits. In the latter case, a contradiction against the minimality
of D is reached, since the whole set of places of the process subnet can be detracted
from D. This iterative algorithm is granted to eventually finish since each new circuit
visits at least one new transition (the first one) and the superposition of a set of circuits
containing every transition of a strongly connected state machine also contains the
whole set of places of the same strongly connected state machine (here: the process
subnet). O

Relations between siphons and p-semiflows

So far throughout this section, the discussion portrays certain parallels between the
way siphons are constructed and the way the supports of the minimal p-semiflows
of a PC?R net are related with each other. Indeed, Lemma 3.22 shows how every
minimal siphon is contained in the union of the ‘seed’ siphons in D' corresponding to
its resource places. Similarly, Lemma 3.17 proves that the support of every minimal
p-semiflow is contained in the union of the supports of the minimal p-semiflows y,.
of the resource places contained in it. Note that the earlier applies to the minimal
siphons (p-semiflows) that contain at least one resource place.

Below we inspect in depth those apparent parallels. In the most general case for
PC?R nets, there exist particularities in the relation between siphons and p-semiflows
that contravene what had previously been observed for S*PR nets and transgress
what would be expected from the standpoint of intuition.

The first result shows that the class D! of the minimal siphons containing only
one resource can be directly obtained from the set of minimal p-semiflows associated
to the resources.

Lemma 3.23. Let N be a PC?R net. For each r € Py there exists a minimal siphon,
D,. € D! such that D, C ||y,||.

Proof. By Lemma 2.23, the support of the minimal p-semiflow associated to a resource
place 7 € Pr, y» € NPl is a siphon of the net. Nevertheless, in general, llyr] is
not a minimal siphon, but it contains a minimal siphon D,.. We prove that r € D,
by contradiction. Let us suppose that r ¢ D,., since r is the only resource in ||y.,||
and Vi € In:3p € {po,} UP;:p ¢ |lyr|- By Lemma 3.18, the subnet generated
by D, is a set of connected state machines contained in the iterative state machines
(process subnets) of A/. For each connected state machine, there exists at least a
transition without input places and then D, cannot be a siphon, contradicting the

hypothesis. O

From the above it is obvious that (as happened with S*PR nets [CRC12]) every

3.3. Liveness analysis of PC?R models through siphons 153

minimal siphon can be directly obtained from the (union of the) set of minimal p-
semiflows y,. associated to each resource place r of the siphon:

Lemma 3.24. Let N be a PC?R net, and D C P a minimal siphon of N such that
Dr=DNPr#0. DCU,cp, lIyell-

Proof. Straightforward from Lemmas 3.22 and 3.23. 0

From the above, and considering Lemma 3.17, one might feel invited to think that
every minimal siphon should be supported by every p-semiflow whose support exactly
shares the same set of resource places. Next we prove that this is indeed true, yet the
proof is far from obvious, in general, for PC?R. nets.

Lemma 3.25. Let N be a PC?R net, y € NPl be o p-semiflow of N, and D be a
minimal siphon of N such that Dg = DN Pr #0. Dr = |ly|Nn P = D C |ly|.

Proof. By contradiction. Let us suppose that Ip; € D\ ||y||. Obviously, p; € PyUPs,
since Dg = ||y|| N Pr. Let i € In be the index of the process subnet to which p;,
belongs, i.e., p; € P;.

By Lemma 3.24 it follows: p; € D\ [ly[| € U,cpy ¥+l \ [[y[l. This implies that
U,epy ¥+ contains the whole i-th process subnet, i.e., P; C U,cp, [y=|l. This
is necessary so as to annul place p; in |y| by establishing K; > 0 in the linear
decomposition of y expressed by Lemma 3.16 (otherwise, p; € |y||, which is not
possible). Furthermore, since ys, [P;] = 1, the component p; in > p y[r] - y,» must
return a minimum among the set of places of P; in order to be annulled, i.e.:

>yl yelp] < min >yl yelp)
réPr rePr

Since D is a minimal siphon, p; is essential for D, i.e., Itp € p;* N°*D: {p;} =
to N D. Let {pe} =t2 N P;. If t2* N DR # 0 then Vr € DR : yr|p:] > yr[p2], and
3" € Dr:yp[pi] > yr[pe]. Therefore, ZrePR ylr] - yelp:] > ZTEPR ylr] - yrlpel,
and p; cannot be annulled in y, reaching a contradiction. Therefore, t2®* N D = 0,
ie., {p2} =t2* N D. Since D is minimal, py is also essential for D.

Now we can reapply the same reasoning for p; over ps. Proceeding iteratively, we
construct a path p;te pats...pn,, where ng > 2 and Vi € [1,n9): ({pi} = *tixs N
D) A (tit1* N Dr = 0) A ({pi+1} = ti+1* N D). The path is ended up as soon as one
of the following two conditions occurs:

(a) Ftena € png. N°*Dg: {png} = *tena N D.

(b) 3k € [1,n9) : pk = Pn,, i-e., we have constructed a circuit.

154 3. The liveness problem: Characterisation, analysis and synthesis

Such a path is finite since the process subnets are strongly connected
state machines. In the case (a) we can conclude that 3 p y[r]-yx[p:] >
> repy Y[l yrlpn,], and p; cannot be annulled in y, reaching a contradiction.

In the case (b) there must exist a place p; in the circuit, where k < i < ny, such
that an output transition not belonging to the circuit “makes p; essential for D”, i.e.:

ity # tivs ({pi} ="t ND) A (., N D #0). (3.5)

Otherwise, the set of places D\ Pu, where P¢ is the set of places in the strongly
connected state machine induced by the circuit, would for a siphon. Therefore, D
could not be a minimal siphon, reaching a contradiction. This is proved next.

First, we prove that *(D\ Pc) N Pc® C (D \ Pc)®. This is instrumental and it
will be accomplished in two steps:

1. *(D\ Pc)N(*PcNP:*) = 0, since, by construction, every transition in ®* PcNPc®
(i.e., every transition in the aforementioned strongly connected state machine)
does not output to Dy, and consequently, every output place belonging to D
also belongs to Pc.

2. *(D\ Pc)N(Pc**Pc) C (D)\ Pc)®, since by negating equation (3.5) we infer
the following fact: if some transition in Pg® \ ®*Pg has an output place in D
then it also has some input place in Dg, where Dr C D\ Pc.

Now we prove that *(D\ Pc) \ Pc®* C (D \ Pc)®. Since *(D\ Pc) C *D C D*,
(D\ Pc)\ Pc C D*\ Pc*. On the other hand, D*\ Pc® C (D\ Pc)®. Thus,
(D\ Pc)\ Pc® C (D\ Po).

Finally, .(D \ Pc) N PC. g (D \ Pc). and .(D \ Pc) \ PC. g (D \ Pc). together
imply that *(D\ Pc) C (D \ Pc)®, contradicting the minimality of D.

Next, following an analogy with the case of p; and t2, we can construct a new
path p;ti, ; piys...p,,, where n; > i+ 1, in an iterative fashion. Obviously, this
new path shares at least one node with the previous path, but at least one transition
(t,

i+ 1) was not visited before. The path is ended up as soon as a transition t[; is

found (a contradiction is reached against p; being annulled in y) or a new circuit is
closed. In the second case, the new circuit is aggregated to the strongly connected
state machine and thus P/, represents the set of places of it after aggregating the new
circuit.

Now there must exist a place p; € P§ such that an output transition not belonging
to the strongly connected state machine “makes p; essential for D”; otherwise, the
set of places D\ P, would form a siphon smaller than D, for analogous reasons to
D\ Pc.

This reasoning pattern can be reapplied iteratively until either a contradiction
against p; not belonging to D’ is reached or the whole process subnet is reconstructed

3.3. Liveness analysis of PC?R models through siphons 155

by aggregating new circuits. In the latter case, a contradiction against the minimality
of D is reached, since the whole set of places of the process subnet can be detracted
from D. This iterative algorithm is granted to eventually finish since each new circuit
visits at least one new transition (the first one) and the superposition of a set of circuits
containing every transition of a strongly connected state machine also contains the
whole set of places of the same strongly connected state machine (here: the process
subnet). O

However, the reverse of Lemma 3.25 is in general false even considering only the
set of minimal p-semiflows:

Property 3.26. There exists a PC?R net N, a minimal p-semiflowy and a minimal
siphon D of N such that D C |ly|| and DN Pgr C |ly|| N Pr.

The net in Fig. 3.24 (which is the same net that appears in Fig. 2.8) has a minimal
siphon D = {R1,R2,R3,R4,B5, C1} which is covered by the minimal p-semiflow y =
m[R1]+m[R2]+m[R3]+m[R4]+m[R5]+m[A4] + m[A6]+m[B3]+m[B5]+3-m[C1],
where {R1,R2,R3,R4} = DN Pr C |ly|| N Pr = {R1,R2,R3,R4,R5}.

Indeed, there may exist a siphon D’ which belongs to a higher level in the taxonomy
of siphons and is also supported by the same minimal p-semiflow y:

Property 3.27. There exists a PC?R net N, a minimal p-semiflow y and two min-
imal siphons D € D' and D' € DV of N such thati > j >0, D C |ly|| and D’ C |y]||.

Returning to the example of the net in Fig. 3.24, the p-semiflow y does not
only supports the places of D € D* but also those of D' € D® where D' =
{R1,R2,R3,R4,R5,C1}.

Obviously the above property does not hold for simpler subclasses such as
S*PR [CRC12]. The same applies for the next property, which states that there
can also exist several minimal p-semiflows with different sets of resource places while
supporting the same minimal siphon:

Property 3.28. There exists a PC?R net N, a minimal siphon D and two minimal
p-semiflows y,y' of N such that D C |ly||, D C |ly’|| and 0 # ||y|| N Pr < ||y’|| N Pr.

In the example of the net in Fig. 3.24, y is not the minimal p-semiflow supporting D
and the lowest number of resource places. That minimal p-semiflow is: y’ = m[R1]+
m[R2]+m[R3]+m[R4]+m[B0]+m[B1]+m[B2]+2-m[B3]|+m[B4]+2-m[B5]+3-m[C1].
In this case, DN Pg = ||y’|| N Pgr with D C |ly’||.

Another novelty regarding PC?R nets is that, given a non-empty subset of resource
places R C Pgr there may exist two minimal p-semiflows y, y’ of A/ such that ||y| N
Pr = ||y’ " Px = R. A minimal siphon can be supported by several minimal
p-semiflows which share the same set of resource places:

156 3. The liveness problem: Characterisation, analysis and synthesis

Minimal siphons in D™, with n > 1:

{R2,R4, A0, A2, A5, B1,B5, C1} {R1,R2,R3,A6,B5,C1}

D? { {R2,R5, A2, A6, B1, B4, B6, C1} {R1,R2,R4, A2, A5, B1,B5,C1}
{R4,R5, A0, A4, B3, B6} s) (RLR2,R5, A2, A6, B1, B4, C1}
DR1R2R3R4 — {Rl _ R4, B5, Cl} {R27 R?), R4, tAO7 A3, B5, Cl}

D4 DR1R2R3R5 — {Rl —RS,R5,A6701} {RQ,R?),RE),AG,BQ,BG,C].}
(R1,R2, R4, R5, A2, B1, C1} {R2,R4,R5, A0, A2, B1,B6, C1}
{R2,R3,R4,R5, A0, B6, C1} D°: Drirs = {R1—-R5,C1}

Minimal p-semiflows supporting more than one resource place:

YRiR2rsRr4 | M[R1] + m[R2] + m[R3] + m[R4] + m[B0] + m[B1] +

m(B2] + 2 - m[B3] + m[B4] + 2 - m[B5] + 3 - m|[C1] =3
m

YRi-rs : M[R1] + m[R2] + m[R3] + m[R4] + m[R5] + m[A4] +

[
[
YRir2r3rs : M[R1] + m[R2] + m[R3] + m[R5] + m[A1] + m[A2] +
[
[
m[A6] + m[B3] + m[B5] 4+ 3 - m[C1] =3

}
]
]
A3] +2 - m[A4] + m[A5] + 2 - m[AG] + 3 - m[C1] =3
}
]

Minimal siphons D covered by a minimal p-semiflow y such that D N Pg = ||y|| N Pr:

Drirorsra [YRirzrsralli Drirerses C |[YRirzrsrslli Pri-rs C Vi1 _rsl

Figure 3.24: A PC?R net with minimal siphons that are not covered by the support of any

minimal p-semiflow. Note that no p-semiflow holds that its support is a minimal siphon

3.3. Liveness analysis of PC?R models through siphons 157

Property 3.29. There exists a PC?R net N, a minimal siphon D and two minimal p-
semiflowsy,y' of N such that D C |lyll, D C |ly'|| and |ly||\Px = |ly'||nPrx = DO\Ps.

The net in Fig. 3.25 (which is the same net of Fig. 2.7, yet recovered here)
proves the previous property. The siphon Dgrir2orsra is supported by the minimal
p-semiflows Ykir2rsra: YaiR2R3Ra A YR1R2R3R4, Which share the same set of
resource places. Indeed, the whole set of minimal siphons in D™, with n > 1, is tightly
bonded with the set of minimal p-semiflows supporting more than one resource place.
All these minimal siphons are covered by the support of a minimal p-semiflow that
contains the same set of resource places. And most of these siphons (all of them
except DRrir2rsra) are equal to the support of a minimal p-semiflow.

Note that the remaining minimal siphon (Dgr1r2orsr4) is equal to the intersection of
the supports of the minimal p-semiflows mentioned above. In general, every minimal
siphon is contained in the intersection of the supports of the minimal p-semiflows
whose supports exactly have the set of resources of the siphon (if they exist). In fact,
this can be seen as a corollary of Lemma 3.25:

Lemma 3.30. Let N be a PC?R net, and YV be a non-empty set of minimal p-
semiflows of N such that Vy,y' € V: |ly| N Pr = ||y’|N Pr = P3. if there exists one
minimal siphon D of N such that Dr = DN Pr = Py, then D C Nyey Iyl

Proof. By Lemma 3.25, for every y € Y : D C [ly||. Therefore, D C (" ¢y [yl O

On the other hand, the relation between minimal siphons and minimal p-semiflows
is rather more diffuse for the net in Fig. 3.24. In this case, most of the minimal siphons
are not supported by any minimal p-semiflow, and none of them is equal to the support
of a p-semiflow.

The last property inspects the form of the siphons contained in a minimal
p-semiflow y of N whose support contains more than one resource place. By
Lemma 3.19, there exists at most one minimal siphon D covering strictly the set
of resources ||y||N Pr, i.e., Dr = ||y|| N Px. Besides, Lemma 3.25 states that if D ex-
ists then D C |ly||. The result prove that there can exist a minimal siphon supported
by y even when such a minimal siphon D, with Dgr = ||y|| N Pr, does not exist:

Property 3.31. There exists a PC?R net N, and a minimal p-semiflow of N', y €
NP ‘, such that its support contains more resource places than every minimal siphon
it covers, i.e., there exists at least one minimal siphon D of N such that D C |ly||,
and for every such minimal siphon D the following holds: DN Pr C |ly|| N Pr.

The PC?R net in Fig. 3.26 has three minimal siphons (Drir2, Drir3, and Drors)
which are supported by the minimal p-semiflow (yk1rars), Put none of these contains
the three resource places R1, R2 and R3. It is noticeable that the net is live for every
0-acceptable initial marking.

158 3. The liveness problem: Characterisation, analysis and synthesis

Minimal siphons in D™, with n > 1:

2 Drors = {R2,R3,A0,B2,C1}
Drors = {R2,R4, A2,B0,C1}

Drirars = {R1,R2,R3,B1,B2,C1}
D? S Drirora = {R1,R2,R4, A1, A2, C1}
Drorsrs = {R2,R3, R4, A0, B0, C1}

D* {DR1R2R3R4 = {R1,R2,R3,R4,C1}

Minimal p-semiflows supporting more than one resource place:

Yiors : mR2] + m[R3] + m[A0] + m[B2] + 2 - m[C1] =3
Yhora © 3 m[R2] + m[R4] + 3 - m[A2] + m[B0] + 2 - m[C1]
YRirzrs - M[R1] + 2 - m[R2] + m[R3] + m[B1] + 2 - m[B2] + 2 - m[C1] =3
Yrirzra ' M[R1] +4 - m[R2] + m[R4] + m[A1] + 4 - m[A2] + 2 - m[C1] =5

YRorsra © 3 - M[R2] + 3 - m[R3] + m[R4] + 3 - m[A0] + m[B0] + 8 - m[C1] =11
YRiR2R3R4 ® 2 - M[R1] +4-m[R2] + 2 - m[R3] + m[R4] + m[B1] +6-m[Cl] =
YE1R2R3R4 - M[R1] 4+ 4 - m[R2] 4+ 3 - m[R3] + m[R4] + 2 - m[A0] + 8 - m[Cl] =
Y 1R2r3R4 : M[R1] 4 4 - m[R2] + m[R3] + m[R4] + 2 - m[A2] + 4 - m[C]] =5

Minimal siphons D covered by a minimal p-semiflow y such that D N Pg = ||y|| N Pr:

1

D] Dri = |lyrall; Dr2 = llyrzll; Dr3 = |lyrsll; Dra = [lyrall

[D?] Drors = |yRerslli Drora = [[yRorall

D] Drirors = [[YRirzrsll; Drirera = [YRirzral; Drorsra = |YRorsrall
(D] Drirorsra = [yRirzrarall 0 [YRir2r3R4I N [YR1R2R3RA]

Figure 3.25: A PC?R net such that every minimal siphon is covered by the support of a

minimal p-semiflow

3.3. Liveness analysis of PC?R models through siphons 159

Minimal siphons:

Dr1 = [lyrill; Drz2 = [lyrall; Drs = [lyrs|
Drir2 = {R1,R2,A0,A2}
Drirs = {R1, R3, A0, A2}
Drors = {R2,R3, A0, A2}

Minimal p-semiflows:

R1
2
3
R1

2.

[AC]
[AC]
[A0]
[R2]
[AO] +

>
+ +

YR1: M [A2] + m[A4]
YR2 : [A2] + m[A3]
[A1]
[R3]

=
TET T
E E E E

Al
3

g EEE
=

YR3 -

E B B B
=

+ o+ + +
+

1 .
YRiRr2r3 ‘1M

5
=)
5

A

Figure 3.26: A PC?R net with a minimal p-semiflow whose support contains more resource

places than every minimal siphon it covers

In the context of the more simple category of S*PR nets, no siphon is the support
of a p-semiflow except for those contained in D! and for those corresponding to the
set of places in the process subnets. As a result, all the rest of siphons are potentially
bad siphons. This does not mean (at all) that all those siphons can eventually be
emptied for a given initial marking. However, there must exist thieve places that
could steal tokens from these siphons until they become undermarked if the initial
marking allows certain firing sequences.

The fact that there may exist other minimal siphons that are the support of p-
semiflows is an interesting novelty in the scenario portrayed by the PC?R class. In the
case of Fig. 3.25, the fact that every minimal siphon is covered by p-semiflows in the
way expressed by Lemmas 3.25 and 3.30 is a powerful property. Thanks to this, the
net is live for every initial marking that has enough tokens in each resource subnet.
In other words, the net is live if the initial marking is l-acceptable. Unfortunately,
this is not necessarily true if the initial marking is not 1-acceptable but 0-acceptable,
as proved in Chap. 2 (see the discussion surrounding Fig. 2.7). Although this is here
discussed in a pretty informal way, this result will be further discussed and formalised
in future work.

160 3. The liveness problem: Characterisation, analysis and synthesis

3.4 A toolbox for synthesising live PC2R models

3.4.1 No room for despair: Heuristics to obtain live models

Earlier in this chapter, concepts and strategies usually deployed to correct RAS mod-
els are reviewed. This is done mainly from the perspective of liveness enforcing in
FMSs but also from the domain of the correction of adaptive routing algorithms in
interconnection networks. At the same time, boundaries are drawn that traverse the
taxonomy of RAS models beyond which those correction strategies are no longer use-
ful or valid. From that perspective, bridges have been built with the most general
RAS classes. From what is exposed up to this point, it should be evident that those
synthesis methods are deeply rooted in the (half-behavioural, half-structural) liveness
characterisations.

As discussed in the previous section, these characterizations cannot be extrapo-
lated to the more general PC?R net class which is suitable for modelling many mul-
tithreaded software systems. In light of the above, it is neither possible to directly
extend those synthesis techniques for the correction of PC?R models. Properties
which are disruptive with previous classes have been explored to reinforce this idea.
The observed results suggest that, in general, adressing the RAP beyond the S*PR
subclass introduces new, significantly more complex problems.

On the other hand, the above synthesis techniques are based on constructive prin-
ciples that guarantee the ability to systematically deploy them in those application
domains for which they are specifically designed (FMSs, multiprocessor interconnec-
tion networks, etc.). However, the nature of these solutions may present problems
under certain conditions as to their deployment in the context of multithreaded soft-
ware systems.

This should not lead to the false conclusion that all hope is vain in the realm of
multithreaded software. In this section we show that the software engineer can take
advantage of all the baggage learned from a RAS perspective. On the other hand, it
is important to remember that, ultimately, there is always a solution that achieves
liveness for an RAS. When the model is too complicated or it is not possible to achieve
analytical results satisfactorily, it is still possible to act in a similar way to the classic
methods based on the Banker’s Algorithm [Dij82, ETGVCO02]: the execution of the
troubling processes (or even all processes) can be sequentialised.

In relation to this ultimate solution, the engineer can hope for an improvement in
the concurrency level by taking advantage of the knowledge obtained from the RAS
abstraction of the software system. As we shall see in the next subsections, there
are different types of approaches to the problem. Their application depends largely
on the nature of the software system abstracted, and it corresponds to the engineer,
ultimately, to decide on the suitability of a particular tool.

3.4. A toolbox for synthesising live PC?R models 161

The most obvious kind of approach lies on the application of the classic techniques
based on control theory, i.e., on the addition of monitors places that restrict concur-
rency in the model. One possible implementation of such monitors places requires
the modification of the original code by inserting calls to allocate/release primitives
over a new set of semaphores which are shared between the conflicting processes. The
logic that manipulates the semaphores leverages a reduction in concurrency to ensure
that the whole system is maintained in a safe condition with respect to the overall
resource allocation state. The applicability of such a technique depends on various
factors, some of which are discussed later in this section.

A second kind of approach lies in increasing the number of resources in those
situations which are prone to deadlock. This practice can actually free the designer
from the need to modify the source code. However, this increase should be done in a
controlled way since, depending on the implementation, a structural solution to the
problem may not be provided. In the latter case, the problem may be reproduced
as soon as the system is resized. Nevertheless, it is often possible to privatise the
use of these new resources, in the spirit of the method described in Sect. 3.2.4 for
the routing problem in interconnection networks, thus bringing a structural solution
without degrading the system concurrency.

On certain occasions, it is even possible to alter the structure of the processes in
the model in order to enforce liveness. This type of approach is rarely natural in
the field of FMS, where production plans are usually preset. However, it makes more
sense in the context of multithreaded programming, where the programming logic can
sometimes be altered to achieve, for example, that a process can return to a safe state
if the allocation level of some shared resources surpasses a certain threshold.

In short: the state of knowledge in the field of RASs and the nature of software
systems often allow us to play with models in a much open way in order to correct
the system and ensure liveness with respect to the RAP. The degree of freedom is
obviously dependent on the particular characteristics of the system to correct. In
order to obtain an optimal solution, the designer should ask himself questions such
as: Is the source code available? Is it modifiable? What are the involved resources
like? Can they be increased if necessary? Once they are assigned to a process, and
before they have served their purpose, can they be released for the sake of reaching a
safe state? And so on.

Considering the above, the following section presents a toolset of correction strate-
gies for PC2R nets whose application ensures obtaining live models. The application
of these tools can be complementary or not depending on the characteristics of the
multithreaded software system which is analysed and/or desired. In short, the goal is
not to provide a fixed, systematic methodology, but a sufficient set of tools that are
left to the designer so s/he can correct the system the most appropriate way possible.

162 3. The liveness problem: Characterisation, analysis and synthesis

3.4.2 Divide and conquer: Deconstructing a PC2R model

Throughout much of Chap. 2 and Sect. 3.3 it has been shown that the general problem
of deciding the liveness of the RAS abstraction of a multithreaded system modelled
through the PC?R class is, computationally speaking, a very complex problem. How-
ever, it is often possible to address the problem in stages through the observation
and manipulation of smaller RAS subsystems which are connected in some particular
simple way through a subset of shared resources. These subsystems can be identified
as subnets of the PC?R model. These subnets may belong to simpler subclasses such
as S*PR or SOAR?. As seen in Sect. 3.2, there exist well-known techniques to enforce
liveness on this kind of models. This lets us tackle the liveness problem following a
sort, of divide-and-conquer heuristic which often alleviates the inherent computational
complexity of the problem.

Henceforth we present the basic construction principles on which such a methodol-
ogy is based. The aim is to provide a framework that will enable the correction of the
RAP in a multithreaded system modelled through a PC?R net with a 1-acceptable ini-
tial marking. As already discussed in Chap. 2, the requirement of the initial marking
being 1-acceptable implies that a single instance of each thread class can be entirely
executed in isolation, for every possible execution path, without requiring the inter-
vention of any other process as far as the allocation of resources refers. Note that this
is often a desirable property in the field of multithreaded software.

As the class of PC?R nets is introduced in Sect. 2.3.2, it is said that a PC?R net
is a modular model that can be obtained from merging a non-empty set of smaller
PC2?R models by fusion of the resource places they share. It is this vision that we
exploit in this section, but taken from the opposite end. Given a PC?R model, we
can look at it as a set of PC?R subsystems that are connected through a set of shared
resource places between them. Throughout this section, we will refer to the latter
type of resource places as interface resource places. Similarly, every other resource
place is considered as internal to a particular subsystem. Figure 3.27 summarises the
vision of a system from this perspective.

Conceived in this manner, the set of subsystems in which a PC?R model is decom-
posed is, in general, not absolute but arbitrary. In other words, for the same PC?R
model (assuming that it has more than one process subnet) several different parti-
tions can be observed, including the most trivial case: the one considering one single
subsystem in which all resource places are internal to it; i.e., the whole PC?R net.
The selection criteria for one or another possible partition into subsystems depend
heavily on the nature of the abstracted multithreaded software system and the will of
its designer. It is beyond the scope of this thesis to deepen in a particular application
approach; indeed, they can lead to very disparate families of correction techniques.

For example, the system designer may wish to optimise the concurrence of a par-

3.4. A toolbox for synthesising live PC?R models 163

Subsystem 2

Subsystem 1 7

Process subnet y z A G.

@roce& subnet @

IAY ~N

‘@roc&s subnet @

Cinterface
resource places

!
CPrOCSS e &m%rocess subnet 5 3 (:)

Subsystem 3

Figure 3.27: Decomposition of a PC?R net model into subsystems with shared resources

ticular set of (types of) threads, which suggests grouping them into a single subsystem
to be analysed and corrected. This may be due to those threads being strongly cou-
pled in terms of their functionality or being critical with respect to the overall system
performance (e.g., they implement business logic). From a different perspective, it
should be noted that certain correction techniques are closely linked to the concept
of locality, and that the natural implementation of the resulting deadlock correc-
tion mechanisms (e.g., monitors, semaphores) do not apply to systems in which the
threads are distributed on different machines. In such cases, the designer may usu-
ally feel inclined to adjust the partition into subsystems to the physical constraints
of the system deployment. In essence, the division into subsystems is a process that
should be generally directed or assisted by the system designer, and can strongly de-
termine the structure and control logic of the resulting system. Note also that the
process described above is potentially recursive in the style of divide-and-conquer al-
gorithms, though this again depends on the designer judging the particular conditions
and properties observed or desired in the system and its environment.

The principle of modularity of a PC?R model is thus the first basic principle in

164 3. The liveness problem: Characterisation, analysis and synthesis

which the methodology is based. The second principle is the fact that a mutual
exclusion between threads can always be enforced. This grants a last resort to ensure
the liveness of a PC?R model with a 1-acceptable initial marking. As seen below, this
second principle is concomitant with the first one: this solution can be locally applied
to address PC?R subsystems that are elusive from other techniques or to coordinate
the sharing of resources between different subsystems in conflict.

Indeed, suppose we have a set of subsystems which are live and reversible. Note
that these properties are observed considering each subsystem in isolation but also
considering their individual connection to the interface resource places. In this case,
the introduction of a mutual exclusion restriction between these subsystems from the
initial marking obviously ensures that the system resulting from its composition is,
on the whole, live and reversible as well.

This leads to a third principle for the analysis and correction of such models: that
of locality. The designer can focus on obtaining locally live and reversible subsystems
to address the final problem of obtaining a globally live and reversible system. As
discussed in the paragraph above, the second principle grants that this last bit is
ultimately possible. This does not necessarily mean that the process should always
end in the sequencing of the subsystems through mutual exclusion once all those have
been individually corrected. On the contrary, we have observed that the solution of the
problems of non-liveness in them often makes the overall system live. Consequently,
it is not necessary to sequentialise their execution in those cases. Recall that, in
Theorem 3.15, a tool was provided to verify whether a PC2R net with a 1-acceptable
initial marking is live. Of course, in order to apply it globally on the entire net,
all the corrected subsystems must remain as members of that class of net systems
after entering the resulting control logic. In case of failure of the test condition (or
in case you cannot apply the tool as the whole net falls outside the class of PC2R
nets with a l-acceptable initial marking) the correction process could finish with the
sequentialisation of the larger live and reversible subsystems.

This type of approach is novel, to the best of our knowledge, in the field of RASs,
and it is powerfully versatile beyond the scope of this PhD thesis. Suppose, for exam-
ple, that a particular subsystem was a marked graph (an augmented marked graph
considering the interface resource places [CX97]). Observe that in the methodology
described above there is no assumption on the nature of the analysis and synthesis
techniques which are locally applied. Considering that the subsystem is reasonably
small-sized, it is possible to apply synthesis techniques based on the exploration of the
state space of that specific subsystem without the need to do so on the whole system.
As far as the resulting local subsystem is live and reversible, and its interface resource
places are 1-acceptable with respect to the rest of the net, a similar methodology can
still be applied.

However, it is previously stated that all the subsystems must be reversible for this

3.4. A toolbox for synthesising live PC?R models 165

strategy to work. Although liveness and reversibility are paired for RAS net subclasses
like S*PR, Chapter 2 shows that both properties are decoupled in general for PC?R
nets, even when the initial marking is 1-acceptable and there is no resource lending
As a result, verifying the reversibility of a PC?R subsystem can be a complicated
problem.

At this point, we retake the testing condition for liveness established by Theo-
rem 3.15. While this is a sufficient (but not necessary) condition, in the following
pages it is shown that this same testing condition also verifies that the net system is
reversible. To this end, we first prove the following theorem, which is analogous (both
in wording and in its demonstration) to Theorem 3.10, but replacing the non-liveness
property by that of non-reversibility:

Theorem 3.32. Let (N,mg), be a PC°R net system with a 1-acceptable ini-
tial marking. If (N,mg) is non-reversible (i.e., if mg is not a home state) then
Im € RS(N,mg) such that the set of m-process-enabled transitions is non-empty,
and every m-process-enabled transition is m-resource-disabled.

Proof. If (N, mg) is non-reversible then there exist a firing sequence ¢ and a reachable
marking m; € RS(AV, mg) such that mg-Zsm; but mg ¢ RS(N,m;).

Let Ba be the set of the elementary iteration blocks of N, and let Tirigger b€
the set of transitions that trigger an elementary iteration block of N, i.e. Tirigger =
U(p,PSMTSM)EﬁN p® N Tsm. Now we start at (M, my) and, as far as there exist enabled
transitions in the set T\Ttrigger, we select one of them (any) and fire it. We successively
repeat this operation until no transition in the set is firable. Since the subnet induced
by P,T \ Tirigger is acyclic and every path ends in Py, this eventually happens, and
a marking m is reached such that either no token remains in the process places, i.e.
m[Ps] = 0, or for each token remaining, the output transitions of its process place
are disabled because of the lack of some resource(s).

In the first case, mg = m, but this is impossible since mg ¢ RS(N, my). There-
fore, only the second case is possible, i.e., the set of m-process-enabled transitions is
non-empty, and every m-process-enabled transition is m-resource-disabled. O

The live and reversible net system in Fig. 3.21 proves that the reverse of Theo-
rem 3.32 is not true in general for PC?R nets. Let us remind that this PC2R net with
a l-acceptable initial marking has one reachable marking that holds the condition in
Theorem 3.32: the marking is [A1, B1, C0, R3].

On the other hand, Corollary 2.43 states that, given a PC?R net system with
an l-acceptable initial marking, if it is non-live then it is also non-reversible. The
non-live net system depicted in Fig. 2.13 serves as an example of this. Observe that
the marking [A1,B1, BOWL] holds the condition in Theorem 3.32.

However, Property 2.39 states that the reverse of Corollary 2.43 is false; even
for the S°PR subclass. The net system in Fig. 2.16 is non-reversible yet it

166 3. The liveness problem: Characterisation, analysis and synthesis

is live. The reachability graph depicted in Fig. 2.17 reveals several markings
which hold the condition in Theorem 3.32 (e.g., the marking m = [A0, A4, B0, B1,
R3,R4,R5,R6,R9,R10,R11,R13,R14], in which the set of m-process-enabled transi-
tions is {T5, T26}, but all of them are m-resource-disabled, and only T14 is firable).

Theorem 3.32 lets us prove that the test condition expressed by Theorem 3.15 is
also useful for testing the system reversibility. In other words, the theorem can be
reformulated in the following way:

Theorem 3.33. Let (N,mg) be an PC*R net system with a I-acceptable initial
marking, and Tirigger be the set of transitions that trigger an elementary iteration
block of N, i.e., Tirigger = U(p,PSM,TSM)eBN p®* NTsm. If the net is non-live or non-
reversible, then there exists a marking m € PRS(N, myg) such that the following set
of inequalities has, at least, one solution:

min 32, p\ p, m[p]

s.t. m=mg+C- o
m>0,0 € N7
System (3.3)

Proof. If the net is non-live, Theorem 3.15 grants that the condition holds. On
the other hand, if (N, mg) is non-reversible, for analogous reasons than stated for
Theorem 3.10, there exists a marking m € RS(N, mg) such that the above set of
inequalities has, at least, one solution. Obviously, m € PRS(N, my). O

Summing up, we suggest below a methodological approach designed to correct mul-
tithreaded systems modelled through PC?R nets with a 1-acceptable initial marking.
This is based on the dissection of the model in small sub-models that can be anal-
ysed and corrected with the help of certain tools, and the final composition of a live
model. In the next subsection, a basic set of tools for dealing with that type of nets
is presented.

3.4.3 Opening the RAS toolbox: The set of rules

Onwards we present a set of tools that can be used to correct (subsystems of) a
PC?R model that is not live or whose liveness cannot be verified. This basic toolbox
relies on the acquired knowledge on RASs and therefore one of the strengths lies on
the fact that this is accomplished avoiding an exhaustive exploration of the state
space. Obviously the application of any of these tools is unnecessary if the whole
model passes the liveness test described in Subsection 3.3.2. The construction of the
resulting model must be controlled by the engineer to ensure that the corresponding
modifications can be applied in the actual software system.

3.4. A toolbox for synthesising live PC?R models 167

Rule 1: Process splitting

The Example 2.1 developed throughout Chapter 2 illustrates the fact that resource
sharing between iterative processes may produce intricate relationships between them.
In the case of the net system of Fig. 2.13 corresponding to Example 2.1, liveness cannot
be verified with the current tools. First, there exists a marking (m = [A1, B1,BOWL])
such that every m-process-enabled transition is m-resource-disabled, and therefore
the test condition in Theorem 3.33 cannot state that the system is live. On the other
hand, we have proved in Sect. 3.3 that no siphon becomes insufficiently marked for
any reachable marking of this net system. Thus, we can neither state that the system
is non-live according to Theorem 3.13.

One possible solution to this problem is to transform the model so that it is easier
to analyse. Through the transformation rules described in Sect. 2.5.5, the iterative
process subnets of a PC?R net can be split into simpler process subnets without
internal cycles. In the resulting net, each process subnet represents an elementary
iteration block considered independently. The idle place of every new process subnet
must have an initial marking that ensures its implicitness (e.g., equal to the initial
marking of the idle place of the iterative process subnet that originated it). Figure 3.28
depicts the result of splitting all the process submnets in the net of Fig. 2.13. The
reachability graph is isomorphic to that of Fig. 2.24 since the new idle places A7 and
B7 are implicit from the initial marking®. In general, the transformation introduced
by Rule 1 preserves the reachability space of the original net since all the new places
are SIPs and the initial marking makes them implicit.

One significant consequence of applying this transformation rule is that the re-
source places aggregated to split the process subnets (e.g., the places R_A1 and R_B1
in Fig. 3.28) do not have a 1-acceptable initial marking, but a 0-acceptable one. For
this reason it is not possible to count on these new resource places as interface places
to partition the system and later sequentialise as described in Subsection 3.4.2. The
fact that the initial marking is not 1-acceptable induces a certain order relation be-
tween threads regarding the start of their execution: some have to be triggered before
others so that the latter can be started. Therefore, forcing a mutual exclusion be-
tween threads is no longer a valid strategy to make the system globally live, since
some threads cannot be executed in isolation.

However, the transformation still allows to analyse and correct deadlocks which
appear locally in certain subsystems, even if some of their interface resource place
with other subsystems have not a l-acceptable initial marking. In many cases, the
correction of these subsystems allow to obtain a globally live system. This is the case
of the system of Fig. 3.28: Later, we will see how it is possible to apply Rule 4 after

3Note that places A7 and B7 are required since, unlike SPQR nets, every process subnet in a
PC2R net must have an idle place

168 3. The liveness problem: Characterisation, analysis and synthesis

A7

A2 TA3 A3 TA4 A4\TA5 TBS

Q» ol-
=

C1TB7

()Bs(+)BO
’/gm‘ R B1 LITB6
l/“liiiilii....i~l;=.~\" <%>Bl

FORK
@,

B4 TB4 B3 TB3 B2 “TB2

TB1

B7

Figure 3.28: Process splitting: Transforming the net in Fig. 2.13

applying Rule 1 in order to finally obtain a live system.

One should note, moreover, that it is not always necessary to use Rule 1 to break
all loops that appear within a process subnet, but it is only necessary when the tools
provided (e.g., Theorem 3.33) cannot decide whether the system is live, or when the
tools available do not allow to correct a deadlock.

In order, for the engineer or designer, to bring the changes from model to code,
(s)he should be allowed to refactor a fragment of code contained within a loop-like
statement into an independent thread class. This is often an intricate process because
it must respect the context of execution of threads during the execution of the loop.
The latter may be achieved through selective replication (e.g,, by program slicing
techniques [Wei84, Tip95]) of parts of the original code preceding the loop which
affect variables altered or evaluated within that loop.

On the other hand, it is necessary to introduce a mechanism to regulate the start
of execution of an instance of the new thread class. One possible implementation goes
through inserting a monitor that would be associated with each thread. Then, each
new resource place added in the net (e.g., R_.A1 and R_B1 in Fig. 3.28) leads to a
new boolean condition variable in the monitor, which is assigned the truth value in

3.4. A toolbox for synthesising live PC?R models 169

the entry point of the loop. Launching a new process instance will occur if a guard
is evaluated positively that depends on the condition of entry to the loop and on the
value of the new condition variable in the monitor. It is important to note that the
designer must verify that both the caller thread (main code) and the thread invoked
(nested loop) can physically reside on the same machine and share the same address
space so that one can implement this synchronization mechanism between them.

The introduction of these changes in the code allows to consider the new resource
places (e.g., places R_Al and R_B1 in Fig. 3.28) as places that have a physical coun-
terpart in the code, and therefore may be subject to the application of other rules of
transformation to simplify not only the analysis but also the correction of the model.
In any case, the designer or engineer should be the one who ultimately must decide
if (s)he can modify the source code and if (s)he considers reasonable to partition the
code as indicated.

Furthermore, changes in the model can also be considered as purely instrumental
to lighten model analysis, in which case no modifications on the abstracted code
would be required. In this case, the engineer handling the model should be aware of
the nature of the new resource places: Certain correction techniques working on this
set of places may not be implementable because of them being fully ‘virtual’ places
without an actual counterpart on the code.

Rule 2: ‘Interlaced’ p-semiflow cancellation

Throughout Subsection 3.3.3 we have seen that the emergence of minimal p-semiflows
containing more than one resource place is a new scenario that appears in the context
of the PC?R net class. This scenario often comes paired to the materialisation of non-
liveness situations. For this reason it seems desirable to have techniques to break this
type of situation. We discuss next a transformation rule that works in this direction.
In addition, this will allow us to bring our model closer to simpler net subclasses;
i.e., those (like S*PR or SOAR?) that we are able to analyse and correct with the
techniques available in the literature.

As we shall see, this scenario arises only when there exists a thread for which
the resource usage is permanently interlaced; i.e., it never simultaneously releases all
the resources. Obviously this never happens to those systems modelled by subclasses
such as S°PR or S*PR, since in such cases the idle place represents a state of minimal
resource usage. The transformation rule proposed below, in essence, seeks to induce
a de facto ordering in the allocation of those sets of resources that are permanently
interlaced.

In net terms, a set of resource places R C Pr of a PC?R net, |R| > 1, is supported
by a minimal p-semiflow yr, R C |lyr||, only if there exists a process subnet such
that every place in the process subnet is a holder place of some resource place in R,

170 3. The liveness problem: Characterisation, analysis and synthesis

[IPost[p”, -1l = [Post[p,-]Il

Post(p] } Post[a,t) = ylpl. if q< R
Post[q.t] =0, otherwise

P E>

Prefp,-] g} Pre[- 5] = Post[-t;]

IIPrefp®,- 11l = [Prefp,-]Il

Figure 3.29: Rule 2: P-semiflow cancellation

i.e., every such place belongs to at least one minimal p-semiflow y,. induced by some
r € R. This is a condition that stems directly from Lemmas 3.16 and 3.17. Thus,
it is possible to construct ygr from a linear combination in the form described by
Lemma 3.16 in which at least the index K, corresponding to that process subnet is
positive. This last condition is necessary to ensure that the support of y g is minimal
(otherwise, it must be supported by some y,., with r € R).

Considering the above, one possible strategy can be proposed. In case that a
minimal p-semiflow supports a set of multiple resource places R, the net would be
transformed to enforce the existence of at least one place in each process subnet such
that it is no holder place of a resource place in R. This can be accomplished in several
ways, e.g., splitting one arbitrary place p of the process subnet (where p € P;U{po, })
into three places and two transitions connected in the form presented in Fig. 3.29.
The new place p? is no holder place of a resource place in R, and therefore no minimal
p-semiflow supports every place in R plus at least one place in the process subnet.
Such a transformation is applied to every process subnet, finally obtaining a net in
which no minimal p-semiflow supports every place in R.

Figure 3.30 depicts the result of applying the rule of transformation 2 on the net
of Fig. 3.23. This rule has been applied to cancel the p-semiflow 2- m[R1] + m[R2] +
m[R3] +2-m[Al] + 5 - m[A2] + m[B2] + 2 - m[C2] = 6. This has been accomplished
by expanding places A0, BO and C2.

Note that in this example we have chosen arbitrarily that set of places for they
are those in which fewer resources need to be freed. As a general rule, it is sufficient

3.4. A toolbox for synthesising live PC?R models 171

Figure 3.30: The net of Fig. 3.23 after applying Rule 2 on A0, BO and C2

to choose any place, as long as one is chosen for each process subnet. In any case,
the choice of places to split must be directed by the designer or system engineer, as
he must decide at what point of each thread’s code it is acceptable to return some of
the allocated resources knowing that they will be requested back immediately after.
Also in this decision process, the designer or engineer must consider the nature of the
original resource types that are modelled with each resource place in R. Depending
on their nature, it may be impossible to free some allocated resource in certain states
of execution of a thread. Even, it may be impossible to alter the way in which a
certain resource type is used throughout some threads considered in their entirety.
This is the case, for example, when it comes to new resource places that come from
the application of Rule 1 but which have no actual counterpart in the thread’s code.

Another interesting observation on the aforementioned example is the fact that the
original net has three more minimal p-semiflows supporting several resource places.

172 3. The liveness problem: Characterisation, analysis and synthesis

Specifically, the following three (other than mentioned above):

m[R1] +m[R3] + 2 - m[A2] + 2 - m[C1] + m[C2]
m[R1] + m[R2] + 2 - m[Al] + 3 - m[A2] + m[B2] + 2 - m[CO0] + 3 - m[C2]
m([R2] + m[R3] + 3- m[A2] + 2 - m[B1] + 3 - m[B2]

3
5
4

It is noteworthy that none of these three minimal p-semiflows persists in the net
of Fig. 3.30. In this net, all minimal p-semiflows support no more than one resource
place. This means that as the minimal p-semiflow supporting the three resource places
is cancelled, the other three minimal p-semiflows supporting more than one resource
place are cancelled as well. In general, the selection of the first p-semiflow to be
cancelled is important because it can make others also cancelled, although again this
selection may be ruled by the nature of the resources abstracted and the restrictions
imposed by the software designer or engineer.

Finally, note that the resulting net depicted in Fig. 3.30 is live after applying
Rule 2. The reachability graph is not depicted this time due to its size (it has almost
one hundred states). The application of Rule 2 does not always returns a live net,
however. On the contrary, sometimes the resulting net is not live, yet then other
correction rules can be applied to finally enforce liveness in the system. Indeed,
Rule 2 works in the direction of narrowing the gap between PC2R nets and those

subclasses of nets in which liveness can be seized by structural-based techniques (e.g.,
S*PR or SOAR?).

Rule 3: Increasing the number of available resources

In Subsection 2.3.4 it was shown that, given a PC?R net, if we are able to increase the
number of copies of resources up to some degree then all deadlock problems disappear
because the resource places become implicit places and can be removed. On the other
hand, an insufficient number of resources can lead to deadlocks.

In many multithreaded software systems, increasing the number of copies of some
resources is a suitable solution. However, the feasibility of this approach depends
heavily on the nature of the resource types abstracted. If possible, a clever increase
on the number of copies of a certain resource type can resolve many adverse situations
without reducing the system concurrency. Nevertheless, if liveness is merely accom-
plished by increasing the number of instances in the resource place then the solution
is not structural, but interim. This means that if the initial marking of the idle places
is subsequently increased (i.e., if we increase the upper limit of concurrent threads of
the same type) the net system can become non-live again.

3.4. A toolbox for synthesising live PC?R models 173

On the other hand, the number of copies of a resource type can be cleverly in-
creased while privatising its usage by threads of a different type or in a different
execution state. By proceeding this way, liveness can be enforced structurally in such
a way that rising the upper limit of concurrent threads can no longer violate the
liveness property.

The pruning graph of s-regs, which is revisited in Sect. 3.2.4, can be used to
accomplish this aim. The technique is originally presented for the subclass of SOAR?
nets, in which, essentially:

1. The process subnets have no internal cycles.

2. The threads use the resources in a request-before-release basis, i.e., there is no
resource lending.

3. The threads release the resources in the same order in which they request them.

4. Each thread requests/releases only one copy of a resource at a time, i.e. Vt €
T+ |ClPr,)] = 1.

5. The resource places are binary.

Although in the whole this seems overly-restrictive for modelling many multi-
threaded software systems, the technique can still be practical to tackle those non-live
subsystems of a PC2R net which fall within the SOAR? subclass. In this regard, it is
worth stressing that:

1. Internal cycles in the process subnets of a PC?R net can be split into new process
subnets without internal cycles by repeatedly applying Rule 1.

2. Rule 2 can be used to enforce the existence of a place in each process subnet such
that no copy of resource is allocated. Subsequently, this place can be viewed as
the idle place of the process subnet as long as the process subnet has no internal
cycle.

3. Often in software, ordered release can be enforced (or obliged to the system
designer) without affecting thread functionality.

4. In the context of software, most operations on resources request or release only
one copy of a resource (yet there exist exceptions, as discussed in Sect. 2.2).

5. Different copies of a single-valued resource type can be modelled by means of a
standalone binary resource place per copy.

174 3. The liveness problem: Characterisation, analysis and synthesis

As in the application of the previous rules, the privatisation of resources must
be directed by the application context and/or supervised by the software de-
signer /engineer. To decide on the rule feasibility, not only must the nature of the
abstracted resources be considered, but also the kind of operations applied on the
resources when allocated. In order to illustrate this, let us consider, e.g., the case of a
file which is accessed in mutual exclusion by two threads. If both threads work with it
in a read-only basis, the file can be duplicated so that the resource usage is privatised,
assigning one copy of the file per thread. But if both request the file for writing on
it, then the privatisation of copies can provoke the coexistence of two inconsistent
versions of the same file.

On the other hand, the privatisation of resources can be much convenient as a
correction strategy when threads are deployed in a distributed environment, consid-
ering that the deployment of a centralised control artifact such as a monitor place
can be cumbersome, and potentially inefficient, in such contexts, due to intensive
message-passing.

Rule 4: Siphon control through virtual resources

The addition of virtual resources which act as monitor places preventing the eventual
emptying of siphons has been a productive approach to liveness enforcement in the
context of FMSs modelled through Petri nets. Such kind of policy is linked to the
classic approach in control theory: concurrency is restricted by forbidding those event
sequences that lead to the death of some transition; being the death captured by a
fatal leak of tokens in some siphon.

The discussion in Sect. 3.3 proves, however, that this strategy is at least partially
flawed in the context of multithreaded software systems: Insufficiently marked siphons
are not enough to characterise non-liveness for systems modelled through the PC?R
class.

Throughout most of Sect. 3.2, correction techniques which deal with preventing
siphons from becoming insufficiently marked siphons have been revisited. These are
presented for the S*PR subclass, yet Theorem 3.13 proves that insufficiently marked
siphons are still sufficient (though not necessary) for non-liveness in the more general
PC?R class.

Even in those cases in which the PC?R net model of the multithreaded software
system does not fall within the S*PR subclass, it is often possible to take advantage of
those techniques to correct certain subsystems of it. At this point, it is worth noting
that the repetitive application of Rules 1 and 2 can bring the model (or parts of it)
close to the S*PR class. As an example, we retake the net of Fig. 3.28, which is the
result of applying Rule 1 twice on the net of Fig. 2.13.

Figure 3.31 depicts a partition of the model into three subsystems, numbered

3.4. A toolbox for synthesising live PC?R models 175

Figure 3.31: Decomposition of the net in Fig. 3.28 in subsystems

from 1 to 3. No resource place is internal to a particular subsystem. In other words,
from this view, all the resource places are interface resource places: places R_Al
and FORK1 connect Subsystems 1 and 2, places R_.B1 and FORK2 connect Subsys-
tems 1 and 3, and place BOWL connects the three of them.

Subsystem 1 (considered along with the arcs from/to the interface resource places)
is illustrated in Fig. 3.32%. A quick look reveals that the subsystem is not exactly a
S*PR net subsystem. Note, however, that the two resource places R_A1 and R_B1 are
implicit (since C[R_A1,T] = C[A1,T], mo[R-Al] = mg[Al], C[R.B1,7T] = C[B1,T]
and mg[R-B1] = mg[B1]). Therefore, those places can be removed to analyse the
properties of liveness and reversibility, and the resulting subnet is a S*PR net with
an acceptable initial marking.

Applying Algorithm 3.1, siphon D = {FORK1,FORK2, A5, A6,B5,B6} is ob-
tained. This minimal siphon becomes insufficiently marked at the reachable marking
m = [Al, (R_A1,) B1, (R_B1,) BOWL], which can be reached after firing transitions

4Please ignore resource place CP1 for the moment.

176 3. The liveness problem: Characterisation, analysis and synthesis

Figure 3.32: Subsystem 1 of the net system in Fig. 3.31. Monitor place CP1 prevents the

unique bad siphon from becoming insufficiently marked

TA1 and TBI from the initial marking. Algorithm 3.1 computes the monitor place
CP1 depicted in Fig. 3.32, which controls siphon D, and the net becomes live (and
therefore also reversible, as it is a S*PR net).

Finally, Fig. 3.33 reproduces the result of inserting the monitor place CP1 into
the net of Fig. 3.28. The resulting net is live. Since the initial marking is not 1-
acceptable for the resource places R_A1 and R_B1, this cannot be directly verified
through the condition in Theorem 3.33. But considering that A1, B1, A7 and B7 are
implicit places, we can again remove them, undoing the transformations introduced
by the previous application of Rule 1. The result is a PC?R net with a 1-acceptable
initial marking to which we can apply Theorem 3.33, concluding that the resulting
net system is live.

Rule 5: Resource-oriented sequentialisation

Last but not least, if the liveness property of a certain subsystem cannot be granted,
the corresponding threads can be sequentialised. In terms of the model, this can be
accomplished by means of a virtual resource which induces a mutual exclusion between
all threads in the system. Assuming that the initial marking of the subsystem is 1-
acceptable, then every thread can be executed from the initial marking in isolation.
Therefore, the resulting net system is live and reversible. However, note that these
threads can still concur with other threads belonging to other subsystems (unless the

3.4. A toolbox for synthesising live PC?R models 177

B2

TA?»CAG, A7, B0, B7, BOWL, CPZD(AO, A7, BO, B7, FORK1, FORK2, BOWL, CPl)(AO, A7, B6, B7, BOWL, CF‘l)t_I_B7

A5, A7, BO, B7, CP1 a8 TAL TBL X 788
— (s
T R_B1)¢—TB6

A6— (A1, A7, BO, B7, FORK2, BOWL, R_A1) (A0, A7, B1, B7, FORKL, BOWL,
»

TA2 X

ﬁ X TB2 ﬁ
tas (AL A2, BO, B7, FORK2 « (AL B1,A7,B7 L R_AL RBL)y A0, A7, BL, B2, FORKL) 1hg
TA3 . v B3
X X
" , RBL)| |(AL A7,<&, RALJe — v
(Al, A3, BO, B7, FORK1, FORKZ} X (AO, A7, B1, B3, FORK1, FORK2

X
X x
(Al, A7, BL, Al FORK2>«TA1/TB4

.
Taa TB1»(AL A3, BLIRR B1, FORKI)
X

v » X
Al, A4, BO, B7, FORK2 B4, R_Al> \CAO, A7, B1, B4, FORK1

Figure 3.33: Controlled version of the net in Fig. 3.28

178 3. The liveness problem: Characterisation, analysis and synthesis

execution of the subsystems is sequentialised as well).

3.4.4 Fitting the jigsaw together

Throughout this chapter, a fresh look and beyond on the current techniques for live-
ness enforcing on RASs has been portrayed, while showing that, considering the state-
of-the-art, there are pitfalls that prevent many interesting RASs from being actually
solved. On the other hand, even in the case of highly complex systems, it should be
reminded that there is always a solution of last resort which consists in the sequencing
of all threads; or, rather, of all those likely to be a source of non-liveness®.

It has been shown that finding a general characterisation of liveness for the problem
of resource allocation in systems abstracted from the multithreaded software world is
a very difficult task. Desperate times call for desperate measures: Being guaranteed
a solution of last resort, this section has been devoted to providing a battery of
techniques which can improve the results that would be obtained by applying the
sequentialisation technique. These techniques are based on the acquired knowledge
on this kind of systems.

The fundamental principle underlying the application of these techniques is the
possibility to observe a complex system as the merge of multiple simpler subsystems.
This opens the possibility of start correcting the latter ending up in a global solution
that ensures that no issues regarding liveness emerge due to competition for resources
between threads.

Starting with the class of PC?R models (resulting from the abstraction of the
resource allocation scheme of a multithreaded software system), five transformation
and correction rules have been introduced, which can be applied globally or locally
to the subsystems of these models. Their application is dependent on the way the
designer or engineer envisions the system, as well as on the nature of the resources
involved, and on the fact of the source code of threads being modifiable.

Using this toolbox, some of the more complex examples that had been presented
throughout the thesis have been corrected. For example, the net of Fig. 3.30 corrects
the liveness problems that were detected in the net of Figure. 3.23 by means of the
application of Rule 2. The solution provided by Rule 2 is local in essence, and involves
the release of some allocated resources in certain specific points of execution of the
threads. Since no thread needs to know the global resource allocation status, or needs
access to any centralised monitoring mechanism, this kind of solution is well-suited
for being implemented in multithreaded distributed systems.

Besides, the net in Fig 2.13, which models Example 2.1 for the trivial case with two

5This solution of last resort works as long as all threads can be executed entirely in isolation,
which in terms of the Petri net model is captured by the condition of the initial marking being
l-acceptable.

3.5. Conclusions 179

philosophers, has been corrected, obtaining a live net through successive application
of Rules 1 and 4. The net resulting after this process is shown in Fig. 3.34. In this
case, we have managed to enforce liveness by introducing a monitor place (CP1) that
prevents a philosopher from taking the first fork if his colleague is preparing to eat.
In this case it is a global solution that would be, for example, implementable in a
centralised system by introducing an n-ary semaphore cpl (where n is the number
of philosophers) which is acquired atomically along with the first fork (i.e., replacing
in Algorithm 2.1 the first operation wait (fork[i]) for an operation wait (fork[i],
cpl)) and released after taking the second fork (i.e., introducing signal(cpl) just
above the sentence Serve spaghetti).

In general, the proposed strategy for the correction of a system modellable through
PC?R nets for which liveness cannot be verified consists in identifying those trouble-
some subsystems, in order to correct them first. Once a portion of the model is
selected for being studied, it is proposed, if possible, that all interlaced p-semiflows in
it are cancelled (through Rule 2), and that some of its iterative processes are split into
simpler process subnets (namely, those iterative process interacting with the set of re-
sources that prevent each m-process-enabled transition from being enabled) through
Rule 1. Both rules approach the (sub-)models to those net classes for which there
exist well-established synthesis results.

Once the (sub-)model is simplified, and in case that system liveness cannot be
detected yet, Rules 3 or 4 can be repeatedly applied. Rule 3 increases and privatises
resource usage, leading to distributed type solutions, while Rule 4 restricts system be-
haviour by introducing a mutual exclusion between troublesome code sections, leading
to centralised type solutions. Ultimately, and in case that no satisfactory solution is
found, the execution of those threads causing problems can always be completely
sequentialised through Rule 5. Once problems are solved for the simplest subsys-
tems, larger parts of the system can be analysed and corrected, following a similar
procedure, until a globally live system is obtained.

3.5 Conclusions

The concept of insufficiently marked siphon and its monitorisation through virtual
resources form the basis in which a plethora of synthesis techniques of live RASs
based on Petri nets have been traditionally grounded. In this chapter, an attempt is
made to draw the boundary between the classes of RAS models from which it is not
possible to apply the same correction strategies and concepts for RASs.

Throughout the chapter, synthesis methods have been reviewed while bridges have
been established with the most general classes of Petri net models for RASs. In par-
allel, it has been shown that these methods are deeply rooted in liveness characterisa-
tions based on the concept of insufficiently marked siphon. Such characterisations are

180 3. The liveness problem: Characterisation, analysis and synthesis

(16,80, BOWL, CP1) (A0, BO, FORK1, FORK2, BOWL, CP1)1\<AO, B6, BOWL, CP1 e

TA7 = s 87
TAL TB1
A5, BO, CPL _—{(A1,B0 FOI;;OWL) (Ao BlTO‘RKl BOWL) £0.B5 CPL
TAG it ! it ’ TB6
TA2 X B2
: A0, B2, FORK1
TB3 RS

X v
CAO, B3, FORKL, FORK2>

X
(A3,BO,FORK1,FORK2> »
X
L EE
TA4 —

A4, BO, FORK2

Figure 3.34: Controlled version of the net in Fig. 2.13

3.5. Conclusions 181

half behavioral, half structural. The correction methods proposed in the literature
usually strive for a structural solution to prevent any anomalous situation regarding
liveness from ever happening.

Hopefully, it has been made evident that such techniques cannot be extended
directly to the class of PC?R models, which is aimed to approaching moderately
complex multithreaded software systems from a RAS perspective. To this end, it has
been proven that the previous liveness characterisations result in only necessary or
sufficient conditions for the most general class of PC?R nets, whereas new properties
emerge with respect to previous subclasses. The detailed study of these properties
provides the basis to extend those techniques in the future, while evidences that,
beyond the subclass of S*PR nets, liveness is further complicated to approach from a
RAS perspective based on such kind of models.

The last part of the chapter attempts to shed some light on this not-so-black
prospect. The work previously carried out during this first part of the thesis crys-
tallises in the proposal of a basic methodology that can address the correction of
systems modelled through the PC2R class. The proposal involves the introduction of
a toolbox to address the problems of non-liveness, departing from a modular view of
the system and taking advantage of the acquired knowledge on this type of systems.
This methodology should be adapted to the production context in which the system
is implemented, as well as to the nature of the threads and resources in it: A task
that should be addressed by the engineer or designer of the system in order to adapt
it to the needs and constraints imposed by the problem domain.

182 3. The liveness problem: Characterisation, analysis and synthesis

Chapter 4

Reconstructing the Gadara
approach

Summary

In this chapter, we explore Gadara nets as a significant subclass of PC?R nets in
which the siphon-based characterisation still applies. Some limitations which Gadara
nets present for the modelling and automated correction of concurrent software are
unveiled. It is also proved that these Petri nets are close to a restricted subclass of
S*PR (a classic, widely-exploited class in the context of FMSs) and provide some
related equivalence results. Last but not least, novel formal proofs of the theorems
characterising non-liveness in Gadara nets are presented.

183

184 4. Reconstructing the Gadara approach

4.1 Introduction

The S*PR subclass is a particularly significant Petri nets subclass aimed for the study
of RASs. The discussion in Chap. 1 evidenced that, after abstracting details regard-
ing resource allocation, many interesting real world systems from diverse application
domains converge in a category of RASs that can be modelled through this particular
subclass. Such is the case for many FMSs, for which S*PR originally emerged as a
family of models capable of abstracting versatile plant configurations. On the other
hand, S*PR is the most general subclass of the S”PR family for which there exists
a known structural (siphon-based) liveness characterisation. In this sense, the S*PR
subclass has traditionally established the limit from which structural techniques can
be successfully exploited from an RAS perspective.

Consequently, adhering to the family of models induced by the S*PR specification
is a key issue in order to profit from these preexisting analytical results without
significant shifts, and successfully approach new application domains from an RAS
perspective. Indeed, the assumption of model syntax restrictions over the S*PR class
(albeit with a physical meaning) is a common practice in many application contexts,
as discussed in Chap. 1. On the other hand, the complexity of multithreaded software
systems led us in Chap. 2 to the introduction of the PC?R class: a new Petri net class
which not only does not restrict, but generalises previous models in order to properly
tackle the problem in this domain. This ultimately complicates the finding of a general
structural characterisation, as discussed in the previous chapters.

On the contrary, Gadara nets [WLR09] were introduced as an attempt to import
the strengths of liveness enforcing techniques usually applied in FMS into the soft-
ware domain. However, adding support for internal cycles to the control flow of the
processes was esteemed necessary. This was accomplished at the expense of introduc-
ing syntactical restrictions to the model with some physical meaning. Unfortunately,
those strong restrictions prevent these techniques from being successfully applied in
most multithreaded software systems.

In this chapter we approach Gadara nets from different points of view, in order to
show their relation to PC?R nets, consolidate some results which were not formally
proved yet, as well as illustrate the strengths and drawbacks that such models present
in order to tackle the RAP in multithreaded software systems.

In Section 4.2, Gadara nets, as well as some of their limitations for modelling
multithreaded software, are reviewed. In Sect. 4.3, a formal proof of the existence of
a structural liveness characterisation for Gadara nets is presented. It is worth noting
that, at the time this proof was presented [LGC11], no formal proof was, as far as we
know, published yet. Finally, in Sect. 4.4, the equivalence between Gadara nets and
a restricted subclass of S*PR is proven with respect to their correction through net
state equation-based structural methods such as that reviewed in Sect. 3.2.2.

4.2. The Gadara approach 185

T T ,__\ """" +
PCR SBSPQR:
,,,,, “-”//#-;'f'i”,,,,,,,,,)
S sl =2 Legend:
S PRe—S PRe——— S'PR o
"""""""""" $cu Zisincluded
B PR o into"
,,,,,,,,,,,,,,,,,,,,, \ Coe e 5 -———— -
o = "canbe
» L-S PR 8 transformed
T — into"
Gadara--~~~ _
+ process structure -

Figure 4.1: Inclusion relations between Petri net classes for RASs (second update of
Fig. 1.5)

4.2 The (Gadara approach

Gadara nets belong to the family of Petri nets conceived for modelling RASs. They
are modular nets that generalise the S*PR class in allowing general state machines
but constrain the S*PR class in forbidding the allocation of resources in conflicting
transitions inside the state machines (i.e., there is no inclusion relation between these
two net classes). A more technical constraint is related to the weights of the minimal
p-semiflows associated to resources, which are equal to one. This means that an active
thread at most uses one copy per type of resource.

Figure 4.1 completes the whole picture presented in Chap. 2 by portraying the
inclusion relations of Gadara nets with the rest of Petri net classes for Sequential
RASSs.

The formal definition, as originally presented [WLR™'09], follows.

Definition 4.1. [WLR'09] Let In be a finite set of indices. A Gadara net is a
connected ordinary pure P/T net N = (P, T, F) where:

1. P = PyU Ps U Py is a partition such that:

(a) [idle places| Py = UieIN{poi}.
(b) [process places] Ps = ¢, P, where:
Viely:Pi#0 andVi,j € Ixy:i#j, P,NP; =0.

(c) [resource places] Pr = {rs,....,mn}t,n > 0.

186 4. Reconstructing the Gadara approach

2. T =U,cy, Tis where Vi € In, T; # 0, and Vi, j € In,i # 3, Ti N Tj = 0.

3. For all i € In the subnet generated by restricting N to ({po,} U P;,T;) is a
strongly connected state machine. This is called the i-th process subnet.

4. For allp € Ps: if |p*| > 1, then *(p*) = {p}.

5. For each r € PR, there exists a unique minimal p-semiflow y, € NPl such that
{r}=lyrl0Pr, lyrlnPo =0, [lys|| N Ps #0 and 0% yr5 1.

6. Ps = UTGPR(HYTH \ {r}).

From the previous definition, it is clear that the novelty with respect to S*PR is
in points 3, 4 and 5. The first one allows state machines with internal cycles, because
an important constraint has been removed: the constraint imposing that all circuits
in an S*PR net contain the idle place. This implies that, formally, Gadara is not a
subclass of S*PR. Point 4 constrains the definition of S*PR imposing that resources
cannot be allocated in the transitions belonging to a conflict set. A similar situation
is given in point 5 where p-semiflows are 0,1-valued. These two points can lead to
think that Gadara is a subclass of S*PR, but point 3 denies this possibility.

Later we will see that, from a behavioural point of view, Gadara nets merely ad-
dress a subclass of the behaviours described by S*PR nets thanks to the entanglement
of the generalisation of point 3 and the constraints of points 4 and 5. This enables
the simulation of any Gadara net by means of a S*PR net obtained from it. This is
epitomised in a set of transformation rules presented in Subsection 4.4.

The next definition was originally included as an extra condition to Defini-
tion 4.1 [WLR'09]. For coherence reasons with our previous works, it has been
extracted, neatly separating the net structure and the initial marking. Note that this
definition presents the other fundamental difference with the class of S*PR systems:
in Gadara systems, resource places are binary. This is the deep reason related to the
{0-1}-valued p-semiflows.

Definition 4.2. [WLR"09] Let N = (P, T, F) be a Gadara net. An initial marking
myg is acceptable for N iff mgo[Py] > 1, mg[Ps] = 0, mg[PR] = 1.

Figure 4.2 depicts a Gadara net with an acceptable initial marking. As will be
seen later on, the non-liveness of a Gadara net is characterised by the existence
of a structural artifact, a bad siphon, that eventually gets insufficiently marked or
empty. This can be prevented by inserting a monitor place which restricts the system
behaviour:

Definition 4.3. [WLR"09] Let N = (P, T, F) be a Gadara net. A controlled Gadara
net is a connected generalised pure P/T net N, = (P U Pc, T, F U F,, W) such that,
in addition to all conditions in Definition 4.1 for N, we have:

4.2. The Gadara approach 187

AO

Al TA2 A2 TA3 A3TA4 A4 TAS

o= Zor

Figure 4.2: Non-live Gadara net system

7. For each p. € P, there exists a unique minimal p-semiflow yp, € INIPYPel gyeh
that {pc} = |lypcll NV Po, [[ypel N Pr =0, lypll 0 Po =0, lyp.ll N Ps # 0 and
ypc[C] = 1

Observe that a controlled Gadara net is not a Gadara net in general. This is
because the condition that is imposed to the p-semiflows of the control places allow
p-semiflows which are not necessarily {0,1}-valued. This is a major problem if we are
trying to design synthesis techniques of an iterative nature similar to those presented
for S*PR nets but working only in the context of the Gadara nets (remember that
iterative synthesis methods of S*PR nets cannot be applied to Gadara or controlled
Gadara nets because of the internal cycles of the state machines):

Definition 4.4. [WLR*09] Let N. = (PyUPsUPRUP:, T, FUF., W.) be a controlled
Gadara net. An initial marking mo is acceptable for N iff mo[Po] > 1, mo[Ps] = 0,
mo[Pr] =1 and for every p. € Pc,p € Ps: mo[pc] > ¥p.[p]-

The previous definition points out that the initial marking of controlled Gadara
nets violates, in general, the binary condition of the initial marking of Gadara nets.

The net of Fig. 4.2 has three bad siphons. The minimal siphon D =
{R1,R2,R3,R4, A2, A5, B2} is empty at the reachable marking m = {A1,B1, A3}.
This siphon can be controlled by aggregating a control place p. which would have
arcs from TA1l and TA2 with the following non-unitary weights: Clp., TA2] =
—Clpc, TA1] = 2. Those non-unitary arc weights are due to the fact that Al be-
longs to the support of the minimal p-semiflow of two different resource places, yr1
and yrg4. Out of curiosity, there exists another minimal siphon, D’ = {R1,R2,R3,
A2, A4,B2} which is also empty at m. If D’ is controlled then it is obtained a control
place with unitary arcs only, and the resulting controlled net is live. This, of course,

does not always happen. As a result, y, € {0, 1}|PUPC| but y,, €]NIPUPCl, in general.

188 4. Reconstructing the Gadara approach

Please note that, from now onwards, the term Gadara nets will be used for referring
to controlled Gadara nets.

As discussed in Chap. 2, very complex phenomena can appear when internal cycles
are allowed in the control flow of the processes. Observe that controlled Gadara nets
respond to a very general class of nets with internal cycles, and that the claim is true
even in safe nets with no resource lending [LGC12] or overlapped (i.e., not nested)
internal cycles, as the net system in Fig. 2.13 reveals. In this case, no bad siphon
ever becomes insufficiently marked, even when the net is non-live. Thus, the classic
structural characterisation [TGVCEO05] does not work in the general context.

The “good behaviour” of Gadara nets originates from the fact that conflicts in-
duced by process places are free-choice. This seems to approximate these models to
the kind of systems with linear processes, such as the L-S*PR class [EGVC98]. This
modelling assumption can however be overrestrictive for modelling software systems:
some kind of software cannot be modelled with Gadara nets, due to the usage of non-
blocking allocation primitives, which are supported by (e.g.) POSIX locks. A similar
argument can be applied when conditional statement expressions must be evaluated
atomically. Additionally, general, non-binary semaphores are not supported, and the
case of signal operations preceding wait operations is neither considered. These un-
covered aspects in the modelling of real software restrain an automated translator to
Petri nets from working, unless the kind of programs that the engineer can construct
is constrained.

4.3 Liveness characterisation

In 2009, Yin Wang et al. [WLR109] enunciated a liveness characterisation for Gadara
nets based on the existence of an insufficiently marked siphon at a reachable marking
(there captured by the equivalent concept of resource-induced deadly marked siphon).
In 2011, we presented a formal proof of that characterisation [LGC11], which had not
been dealt before. In fact, no formal proof of their claim seems to have been published
by these authors until very recent times [LWC™13]. Instead, it was originally stated
that the same proof strategy to that followed for S*PR nets can be extended for
Gadara nets [WLRT09], albeit this is a dubious claim. Please mind that conflicts
induced by process places are not free-choice, in general, for SYPR nets. This is a
restriction imposed by Gadara nets that must be taken into account in the proof:
otherwise, it would be also generalisable for nets like the one in Fig. 2.13. Hence, the
liveness theorem needed further proof in order to be unequivocally validated.

Our original proof is reproduced next. Indeed, it must be noted that the liveness
theorem is in fact proved on a superclass of controlled Gadara nets. This superclass
is defined next.

4.3. Liveness characterisation 189

Definition 4.5. An extended Gadara (e-Gadara) net is a connected generalised pure
P/T net N = (P, T,F,W) (or, equivalently, N = (P, T,C)) following Definition 4.1
except for condition 5, which is generalised as follows:

5. For each r € PR, there exists a unique minimal p-semiflow y, € NP1 such that
{r} =llyrl 0 Pr. lyel 0 Po =0, llysl| N Ps # 0 and y,[r] = 1.

Definition 4.6. Let N' = (P, T,C) be an e-Gadara net. An initial marking mg is
acceptable for N iff mo[Py] > 1, mo[Ps] = 0 and Vr € Pr,p € Ps: mg[r] > y,[p].

Please note that the control places are included in Pg in Definition 4.5 (therefore,
no subset Pg is defined). Note that this can be done since the minimal p-semiflows
induced by the resource places in an e-Gadara net are more general than those induced
by both the resource places and the control places of controlled Gadara nets. In other
words, the class e-Gadara is essentially a generalisation of that of controlled Gadara
nets. As a result, Definition 4.4 is consistent with Definition 4.6.

Some more definitions follow which will be instrumental both for the liveness
theorems enunciations and proofs.

Definition 4.7. Let N = (P, T, C) be an e-Gadara net. The set of holders of r € Pr
is the support of the minimal p-semiflow y, without the place r: H, = |ly.|| \ {r}.
This definition can be extended to sets of resources A C Pg in the following way:

HA = UTEA HT'
Definition 4.8. Given a marking m in an e-Gadara net, a transition t is said to be:

e m-process-enabled (m-process-disabled) iff it has (not) a marked input process
place, i.e. t € (|lm| N Ps)* (i.e., t ¢ (|m| N Ps)*).

e m-resource-enabled (m-resource-disabled) iff its input resource places have (not)
enough tokens to fire it, i.e., m[Pg,t] > Pre[Pg,t| (i.e., m[Pg,t] ? Pre[Pg,t]).

Before proceeding with liveness Theorem 4.13 and 4.14, two instrumental and easy
lemmas will be addressed.

Lemma 4.9. Every e-Gadara net is consistent.

Proof. The proof is analogous to that provided for PC?R nets (Lemma 2.22), but
included for completion. The process subnets of A/ are strongly connected state
machines and therefore each one is consistent, i.e., every transition ¢ of N is covered
by at least a t-semiflow of the state machine containing ¢. It will be proved that these
t-semiflows are also t-semiflows of the net . Indeed, if x is a t-semiflow of A/ without
resources it is enough to prove that Vr € Pg: C[r,T| - x = 0. Taking into account

190 4. Reconstructing the Gadara approach

Definition 4.5, point 5, C[r,T] = — > . () Y=[P] - C[p, T}, and therefore,

Clr,T] -x=— > vl Cp Tl x== Y y.pl-ClpT]-x=0.
pElly-IN{r} pEllyrII\{r}
Thus, N is consistent. O

Lemma 4.10. Let (N, mq) be an e-Gadara net with an acceptable initial marking.
Then, for everyt € T, there exists a t-semiflow containing t being realisable from mg.

Proof. The proof is very similar to that provided for PC?R net systems with 1-accept-
able initial markings (Theorem 2.31), although some parts are slightly different. It
will be proved that a single token can be extracted from any idle place at mg and be
freely moved in isolation through its corresponding state machine. Let M; be the sub-
set of reachable markings such that one and only one process place is (mono-)marked,
ie, My ={m e RS(N,mp) | Ip€ Ps:mlp] =1, ||m| NPs={p}}.

First, every t € Py* is enabled at mg since *t C Py U Pg and, by the definition of
acceptable initial marking, Py C ||mg| and Vr € Pgr : mo[r] > y,[q] = Pre[r,t], with
q = t* N Ps. By firing ¢t a marking of M is reached.

Without loss of generality, let m € M;. It will be proved that every m-process-
enabled transition ¢ is enabled. If ¢* N Ps = () then m[Pg] > 0 = Pre[Pg,t]. Thus,
m_",mg. Otherwise, let {p} = *tN Ps and {q} = t*N Ps. Then Vr € Py : Pre[r,t] =
max(y,[g] — y-[p],0). By Definition 4.6, Vr € Pr:mg[r] > y,[¢]. Then m[r] =
mo[r] — y»[p] > yrlg] — yr[p]- Also, m[r] > 0. Thus, m[Pr] > Pre[Pg,t]; ie.
m-“.m’, m’ € M.

It has been proven that an isolated token can be carried from mg[Fp] to any
arbitrary p € P. If p belongs to a circuit, we can take that token and make it travel
around the circuit. Since every t-semiflow corresponds to a circuit in a state machine
(as proven for the dual case of circuits of marked graphs and p-semiflows [Mur89)),
and e-Gadara nets are consistent by Lemma 4.9, the new lemma holds. O

Since a token in a strongly connected state machine can be moved in isolation
to any other arbitrary place of the same state machine, the next lemma is pretty
intuitive, yet formally proven in the following. Note that o denotes the firing count
vector of .

Lemma 4.11. Let (N,m), N'= (P, T,C), be a set of isolated marked strongly con-
nected state machines, and let Py C P be an arbitrary subset of places such that Py
contains one and only one place of each strongly connected state machine. Then there
exists at least one firing sequence o, m-2,m’, such that there exists no t-semiflow

x#0 of N, witho —x >0, and |m’|| = P,.

4.3. Liveness characterisation 191

Proof. Let Ix be a finite set of indices, and let UiEIN N; be the set of isolated strongly
connected state machines of N, where N; = ({po, }UP;, T;, C;) and py, € Py. For every
p € P;, the path 7, is defined as an arbitrary path of minimal length from p to py,. It
will be proved that the union of every path m,, for every p € P, is a spanning forest,
i.e. it has no circuits. By reduction to absurd: suppose that there exists a circuit
containing p and ¢, where p,q € P;, p # q. Let mp = puquvpo, and my = qwp 2 po,,
where u,v,w,z € (P;UT;)". Since 7, (m,;) is a minimal path, then |m,| < |pz po,

(Imql < [gvpo,]). But then |my| > [gvpo,
a contradiction.

> |mq| and |mg| > |pz po,

> |mp|, reaching

Now let us construct the sequence o. Let o, be the projection of the path m,
over T. Let o be an arbitrary concatenation of the sequences (o,)™P!, for every
p € |m| N P;. Obviously, o is firable. And, by construction, no subset of transitions
contained in o form a circuit. Hence there is no t-semiflow x with o — x > 0, since
a t-semiflow is represented by a circuit of a state machine, and viceversa (as proven
for the dual case of circuits of marked graphs and p-semiflows [Mur89]). O

Lemma 4.12. Let (N,m), N = (P, T,C), be a set of isolated marked strongly con-
nected state machines. Let p € P be a marked place at m, mlp] > 0, and let o be
a firing sequence, m-Z,m’, such that m'[p] = 0. Then there also exists a firable

’
sequence o', m-Zm’, with 0’ = o and It € p*, 0" €¢ T*: 0’ =to".

Proof. Since p € ||m]| \ ||m’||, there exists at least one transition in p® which appears
once or more times in o. Let o be defined as 0 = utwv, where u € (T \ p*)*, t € p*
and v € T*; i.e., u is the maximal prefix before the first firing of a transition in p°®.
It will be proved that ¢/ = twuw is firable from m. It is enough to prove that twu is
firable, since it implies that a marking mg is reached from which v is firable (because
it is the same marking mg reached when fired the prefix ut of o). Since m[p] > 0, t
can be fired from m, reaching my, with my[p'] > mlp'], Vp' € P\ {p}. Since m-*,
and every transition ¢ that appears in « holds p ¢ *t then uw must also be firable from
mj. O

Taking into account the previous results, now we are prepared to prove the fol-
lowing non-liveness characterisation for e-Gadara nets.

Theorem 4.13. Let (N,mg) be an e-Gadara net with an acceptable initial mark-
ing. (N,mg) is non-live iff Im € RS(N,mg) such that the set of m-process-enabled
transitions is non-empty and each one of these transitions is m-resource-disabled.

Proof. =) Let m’ be a reachable marking such that at least one transition ¢ in
N is dead. Let NP5 be the net N without the resource places, and mfps
(mgpy) denote the marking m’ (mg) restricted to the places of NP5, Let
Y = {o|mjp ,Zsmgpy and there is no t-semiflow x with o —x > 0}. By

192

4. Reconstructing the Gadara approach

Lemma 4.11, the set ¥ is non-empty. Besides, since the unitary vector of di-
mension |T| is a t-semiflow of N5 every ¢ € X holds |o| < K - |T|, where
K =3 cp mp]. Consequently, the set X is finite.

Let o1 be the sequence of ¥ which has the longest prefix u, o1 = uww, such
that m’ . in N. If u = o1, m'-*.mg. But ¢t would be eventually firable
by Lemma 4.10, contradicting the hypothesis that ¢ is dead at m’. Therefore
u # o1, and m’-“sm, m # mg. Thus, m[Ps] # 0. The set of m-process-
enabled transitions is non-empty.

Now it is proved that every transition in (||m|| N Ps)® is disabled at m. Without
loss of generality, an arbitrary p € |m| N Ps is taken. Let myp, denote the
marking m restricted to N5, By Lemma 4.12, there exists ¢t € p®,v" € T*
such that v/ = tv" is firable from (N5, mp,) with v = v'. Then the sequence
oy = utv” is firable from (N5, mips> and belongs to X, since o9 = 0. But ut
is not firable from m’ since otherwise u would not be the longest firable prefix
of every sequence in X. Since ¢ is m-process-enabled, ¢ must be m-resource-
disabled, with *¢t N Pg # (). Then, by Definition 4.1, point 4, |p®| = 1. Thus
every transition in p® is m-process-enabled, m-resource-disabled, and so is every
transition in (|m| N Ps)®.

Let t € (|/m| N Ps)®. In order to fire ¢ some more tokens are needed in some
places belonging to Pg N *t. Since tokens in the process places cannot progress
at m, the marking of such resources can only be changed by activating some
idle processes. Let ET be the set of m-process-enabled transitions, let AP =
*ET N Ps, and let m—Z,m’. It will be proved, by induction over the length of
o that: (i) ||o||VET = 0, and (ii) Vp € AP : m’[p] > m[p].

Doing so, and since m[Ps \ AP] = 0, it can be deduced that Vp € Ps: m'[Ps] >
m[Ps]. But then Vr € Pr:m'[r] = mo[r] — > cp m'[p] - yr[p] < molr] —
> peps m[p| - yr[p] = m[r]. Therefore, no transition of ET can be m’-resource-
enabled.

e (Case o= t. Since no transition of ET is enabled at m, then ¢ € Py*® and
then ¢ ¢ ET. On the other hand, if ¢t ¢ *AP, Vp € AP : m’[p] = mJp)].
If t € *AP, let t* N Ps = {q} € AP. In this case, m’[q] = m]g] + 1 and
m’[p] = m[p| for every p € AP \{q}.

1"
e General case. mZm” ', m’, where ¢’, m” verify the induction hypoth-

esis. But since Vp € AP : m”[p] > m[p] then Vr € Pg: m”[r] < m]|r], so
every transition of ET is m”-resource disabled, and ¢ ¢ ET. Therefore,
Vp € AP : m'[p] > m"[p] > m[p], and we can conclude.

O

4.3. Liveness characterisation 193

It is worth mentioning that the second half of the proof of Theorem 4.13 is almost
literally that presented for S*PR nets [Tri03]. This is also true for the next theorem:

Theorem 4.14. Let (N, mg) be an e-Gadara net with an acceptable initial marking.
(N,myg) is non-live iff Im € RS(N,mg) and a siphon D such that m[Ps] > 0 and
the firing of each m-process-enabled transition is prevented by a set of resource places
belonging to D.

Proof. <=) Each m-process-enabled transition is m-resource-disabled and m[Ps] >

=)

0. Hence (M, myg) is non-live.

Let m be a marking such that the set of m-process-enabled transitions is non-
empty and each m-process-enabled transition is m-resource-disabled. Let D
be constructed, with D = Dgr U Dg, as follows: (i) Dg = DN Pr = {r €
Pg |3t €r®:m[r] < Pre[r,t] Am[*t N Ps] > 0}, and (ii) Ds =DNPs={p¢€
Hpy | m[p] = 0}.

It will be proved that Dg #) and Ds C Hp,. Let us suppose that Dg = 0.
Let F be a directed path defined as F' = potgp;st;...prty such that Vi €
{1,..,k}:p; €*t;N Ps, pg € *ty NPy and 35 € {1,....,k} : t; N*Dgr # 0. Such
a path must exist since the process nets are strongly connected state machines:
thus, for every i € Iy, t; € T;, exists a circuit containing py, and t; such that
po,; and t; appear only once.

Let t be the last transition in the directed path F such that ¢ € *Dg. Let
r € t* N Dg. Since PsN*t € H, and Dg = 0, m[PsN*t] > 0, i.e. ¢ is m-process-
enabled. Since ¢t ¢ Dgr* (if ¢ € Dgr°®, and taking into account that the net is
self-loop free and Py N U,cp, ly=|l = 0, t could not be the last one), then ¢ is
also m-resource-enabled and therefore ¢ can fire contradicting the hypothesis
that from m only transitions in Py® can occur.

If Ds = Hpy, since m[Dg] = 0, Vr € Dy : m[r] = mg[r] which makes impossible
for r to prevent the firing of any transition (mg is acceptable). Then, Dg C

Hby.

Let us now prove that D = Dy U Dg is a siphon. Let t € *D; two cases must
be checked.

First case (t € °*Dg). Let r € Dg be such that ¢t € *r. Let p € H,. N *t (there
exists such p because there is an arc from ¢ to r). If m[p] = 0, then p € Dsg,
and t € Dg®. Otherwise, since ¢ is disabled, 3" € (Pg N *t): m[r'] <
Pre[r’,t], i.e. disabling it. Then r’ € Dg, and in consequence, t € DR°.

Second case (t ¢ *Dr). Then Ip € Dg:t € *p and I’ € Dr:p € Hpv. If
dr € (*tN Dg), t € D* and we can conclude. Let us now suppose that

194 4. Reconstructing the Gadara approach

Figure 4.3: Net belonging to the controlled Gadara class with no minimal siphon becoming

insufficiently marked

*t N Dr = (. In this case, ¢ cannot be m-process-enabled; if it was, by
Theorem 4.13, t has to be m-resource-disabled, and then, there would exist
r € *tN Dr. Let {q} = *t N Ps (this place exists because p € H,» and
*tN Dr = (). Since t is not m-process-enabled, m[g] = 0. Moreover, since
p € H,, p belongs to a minimal p-semiflow containing 7’ in its support
and since 1’ ¢ °t, ¢ is also in the support of such p-semiflow, which implies
that ¢ € H,. Therefore, ¢ € Dg (¢ is not marked), and ¢t € Dg"®.

By construction, the firing of each m-process-enabled transition is prevented by
some resource places in D.
O

A siphon that holds the condition of Theorem 4.14 is said to be a bad siphon
that becomes insufficiently marked at m. Note that minimal siphons are insufficient
to characterise non-liveness for controlled Gadara nets. The net in Fig. 4.3 is non-
live: the siphon D = {RC1,RC2, A3,B2} becomes insufficiently marked at m =
[A1,B1,RC1,RC2,R3|, but it is not minimal, since it contains the minimal siphon
D’ ={RC2,A3,B2}. D’ is not insufficiently marked for any reachable marking. It is
worth noting that no siphon, be it minimal or not, is ever fully emptied.

The non-live net system of Fig. 4.4 is an example where an iterative method of
synthesis such as those developed by the proponents of Gadara nets [Wan09, LSW*11]
cannot be used, because the resulting net falls out of the class after the first iterations.

Figure 4.5 depicts the result of controlling the original net in Fig. 4.4 using an
iterative synthesis method. It should be remarked that, if a classical siphon control-
based method is to be used, then an iterative procedure is necessary, as the example
evidences: there exist markings which inevitably lead to deadlock but no siphon is
insufficiently marked until the terminal deadlocks [Al,B2,R3] and [A5,B1,R1] are

4.3. Liveness characterisation 195

Min. p-semiflows covering a resource place:

oy

yr1 : m[R1] + m[A1] + m[B3] =1
yRrz : m[R2] + m[A2] + m[A5] + m[B2] =1
yRrs : m[R3] + m[A4] + m[B1] =1

Minimal siphons with some resource places:

Dgr; = {R1,A1,B3}
Do = {R2,A2,A5 B2}
Dgr3 = {R3,A4,B1}
Drir2 = {R1,R2, A2, A5, B3}
Drors = {R2,R3,A2, A4, B2}
Drirors = {R1,R2,R3, A2, A4, B3}

A0, BO, R1, R2, R3

5 yTL T8— T11
T2—(A1,BO,R2,R3) (A0,BLRLR2)—Tg
A2,BO, RL, R3 g |]
T3 T Al, B1, R2)+ A0, B2, R1, R3
T2 T9

<

T8 T8 T6
T7 A5, B1, R1
A4, BO, R1, R2 4/ A3, B1, R1, R2 T9 T1

A3, B2, R1, R3 T4

T11

v T
(A2,B1,R1) (AL,B2, Rs)‘
A3, BO, R1, R2, R3)« \ T11 /‘

Figure 4.4: Gadara net for which some non-minimal siphon must be eventually controlled

removed. Unfortunately, the net obtained after adding control places RC1 and RC2
in the two first iterations is not a Gadara net. Indeed, it does not even belong to the
class of controlled Gadara nets, since the controlled place RC2 inputs in the transition
T6, which belongs to a process-induced conflict containing two or more transitions.
This violates point 4 of the definition of both Gadara and controlled Gadara nets.
Even further, the net obtained has a non-minimal siphon ({RC1,RC2, Al, A5, B2})
which does not contain any resource place of the original Gadara net, but only control
places instead. And this siphon must be controlled in order to obtain a live system.

The example points out that it is not possible, in the general case, to apply an

196 4. Reconstructing the Gadara approach

New minimal p-semiflows:

New minimal siphons:

None.

Bad siphons to be controlled:

Iteration 1: {R1,R2, A2, A5 B3} — RC1
Tteration 2: {R2,R3, A2, A4, B2} — RC2
Iteration 3: {RC1,RC2,A1,A5 B2} — RC3

//—/——D(AO, BO, R1, R2, R3, RC1, RC2, RC3)&——————— .
Tl—¢ Te——

i T2 (AL, BO, R2, R3, RC2) (A0, B1, R1, R2, RC1 1

A2, BO, R1, R3, RC1, RC2, RC3 - T9
(>—\X KXXJ v

Tf3 T6 (A0, B2, R1, R3, RC2, RC3)

¢ A5, BO, R1, R3, RC1
<A3, BO, R, R2, R3, F‘

!
RC1, RC2, RC3

8 X
-
T4 7 l @ Oe
14 T1
A3, B1, R1, R2, RC1 —T9
v [

(A3, B2, R1, R3, RC2, RC3) T4

X
0

T11

Figure 4.5: Controlled Gadara net corresponding to the net in Fig. 4.4

iterative method to cut bad markings maintaining the resulting controlled net at the
end of an iteration not only within the Gadara net class, but not even within the
controlled Gadara net class. The authors [Wan09] claim that it is still possible to
keep it within the class if the designer moves the arcs to previous transitions to those
of the conflict set where the new virtual resources input. Nevertheless, the authors
do not prove three fundamental aspects related to this post-processing procedure in
the synthesis of live models:

1. Is it always possible to do that, and the resulting net remains live?

4.4. Approaching Gadara by means of S*PR nets 197

2. When should be the post-processing performed: after each iteration, at the end
of the full process, etc.?

3. The permisiveness of the method must be analysed because, a priori, there
always exists a solution that consists in the full sequentialisation of the system
in which only a t-semiflow is active at a given moment. In other words, if
we start the execution of a t-semiflow of the net, no other t-semiflow will be
activated until the initiated is finished.

In other words, it must be proven that the proposed synthesis method for Gadara
nets is closed to the class. Observe that this closure property holds for the S*PR
class [Tri03].

4.4 Approaching Gadara by means of S‘PR nets

Gadara nets can be transformed into CPR nets (a restricted subclass of S*PR) so
that controlling a Gadara net through net state equation-based structural meth-
ods [TGVCEOQ5] can alternatively be conducted in the space of the transformed net:
as it will be proved onwards, both classes are equivalent at that level.

Paradoxically, the syntactic restriction enforced to retain a structural charac-
terisation places Gadara nets into an instrumental role from the angle of struc-
tural liveness analysis and synthesis: the maturity of the techniques introduced for
nets [PRO1, TGVCEO05] suggests working in the transformed space.

First, the subclass of CPR nets will be introduced.

4.4.1 A constrained subclass of S*PR with deterministic pro-
cesses

Definition 4.15. Let Ix be a finite set of indices. A net of Confluent Processes with
Resources (CPR net) is a connected generalised pure P/T net N' = (P, T, F,W) (or,
equivalently, N = (P, T, C)) defined with the same conditions of Definition 4.1 except
conditions 4 and 5, which are redefined as follows:

4. For allp € Ps: |p*| = 1.

5. For each r € Pg, there exists a unique minimal p-semiflow y, € NP1 such that
{r} =lyrlnPr, llyrlnPo =0, [lys| N Ps #0 and yr[r] = 1.

Clearly, CPR nets are a subclass of e-Gadara nets. The corresponding definition
of acceptable initial marking is consistent with Definition 4.6 (indeed the conditions
are identical) and can be easily derived.

198 4. Reconstructing the Gadara approach

Also, a CPR net is an S*PR net such that there is no conflict induced by a
process place, i.e. Vp € Ps:|p®| = 1. Again, it must be noticed that the concept
of acceptable initial marking for CPR nets is consistent with that provided for the
superclass S*PR [TGVCE05).

In the same vein, the rest of definitions are inherited from the e-Gadara superclass.
In all cases, these definitions collapse perfectly with those given for S*PR nets.

4.4.2 The conflict expansion rule

Next, a rule to transform Gadara nets into CPR nets will be introduced. The free
choice constraint in the process subnets of Gadara nets makes that, from the point
of view of the allocation of resources, a process first decides the computation path
and, after that, the allocation of resources is deterministic. In other words, resources
do not participate in the internal choices of the processes. Choices on resources only
happen in the competition relations between processes for the resources.

Taking advantage of this behaviour, a transformation for Gadara nets is introduced
such that this a priori decision about the internal computation path to be carried
out when choices appear is dealt from the initial state.

Definition 4.16. Let N = (P,T,C), P = PyUPsUPR, be an e-Gadara net such that
Jp € Ps: |p®| > 1. Let po, be the idle place of the process subnet to which p belongs.
The net N, = (P, T, U{t}, Ce) is said to be a conflict expansion of p in N, where:

e T,=T\(p*N°*H).
o Vt' e T\ p*: Ce[P,t'] = C[P,t].

o Vt' ep**Py,p' € P\ (PrU{p,po,}),” € Pr:
C.lp',t'] = Clp/,t'] (thus: Ce[p',t'] >0),
Ce[r,t'] = C[r,t'] — y+[p] (thus: Ce[r,t'] <0),
Celp,t'] =0, Celpo,,t'] = —1.

o Vp' € P\ (PrU{p,po,}),” € Pr:
Celp',t] =0
Celr, t] = y-[p] (thus: Celr,t] >0),
Celpo;, t] = —Celp,t] = 1.

Figure 4.6 attempts to illustrate the conflict expansion described in Definition 4.16.
Note that, in this case, T, = {T1,T2,T3,T4,T5,T6,T7} = T since no conflicting
transition outputs to the idle place pp,. Besides, two interesting corollaries are derived
from the definition:

Corollary 4.17. N. is an e-Gadara net and for every r € Py its associated minimal
p-semiflow y& holds yo = y.,.

4.4. Approaching Gadara by means of S*PR nets 199

Figure 4.6: Example of a conflict expansion in a Gadara net

Corollary 4.18. If there exist no more conflicts in the process subnets of Ny, then
N, is a CPR net.

The proof of Corollary 4.17 (which is intuitive but cumbersome to prove) is left
to the reader. Corollary 4.18 is straightforward. A consequence of these corollaries
is that, starting from an e-Gadara net, a CPR net can always be obtained by way of
successively expanding its conflicts.

4.4.3 On liveness and siphons preservation

Next, an interesting result regarding (non-)liveness preservation after the net trans-
formation is proved. Since the set of places of A is equal to the set of places of
Ne, markings over N will be trivially mapped over N, and viceversa. This will be
assumed for the rest of the chapter, and transitively extended to nets obtained by
way of a succession of conflict expansions starting from N.

Theorem 4.19. Let (N,mg), N = (PyU Ps U PR, T,C), be an e-Gadara net with
an acceptable initial marking such that I3p € Ps: |p®*| > 1, and No = (Py U Ps U
PR, T.U{t}, Ce) be an e-Gadara net being the conflict expansion of p in N'. (N, mg)
is non-live = (N, mo) is non-live.

200 4. Reconstructing the Gadara approach

Figure 4.7: A CPR net which is the conflict expansion of place A2 in the net of Fig. 4.2

Proof. Let m € RS(NV,mg) such that m[Ps] > 0 and every m-process-enabled tran-
sition is m-resource-disabled. Such m must exist by Theorem 4.13. Let o be a firing
sequence of N such that mg-Zsm. Let 7" = {t' € T'| C[p,t'] < 0}. A firing sequence
0. of N such that mg-2>sm can be constructed by copying o after making some
replacements in it, following these two rules: (i) For each occurrence of a transition
u € T"\ T, in o, u is replaced with ¢ in ¢/, and (ii) For each occurrence of a transition
veT' NT, in o, v is replaced with the sequence tv in o’.

The sequence o’ must also be firable from myg, since C[P, T\ T'] = C¢[P, T\ T"],
and (i) Yu € T\ T, : Ce[P,t] = C[P,u], and (ii) Vv € T N T, : Ce[P,t] + Ce[P,v] =
C[P,v] and ¢t must be firable in N, whenever v is firable in A/, since ¢ has the same
input process place than v and no input resource place. Thus, mg-Z.m.

Finally let T,pe be the non-empty set of m-process-enabled transitions of N.
For every u € Tppe, v is the unique output transition of its input process place
in N. Otherwise, C[Pr,u] = 0 and therefore u would not be m-resource-disabled.
Thus, p is not the input place of u, Vu € Tipe, and therefore Trype N 7" = (. Then
Co[P, Trupe] = C[P, Trpe). Thus, Tinpe is also the set of m-process-enabled transitions
of Ne, and every transition in Ty,pe is m-resource-disabled over N,. By Theorem 4.13,
(Ne, mg) is non-live. O

The net in Fig. 4.7 is the result of expanding the conflict induced by place A2 in
the net of Fig. 4.2. In fact, the net system (N, mg) depicted in Fig. 4.2 is a non-live
e-Gadara net with an acceptable initial marking. By Theorem 4.19 if the original
net system is non-live, the transformed one (N, mg) is also non-live. In effect, by
sequentially firing transitions TA1, TA3 and TB1 in the net of Fig. 4.7, the marking
[A1, A3,B1] is reached, which is a deadlock.

The reverse of Theorem 4.19 is not true in general, since there may exist killing

4.4. Approaching Gadara by means of S*PR nets 201

spurious solutions in a live system (N, mg) which are reachable deadlocks in (N, mg).
Nevertheless, Theorem 4.19 allows us to work over the transformed net in order to
enforce liveness, since if (N, mg) is live then (M, mp) is live. However, this is only
reasonable if the number of siphons to be controlled is not severely increased. The
next result is related to this:

Lemma 4.20. Let N = (P,T,C), P = PyU Ps U PR, be an e-Gadara net such that
dp € Ps:|p®| > 1, Ny = (P, T, U {t},Ce) be a conflict expansion of p in N, and
D C P. If D is a siphon of N, then D is a siphon of N

Proof. Let T" = {t' € T | C[p,t'] < 0} be the set of transitions belonging to the
conflict induced by p in N and Propl be a parameterised proposition that returns
a truth value for each transition of A/, where Propl(t1) = [(3p1 € D : Clp1,t1] >
0) = (3p2 € D: Clpa,t1] < 0)], for every t1 € T. It is obvious that D is a siphon
of N only if Vt; € T': Propl(¢1). Since Vg € T\ 1" : C[P, t3] = Ce[P, t3], it is enough
to prove that V¢, € T” : Propl(ty).

Let us prove that V¢, € T\ T : Propl(¢1). Remind that the set of transitions
in 7"\ T, are those transitions belonging to the conflict induced by p in N which
output to the idle place of its process subnet in N and therefore are removed from
the transformed net. Without loss of generality, let t; € 7"\ T.. If $p; € D such
that C[p1,t1] > 0, then Propl(¢;) = True. Let p; € D such that C[py, 1] > 0. Note
that Vr € Pgr: C[r,t1] = y»[p], Clpo,,t1] = 1, C[p,t1] = —1, and Vpy € P\ (Pg U
{po;,p}) : Clpa,t1] = 0. Thus, Ce[P,t] = C[P,t1]. Then Ce[p1,t] = Clp1,t1] > 0.
Since p; € D and p is the unique input place of ¢, then p € D. Since C|p,t1] < 0,
Propl(t1) = True.

It will now be proved that Vt; € T N T, : Propl(t1), i.e., we pay attention to
the transitions belonging to the conflict induced by p in N which remain in the
transformed net. Without loss of generality, let t; € T NT,. Two cases are observed:

(a) Suppose that #ip; € D such that Ce[p1,t1] > 0. Since the unique output place of
t; in A, is a process place, if C[Pr,t;] = 0, then #ip, € D such that C[ps, 1] > 0,
and Propl(t;) = True. If C[Pg,t1]% 0, let r be an arbitrary r € Pr such that
C[r,t1] > 0. Then y,[p] > 0 and therefore Cq[r,t] = y.[p] > 0. Since p is the
unique input of ¢, then p € D. Since C|p,t;] < 0, Propl(¢;) = True.

(b) Otherwise, Ip; € D such that Cg[p1,t1] > 0. Then Clpi,t1] > Celp1,t1] > 0
and Jdps € D such that Cepe,t1] < 0. If po € Py then p € D, since p is the
unique input place of ¢ and t is an input transition of Py. Since C[p,t;] <
0, Propl(t;) = True. If po ¢ Py, ie., po € Pgr, then p € D, since Vr €
Pr: Ce[r,t] = yrlp] > —Celr,t1] and p is the unique input transition of ¢.
Since C[p,t1] < 0, Propl(t1) = True.

Since Vt, € T : Propl(t1), D is a siphon of N. O

202 4. Reconstructing the Gadara approach

Corollary 4.21. The number of siphons of N is lower than or equal to the number
of siphons of N.

Returning to the example of Fig. 4.6, both nets (original and transformed) have
the same set of siphons (note that only the first three are minimal siphons):

Ds, = {po,, P1,P2,P3,p} = |lys;

Dry = {R1,P2,P3, p} = |lyral

Dr2 = {R2,P1,P2} = ||yrazll
{R1,po,,P2,P3,p} = Dgr1 U {po, }
{R1, po,, P1,P2,P3,p} = Dgr1 U {po,,P1}
{R2,po,,P1,P2,P3, p} = Dr2 U {po,, P3,p}
{R1,R2, po,, P2, P3,p} = Dri1 U{R2,po,}
{R1,R2,po,, P1,P2,P3, p} = Dri U{R2,po,,P1}

However, the reverse of Lemma 4.20 is not true (i.e., a siphon of A is not always
a siphon of Ag). For example, the net in Fig. 4.2 has the (non-minimal) siphon
D ={R3,A0,A4,A5 B1}, but this is not a siphon in the transformed net of Fig. 4.7
since TA8 € *A0 C *D but TA8 ¢ D°.

Nevertheless, there exists a close relation between the siphons of both nets. Indeed,
for every siphon in A there exists another siphon in A, which contains the same
resource places. The next proposition is instrumental; the corresponding lemma, in
which the aforementioned proposition is used, follows shortly afterwards.

Proposition 4.22. Let N = (P,T,C), P = Py U Ps U PR, be an e-Gadara net such
that 3p € Ps: |p®] > 1, N = (P, T, U {t}, Ce) be a conflict expansion of p in N, and
D C P. Let Noy = (P, T, Cet) be the subnet generated by restricting No to (P, T).
If D is a siphon of N then D is a siphon of Ny.

Proof. Let T = {t’ € T'| C[p,t'] < 0} be the set of transitions belonging to the
conflict induced by p in N and Prop2 be a parameterised proposition that returns
a truth value for each transition of Ny, where Prop2(te) = [(Ip1 € D : Celp1,ta] >
0) = (3p2 € D:Cqlpa,t2] < 0)], for every to € Te. It is obvious that D is a
siphon of N only if Vig € T, : Prop2(ts). Since Vi € T\ T" : C[P, t3] = Ce[P, t3], it
is enough to prove that Vty € T' NT, : Prop2(ta).

Remind that the set of transitions in 77\ T, are those transitions belonging to the
conflict induced by p in N which output to the idle place of its process subnet in A
and therefore are removed from the transformed net. Without loss of generality, let
ty € T'NT,, and note that Vp; € P: Ce[p1,t2] < Clpi,ta]. Suppose that #ip; € D such
that C[pi,ts] > 0. Then Vp; € D : Celpy,ta] < Clpi,t2] <0, ie., fps € D such that

4.4. Approaching Gadara by means of S*PR nets 203

Celp2,t2] > 0, and Prop2(t3) = True. Otherwise, Ips € D such that C[ps,ts] < 0.
Then Cg[ps, ta] < Clpe,t2] < 0, and thus Prop2(t3) = True. O

Returning to the previously mentioned example, it can be observed that D =
{R3,A0,A4, A5, B1} is a siphon both of the original net in Fig. 4.2 and the trans-
formed net in Fig. 4.7 after removing transition TAS.

Lemma 4.23. Let N = (P,T,C), P = Py U Ps U Pg, be an e-Gadara net such that
dp € Ps:|p*| > 1, No = (P, T. U {t},Ce) be a conflict expansion of p in N, and
D C P. If D is a siphon for N, then 3D, O D, with D, \ D C Ps, such that D, is a
siphon of No.

Proof. Let i € Iy the index of the process subnet of NV, to which p belongs. Let Ny =
(P, Te, Ceot) be the subnet generated by restricting N, to (P, T,). By Proposition 4.22,
D is a siphon of Ny. However, D is not a siphon of N, iff p ¢ D and 3p; €
({po; } U Pr) N D such that Ce[p1,t] > 0.

If py = po, then D, = D U P; is a siphon of N, since the i-th process subnet is
a strongly connected state machine. Otherwise, r = p; is a resource place, r € Pg,
with y,.[p] > 0. Let Dy = (H, \ D) N P;. Tt will proved that D, = D U Dy is a siphon
of D.

Let TV = {t € T'|3p € Dy such that C[p,¢] > 0} and Prop2(¢t;) = [(3p1 €
D: Cep1,t1] > 0) = (Ips € D: Cqlpa,t1] < 0)]. It must be proved that Vi, €
T : Prop2(t1). Since for every to € T\(T"U{t}) : Co|D,t2] = Cet[D, t2], it is enough to
prove that V¢, € T : Prop2(¢1) A Prop2(t). Since p € H,, then p € D and Prop2(¢) =
True.

Finally, it will be proved that Vt; € T”: Prop2(t;). Without loss of generality,
let t; € T', and let p; the output process place of t1, p1 € Dy. If C[r,t] < 0, then
Prop2(t;) = True since r € D. Otherwise, if C[r,t] = 0 then Ips € P; such that
Clpz2,t] < 0. If po € D then Prop2(t;) = True. If ps ¢ D then py € H, (because
C[r,t] < 0) and thus ps € Dy. Summing up, in all cases, Prop2(¢;) = True. O

Bringing back our attention to the previous example, we can see that the siphon
D of the original net in Fig. 4.2, where D = {R3, A0, A4, A5,B1}, is contained in
the siphon D, = {R3, A0, A1, A2, A4, A5 B1} of the transformed net in Fig. 4.7, and
D.\ D ={Al1,A2} C Ps.

4.4.4 Transformation rules between Gadara and CPR nets

Next, the expansion and reduction rules will be introduced, based on Definition 4.16.
In order to be able to undo a conflict expansion after having enforced liveness, it is
necessary to keep record of the previous steps. The following definition is instrumental
for this aim.

204 4. Reconstructing the Gadara approach

Definition 4.24. Let N = (PyU PsU Pr, T, C) be an e-Gadara net. Its Associated
Expansion Record (AER) is a duple (T, Upr), where T C Tar and Upr is a set of
triples in Thr X Ps x P(Tyr) such that V(t,p,7) € Upr: (i) Ipg € Py:t € *po, T € po®;
(ii) {p} = *t N Ps; and (i) V(t',p,7') € Upr: t £/, 7N 7" = 0.

W\ registers which conflicts were previously expanded, and how. T)s is a record
of the whole set of transitions, including those which were removed or created at past
conflict expansions. The transformations are formally defined as follows:

Rule 4.1. (Expansion Rule)

Input: An e-Gadara net N = (Py U Ps U Pr,T,C) such that Ip € Ps: [p®| > 1,
plus its AER (Thr, U).

Output: An e-Gadara net Ny = (Py U Ps U Pr, T, U {t}, Ce) which is the conflict
expansion of p in N, plus its AER (Tiy U{t}, Uar), with Uy, = U U{(¢,p,p0%)}.

Rule 4.2. (Reduction Rule)

Input: An e-Gadara net No = (P, T.U{t}, Ce) plus its AER (Tyxr U{t}, ¥n,), such
that there exists (t,p,7) € Unr, and there also exists an e-Gadara net N' = (P, T, C)
with Ny being the conflict expansion of p in N.

Output: The e-Gadara net N plus its AER (T, W pr), with ¥ar = Wz \{(¢,p,7)}.

Thanks to Theorem 4.19, liveness can be enforced directly over the transformed
CPR net. Once enough control places have been aggregated so as to make it live,
the reduction rule can be applied to obtain a live e-Gadara net. However, it is worth
mentioning that it may be necessary to move carefully the arcs of some control places
before. This is due to the fact that some transitions were uncontrollable in the original
net: namely, those belonging to a conflict in a process subnet [WLR109]. Indeed, any
transition belonging to the set F = J{7 C T | Ip € Ps,t € Tir: (t,p,7) € Upr} is
uncontrollable in the original (i.e., expanded) net. Therefore, the following last rule
is introduced in order to accomplish the aforementioned goal:

Rule 4.3. (Arc-extension Rule)

Input: A CPR net N = (P,T,C) plus its AER (Tx, V) such that Ir €
Pgr, (t,p,7) € Up,t, € T: K= Pre[r,t;] — yr[p] > 0.

Output: A CPR net Ny = (P,T,Ce) such that Vg € P\ {r},u € T: Colq,u] =
Clg,u], Vo' € T\ (*pU {¢}) : Ce[r,u'] = C[r,u/], Vu" € *p: Celr,u”] = Clr,u”'] — K
and Celr,t] = C[r,t] + K.

4.4.5 Synthesis from the underlying CPR net

Given the above set of transformation rules, it is possible to construct a method for
the correction of a non-live e-Gadara net. The correction is performed by adding
monitors preventing firing sequences that can empty a bad siphon, and therefore lead

4.4. Approaching Gadara by means of S*PR nets 205

to a deadlock. It is important to note that if the original net is a Gadara net, the
resulting net remains within the class of controlled Gadara nets after the addition of
the control logic. That is, it is a closed method on the class, which overcomes the
main limitation of the techniques of the proponents of Gadara nets [Wan09, LSW*11];
limitations that were discussed at the end of Sect. 4.3.

This technique is divided into three stages. First, it performs the transformation
of the e-Gadara net into a CPR net through the successive application of Rule 4.1 to
every conflict in the net. Before starting this process, the AER associated to the net
is assigned the pair (T, (). At the end of the first stage, the AER contains information
related to the expanded conflicts and the set of added and removed transitions. In
the example net of Fig. 4.2, only one conflict exists. Therefore, the net obtained at
completion of the first stage of the method is the one illustrated in Fig. 4.7. The AER
of the transformed net A, shall be as follows:

({TA1—TAS, TB1 — TB3}, {(TAS, A2, {TA3, TAT}H})

Once the transformed net is obtained, the second step is to make it live. Since
it is a CPR net, and thus belongs to a subclass of S*PR, we may use some of the
iterative techniques of adding monitors described for S*PR nets so as to correct the
transformed net. It is convenient to mention that the addition of monitor places is
closed within the CPR subclass since it does not alter the structure of the processes.

At this point, it is worth stressing those ILP-based iterative synthesis tech-
niques [Tri03, TGVCEO05] which were revisited in Chap. 3 as efficient approaches
to the control of S*PR nets. The next result regarding the potential reachability set
(PRS) of the transformed net is especially relevant with regard to the application of
such techniques in the second stage of our method.

Lemma 4.25. Let (N,mg) be an e-Gadara net with an acceptable initial marking
such that Ip € Ps: |p®*| > 1, and (N.,mg) be an e-Gadara net obtained by applying
the conflict expansion transformation rule over N. Then m € PRS(N, mg) iff m €
PRS(N,, mg).

Proof. For every i € Iy, let ys, denote the unique minimal p-semiflow of A/ induced
by the i-th process subnet of N. It is easy to see that yg, is also a unique minimal
p-semiflow of A, induced by the i-th process subnet of M. On the other hand, by
Corollary 4.17, y,. =y, for all » € Py.

Let B be a matrix of dimensions (| Pg|+ |Ix|) X | P| of integers such that the rows

i € In}U{y, |7 € Pr}. Then B is a non-negative
canonical basis of p-semiflows both for A" and N.
Finally, since a Gadara net is consistent (by Lemma 4.9) and conservative (by

of B are the set of vectors {ys,

construction), a non-negative canonical basis of p-semiflows (B) generates the same
solution space than the net state equation. Hence, PRS(N,mg) = PRS(N,, mg). O

206 4. Reconstructing the Gadara approach

""" TA3 A3 TA4 TA6
o= la@® I’O O

IB3 B2 TB2 BOATB1

Figure 4.8: The CPR net obtained after controlling siphon D’ of Fig. 4.7

Many efficient structure-based liveness enforcing techniques rely on the net state
equation. Section 3.2.2 reviews one such technique for S*PR nets [TGVCE05]; note
that SPR is a superclass of CPR. The result of Lemma 4.25 encourages the appli-
cation of this kind of techniques over the transformed net, since the space solution of
the net state equation is equal on both the original and the transformed net.

Figure 4.7 shows the result of adding a control place to the net of Fig. 4.8 us-
ing the aforementioned technique. This place prevents the minimal siphon D’ =
{R1,R2,R3,A2, A4, B2} from becoming empty by firing TA1, TA3 and TB1, and
therefore also prevents the deadlocked marking [A1, A3, B1] from being reachable.

Note that, as expected from Lemma 4.20, the siphon above is also a siphon of the
original net. In this case, moreover, the deadlocked marking [A1, A3, B1] is also reach-
able in the original net by firing, for example, the sequence TA1 TA2 TA3 TA1 TB1
from the initial marking.

After adding the control places needed to make the transformed net live, the
previous expansion of conflicts recorded by the AER (T, ©a) must be reversed.
In this way, the processes will recover their original structure. Eventually, this is
accomplished through repeated application of Rule 4.2. A prior obstacle stems from
the fact that the new control places can have outgoing arcs into transitions that
originally belonged to a conflict of two or more transitions induced by a process place.
Such transitions will belong again to a similar conflict after applying the reduction
rule. Recall that these are uncontrollable transitions from the perspective of the
implementation techniques developed by the proponents of Gadara nets [WLR109].
In addition, conflicts cannot have input arcs if the net finally obtained should fall
within the class of controlled Gadara nets.

For this reason, each time a new monitor place is added, it must be evaluated

4.4. Approaching Gadara by means of S*PR nets 207

Figure 4.9: The CPR net obtained after extending arcs in the net of Fig. 4.8

whether it outputs into a transition belonging to an expanded conflict, i.e., if the
control place projects some arc into a transition which appears in the third component
of a tuple in ©,r. For each one of these arcs, Rule 4.3 must be applied. The latter
moves those arc to transitions which were preceding them in the original process
paths. This rule is applied as many times as necessary until the control place does
not output into any of these transitions.

After moving the corresponding arcs, the monitor place cuts a superset of markings
which includes those markings which were previously cut. An endpoint is guaranteed
for this extension: this is the first transition of the process path (that transition that
follows the idle place) because at least that one does not belong to any conflict induced
by a process place. Obviously, in cases where it is necessary to extend the arc, which
symbolises the acquisition of the virtual resource, into that particular transition,
concurrency is reduced to the maximum. In that sense, studying the permissiveness
of the method remains as an open line of future work.

The net of Fig. 4.9 illustrates the application of Rule 4.3 on the net of Fig. 4.8.
Note that in this last figure, the control place RC1 has output arcs to transitions TA3
and TA7, both belonging to the same expanded conflict. Consequently, whenever
Rule 4.2 is applied on the net of Fig. 4.8, these transitions will again belong to the
same conflict. The arcs outgoing from RC1 to these transitions would then infringe
point 4 of the definition of controlled Gadara net (e-Gadara net), and the resulting
net would be out of the class. That is why it is necessary to apply Rule 4.3. Note
that in this case those arcs still remain in the resulting net after applying Rule 4.3.
However, the new outgoing arc from TA8 to RC1 guarantees the desired property as
these arcs will cancel each other when Rule 4.2 is applied. More on this fact later.

After applying the arc extension rule as many times as necessary, new insufficiently

208 4. Reconstructing the Gadara approach

Figure 4.10: After applying the last transformation: The corrected Gadara net

marked siphons are seeked and, if found, corrected by adding a new control place.
Again, Rule 4.3 is applied on the new controlled net as many times as needed. This
process is repeated iteratively until no other siphon is suspected of being insufficiently
marked for any reachable marking. In the net of the example, there is no other
eligible siphon under the restrictions of the ILPP proposed in the technique previously
exposed in Subsection 3.2.2, i.e., the net system on Fig. 4.9 is live.

The third and last stage of the method consists in reducing previously expanded
conflicts, so that the processes again have identical structure to those of the original
net. This is achieved by applying Rule 4.2 as many times as necessary until the
AER of the net returns to its original configuration, i.e., (T, (). This is guaranteed to
eventually happen since Rule 4.2 is the inverse of Rule 4.1 and the aggregated monitor
places do not appear in © . Moreover, Theorem 4.19 ensures that if the controlled
CPR net is live, the e-Gadara net obtained is also live.

In the end, the resulting net is identical to the original one except for some control
places which have been added: these control places are the same the controlled CPR
had. Thanks to the application of Rule 4.3, these places have no output arcs into
transitions belonging to conflicts induced by process places which contain several
transitions. The net on Fig. 4.10 shows the resulting net after applying Rule 4.2 on
the net of Fig. 4.9. Indeed, we can observe that transitions TA3 and TA7 have no
input arcs from CP1, but the corresponding arc inputs at TA1 instead: a transition
that precedes them. The net obtained is a live controlled Gadara net.

4.5 Conclusions

In this chapter, an overview of Gadara nets has been presented, along with its limita-
tions for modelling multithreaded control software. From the structural analysis and
synthesis perspective, it has been proved that the syntactic restrictions introduced in

4.5. Conclusions 209

Gadara nets provoke significant constraints from the point of view of the behaviours
allowed in the allocation of resources. This means Gadara nets can be connected
with a subclass of S*PR in which the allocation of resources internal to a process is
deterministic, i.e., resources do not participate in the internal choices. Consequently,
liveness enforcing methods based solely on structural information can be used, leaving
this class close to the well-studied S*PR class in that context. Unfortunately, state-
space exploration and region theory based methods can be too consuming for real-
world concurrent control software systems due to their usually huge dimensions. On
the other hand, a more versatile class for modelling multithreaded software systems
(PC?R) was introduced in Chap. 2. Nevertheless, new and more complex phenomena
arise, in such a way that a structural liveness characterisation still remains elusive.

210 4. Reconstructing the Gadara approach

Chapter 5

Some complexity results on
the resource allocation
problem

Summary

This chapter takes a different approach to provide an insight into the inherent compu-
tational complexity of the RAP, from the perspective of optimality in either preven-
tion, avoidance or detection of deadlocks. In particular, it will be proved that most
of the problems involved fall within the category of NP or co-NP-complete problems.

211

212 5. Some complexity results on the resource allocation problem

5.1 Introduction

As earlier chapters have hopefully made clear, Petri nets are nowadays consolidated as
a powerful formalism for the analysis and treatment of deadlocks in RASs. In partic-
ular, the methodological framework yielded by the S*PR class has raised considerable
interest on the grounds of a well-balanced compromise between modelling flexibility
and the provision of sound and effective correction techniques. Through the process of
abstraction, these models and techniques can be effectively applied to diverse applica-
tion domains, as discussed in Chap. 1, including some simple multithreaded software
systems. Most works on that class focus on providing tools and algorithms for dealing
with the so-called resource allocation problem, i.e., the emergence of deadlocks. This
was precisely the scientific rationale of the previous chapters but approached from the
perspective of multithreaded software systems modelled with PC2R nets.

The strategies for handling deadlocks are traditionally categorised in three large
groups: (deadlock) prevention, avoidance and detection. Deadlock prevention tech-
niques consist in constructing a system such that, by definition, no deadlock is reach-
able. Deadlock avoidance techniques rely on evaluating and deciding on-line whether
a resource allocation request is ‘safe’. The request is allowed or not depending on the
current system state information (e.g., the banker’s algorithm [Tri03]). Proceeding
that way, deadlocks are avoided. Finally, deadlock detection techniques act ‘a poste-
riori’, allowing the deadlock situation to occur and subsequently resolve the situation.

This chapter investigates the computational complexity on providing optimal solu-
tions for the problems of deadlock prevention, avoidance and detection for Sequential
RASs supported by the S*PR class. S*PR nets were already introduced in Chap. 1. In
rough words, they are a subclass of PC?R nets in which the processes have no internal
loops and no resource is allocated in the initial state (i.e., there is no resource lending).
Apart for their suitability to many application domains (see Chap. 1), S*PR nets are
enough to model those multithreaded software systems in which: (i) for each process,
the acquire/wait and release/signal operations are located at the same iteration level
(usually, the main block), and (ii) the resources are used in a first-acquire-then-release
basis (i.e., no signal call precedes a wait call over the same mutex/semaphore).

Some previous works have successfully studied computational issues on Sequential
RASSs, although they differ from this chapter both on the type of systems and the
problems subject to analysis. The problem of deciding whether a resource allocation
request is safe in an intermediate step of execution of the system (assuming that
it is safe iff there exists a feasible sequence that terminates all processes) is stud-
ied by E.M. Gold [Gol78], proving that the problem is NP-complete for Sequential
RASs with multi-resource requests and processes without routing decisions. In this
model, resources that are freed in intermediary states are immediately required back.
Additionally, some restrictions on this problem are presented, which are proved poly-

5.1. Introduction 213

nomial. A similar problem is proven NP-complete for a different class of Sequential
RASs in which alternative paths are allowed [SLO1], but only one resource type is
used in each stage for this kind of models, resulting again in a subclass of S*PR nets.

Toshimi Minoura [Min82] proves that the problem of deciding whether an RAS
is non-live from the initial marking is NP-complete for a subclass of systems that
can be modelled with S*PR nets as well. Again, processes are here acyclic and,
though they can have routing decisions, the allocation of resources is forbidden in the
corresponding conflicting transitions. Besides, the resource places represent mutexes
(thus, they are binary) and although several resources can be simultaneously allocated
to a single process, these must be acquired one at a once (i.e., no multi-resource
requests).

Besides, Minoura also proves that the problem of deciding wheter a resource allo-
cation request is safe is, for this kind of models, PSPACE-complete [Min82]. However,
the author assumes that a resource request is safe iff there exists a feasible sequence for
every possible routing decision that the processes can take until their successful ter-
mination. This interpretation fully makes sense if routing decisions are uncontrollable
in the real-world system. The author also proves that the problem is NP-complete if
it is assumed that the processes have no routing decisions. Likewise, M.A. Lawley and
S.A. Reveliotis [LRO1] also prove that optimal deadlock avoidance is NP-complete for
a subclass of Sequential RASs in which no alternative paths per process are allowed.

Although not explicitly categorising a decision problem within a computational
complexity class, many other interesting computational issues related to the RAP are
discussed in different works. For instance, M.P. Fanti et al. [FMMT97] discuss the
computational complexity of different scheduling policies for deadlock avoidance in
RASs modelled with digraph models. X.D. Koutsoukos and P.J. Antsaklis lead some
informal discussion on the computational complexity of applying optimal supervisory
control techniques on Petri nets by means of the addition of monitor places [KA99].
This discussion is later complemented in the book of .V. Iordache and P.J. Antsak-
lis [IA06]. Other works discuss the complexity of applying deadlock prevention on
RASs modelled through augmented marked graphs [CX97]: a Non-Sequential RAS
model in which processes are marked graphs.

Last, but not least, F. Garcia-Vallés [GV99] proves the NP-completeness of decid-
ing, in general, whether the initial marking of an SIP is the minimum initial marking
that makes it implicit for a subclass of systems in which the removal of the SIP makes
it a live and safe free-choice system. This is also an interesting question in the context
of RAS models since every resource place is a SIP and if it is made implicit then it
cannot be the source of any deadlock situation. In other words, there exist a lot
of problems that must be approached to outline a more or less complete picture of
the complexity of dealing with the RAP in RASs. In the end, this chapter does not
pretend to characterise the computational complexity of every issue concerned with

214 5. Some complexity results on the resource allocation problem

deadlock prevention/avoidance/detection but present a glimpse of the complexity of
tackling these three approaches from an analytical point of view.

Section 5.2 provides a motivating example to illustrate the scope and limits of the
S*PR class. Section 5.3 deals with the computational complexity of characterising
non-liveness for a marked S*PR with an acceptable initial marking. This is strongly
related to optimal deadlock prevention. Section 5.4 states the computational com-
plexity in determining the markings that are doomed to deadlock, which is the key
to optimal deadlock avoidance and detection in this context. Finally, in Sect. 5.5
the computational complexity in determining spurious markings is revealed, which
severely affects the efficiency of structural techniques for this type of models.

5.2 DMotivation of the complexity analysis and
methodology

In order to motivate the four problems whose complexity is studied in this chapter, we
introduce an example coming from a different application domain to those presented
in previous chapters.

Example 5.1 The video streaming case study.

Suppose an entrepreneur is considering the installation of an on-line, on-demand
video streaming service business on the Internet. In order to provide a reasonably good
service, certain Quality of Service (QoS) requirements must be formally established
and satisfied, for every requested transmission. These QoS specs obviously depend
on a wide range of parameters such as the client type, her/his maximum supported
bandwidth, the format and resolution of the requested video, etc.

To provide the service, (s)he owns a pool of video servers. These video servers are
connected to a mesh network of router nodes. Some of these nodes act as gateways to
the Internet. It will be assumed that multicast video streams will disseminate from
the gateways onwards, so as to not increase the internal traffic. Figure 5.1 depicts
the system structure (on the left, the video servers; on the right, the gateways; in the
middle, the intermediate routers).

A video stream is composed of a set of fixed-size packets that must be transmitted
from the sender (video server) to the receiver (client). When a receiver requests a
video stream to one of the servers, a virtual circuit is constructed. All the packets of
the video stream will travel through the same virtual circuit. Besides, each node of the
circuit assumes its own minimum resource requirements (CPU, storage, bandwidth)
for processing and transmitting each packet of the stream. These requirements will
be based on the QoS specs for the transmission.

5.2. Motivation of the complexity analysis and methodology 215

Figure 5.1: The video streaming system, simultaneously transmitting two video streams.

Both (circuit and resource requirements) can be determined and established
through a signalling protocol in a similar vein to the Resource Reservation Protocol
(RSVP) [BZB"97, VBO03]. In order to maximise the system productivity and reduce
costs, however, the resource reservation strategy must be ‘relaxed’. Hence once a
packet is effectively transmitted from a node to the next one, the required resources
are freed, and must be reacquired for the next packet. Doing so, nodes can accept
and manage a higher amount of concurrent streams minimising resource idling. As
a drawback, when the traffic is high and resources are overused, some jittering could
appear since some packets could be idle in intermediate nodes, waiting for the release
of some required resources. In the worst case, a circular wait for resources could
appear, and the system would reach a deadlock.

Figure 5.2 models in Petri net terms the flow of the two streams being transmitted
in the system of Fig. 5.1. The different constructive elements in this S*PR model
correspond to a RAS abstraction of the original system. Each video stream is modelled
as a concurrent sequential process. Resources associated to each node Ni are modelled
using the places labelled R-Ni. Note that there could be several resource places per
router (one per each resource type, be it physical, e.g. available storage space or CPU
slots, or logical, e.g. maximum number of simultaneous packets). Equivalently, there
is a resource place per each node interconnection, modelling the available bandwidth
and labelled BW-Ni-Nj.

All these resources can be shared among both concurrent processes. In this case,
the local resources of the nodes N5 and N6 (held by resource places R-N5 and R-NG6)
are shared among both video streams. The resources are requested, used and freed

216 5. Some complexity results on the resource allocation problem

Figure 5.2: S"PR net system which models the system in Fig. 5.1 before the transmission
of the first packets

when a packet (a token in the process subnet) is visiting the corresponding node.
Finally, the idle places limit the number of potentially concurrent packets per video
stream (it is assumed that this number is finite). Speaking in general terms, it is
worth noting here that idle places can also be seen as special resource places, and then
interpreted as the maximum number of process instances in concurrent execution for
each process type.

Summing up, Fig. 5.2 depicts an S*PR net system with an acceptable initial
marking: notice that all the tokens are placed in the idle and resource places, and
that there are enough tokens to execute every minimal t-semiflow in isolation. This
corresponds to a state of the system in which both of the streams are ready to start
(both virtual circuits are established), but no packet is in transit yet (and hence every
resource is available).

The marking shown in Fig. 5.3 is not an acceptable initial marking but, however,
it is reachable from the acceptable initial marking depicted in Fig. 5.2. In fact, it
corresponds exactly to the situation illustrated in Fig. 5.1. Here, the system has
reached a deadlock, so the system depicted in Fig. 5.2 turns out to be non-live. The
reader can easily check that, according to the liveness characterisation of Theorem 1.4,
the set of m-process-enabled transitions is {t1,t2,t3} and each one of those is m-
resource-disabled: the resource places R-N5, R-N6 and R-N7 disallow their firing.

The example shows that the liveness property is a necessary requirement in the
design of this class of systems. Any other requirement is subordinated to the fulfilment
of the liveness property. Therefore, in the search of good algorithms to analyse the
property, it is appropriate to determine the complexity of the problem itself. This
is the goal of Sect. 5.3, and unfortunately the result is negative with respect to the
hope of finding an efficient method. This result gives special value to the heuristics
and semidecision algorithms used in the analysis of this hard property.

Departing from the liveness characterisations presented in Chapter 1 and the cor-

5.2. Motivation of the complexity analysis and methodology 217

Figure 5.3: S"PR net system which models the actual system state in Fig. 5.1. The system
is deadlocked.

responding synthesis techniques discussed in Chapt. 3 it would be possible to handle
deadlocks from different standpoints. In particular, deadlock prevention (e.g. disallow
a pre-established circuit if there might be a potential deadlock situation), avoidance
(e.g. retain temporarily packets if they lead to deadlock situations) or detection and
correction techniques (e.g. abort a video stream to free resources and unlock the
system) can be applied.

These techniques are essentially based on the characterisation of the liveness prop-
erty in terms of siphons or certain specific markings characterising the set of markings
where deadlocks arise. Therefore, the complexity of the synthesis problem focused
in markings and structured objects characterising non-live transitions, which has an
iterative nature, is equivalent or subordinated to that of deciding non-liveness, which
is proved NP-complete in Sect. 5.3.

Nevertheless, there exists still hope if the synthesis problem can be stated in terms
of the marking frontier in the reachability graph partitioning the set of reachable
markings into two subsets: (i) the set of markings that inevitably lead to a deadlock;
(ii) the rest of reachable markings. If we are able to efficiently elucidate this partition,
the problem can be solved easily. Unfortunately, the second result presented in this
chapter (Sect. 5.4) conveys that the synthesis problem so defined is also very hard.
Once again this endorses the value of those conservative heuristics designed to produce
live models.

Finally, another important problem is associated with the computation of the
maximal initial marking cutting the minimal number of legal states by means of
structural methods. This problem can be reduced to the problem of the detection of
spurious markings of the net state equation, and the complexity of this problem is
proven very hard, probably because it is an interesting problem. This last result is
developed in Sect. 5.5.

In this chapter, the reader is assumed to be instructed on the basics of complexity

218 5. Some complexity results on the resource allocation problem

theory [GJ79] and particularly NP-completeness. Onwards, several problems will be
proved either NP or co-NP-complete. All the problem reductions will be based on the
well-known (general) satisfiability problem of boolean formulae in conjunctive normal
form, commonly named SATISFIABILITY (SAT), which is NP-complete. A brief
reminder follows.

Let X = {x1,...,2,} be a set of boolean variables. By the process of truth assign-
ment, every variable in X is assigned one value: either true or false. Let z; € X, we
call a literal to either x; or its negation, T;. Intuitively, if the variable x; is assigned
the value true, the literals x; and T; are true and false, respectively (and vice versa if
false is assigned). We define a clause C; as a non-empty set of literals. The value of
a clause is the disjunction of its literals, i.e., it is true iff at least one literal is true;
and false otherwise. Finally, a formula F is a non-empty set of clauses, and its value
is the conjunction of them, i.e., it is true iff all its clauses are true; false otherwise.

Without loss of generality, it will be assumed that, given a formula F =Cy -...- C
and the set of its variables X, every variable xz; € X appears in at least one clause,
and also that z; appears at most once in each clause, be it negated or not.

Problem 5.2. SATISFIABILITY (SAT)
Given: A formula F and the set of its variables X.

To decide: Is there a truth assignment for X such that F is true?

5.3 On deciding liveness

The problem of optimal deadlock prevention requires determining whether a given
system is non-live, in order to apply correction techniques to make the system live,
such as those presented in Sect. 3.2. Here the complexity of the problem of non-
liveness for a given acceptable initial marking will be studied. In particular, it will
demonstrated that this problem is NP-complete. A couple of basic demonstrations
are previously required, and hence will be introduced in the following. The studied
problem is formally defined in this way:

Problem 5.3. S*PR-Non-Liveness (S*PR-NL)
Given: An S*PR net system (N, mg), being mg an acceptable initial marking.
To decide: Is (N, mg) non-live?

Proposition 5.4. Let (N,mg) be an S*PR net system with an acceptable initial
marking. Let m be a reachable marking m € RS(N,mg). Then exists a firing se-
quence o, mg-Z-m, such that there is no t-semiflow x with o —x > 0.

5.3. On deciding liveness 219

Proof. Without loss of generality, let x be a minimal t-semiflow such that ¢ —x > 0.
Then it will proved that there exists a firing sequence ¢’, mg ”—’>m, where o/ —x # 0,
and 0/ = o — k- x, with k € IN\ {0}.

m is potentially reachable from mg with ¢’ because of the net state equation:
m=myg+C-0=mg+C-(6/+k-x)=mg+C-0o'.

The sequence ¢’ is also firable because a t-semiflow x is a circuit of a state machine
and the completion of x corresponds to the movement of a token in this state machine
from the idle place throughout the circuit returning to the idle place. Taking into
account that this token in the idle place does not use resources, while in the rest of
the places of the circuit uses some resource, freezing this token in the idle place leaves
a greater number of resources to fire the rest of transitions of o. Therefore o’ is also
firable, reaching m. O

Lemma 5.5. Let (N, mg) be an S4 PR net system with an acceptable initial marking,
and let m be a reachable marking from (N, mg), m € RS(N,mg). Then exists a firing
sequence o from mg to m, mo-"»m, such that |o| < K-|T'|, where K =73 p mo|p]

Proof. By Proposition 5.4, a firing sequence o exists, mg-ZL,m, such that there is no
t-semiflow x with o1 —x > 0. Let us suppose that |o1| > K- |T|. It is straightforward
that there exists a transition ¢ € T such that ¢ is fired at least K + 1 times in o;.
Since the process subnets are conservative, and the process places are empty in my,
for every reachable marking m’ € RS(NV,mo), >° ¢ p,up, m'[p] = K.

This means that if each token in the process places is labelled with a unique
identifier i € [1,K], at least one of them should visit twice the process place p, where
{p} = *t N (Py U Ps), i.e., the active process (the token) should travel through a
circuit of the state machine. Since every circuit in an S*PR net induces a minimal
t-semiflow [Tri03] then exists a t-semiflow x, o1 —x > 0, contradicting the hypothesis.

O

The size of the firing sequence ¢ in Lemma 5.5 is polynomial in the size and
population of the net. This will let us prove that S*PR-NL is in NP.

Theorem 5.6. S4PR-NL is NP-casy.
Proof. The following problem will be used in the proof:

Problem 5.7. S*PR-Bad-Marking (S*PR-BM)
Given: An S*PR net system (N, mg), being mg an acceptable initial marking,
and a firing sequence o such that (|o| < K- |T|), (mg-Zsm) and (m # mg),
where K=} p mo[p].
To decide: Does (N, m) hold that every m-process-enabled transition is m-resource-
disabled?

220

5. Some complexity results on the resource allocation problem

(o]

Figure 5.4: SAT — S*PR-NL. Net /\/’LJ for each literal x; in C;.

1. S*PR-BM is in P. Given o, m can be easily computed using the net state

equation. For every transition, m-process-enabling and m-resource-disabling
can be checked in deterministic linear time in the size of N.

. Let (M, mg,0) be a valid input for S*PR-BM, being (N, mg) an input for

S*PR-NL. Since the length of o is polynomial in the size of the input, it is trivial

to find two encodings e; (AN, mg, o) and ex(N, mg) such that |e; (N, mg,)| <

¢+ lea(N,mp)|¢, given ¢, ¢’.1

. S*PR-NL can be verified in deterministic polynomial time. By Theorem 1.4,

S*PR-NL returns YES with input (A,myg) iff exists a firing sequence o,
mp-7sm and m # myg, such that every m-process-enabled transition is m-
resource-disabled. In that case, by Lemma 5.5, a firing sequence o can be found
such that with |o| < K -|T|. Thus S*PR-NL(N, mg) returns YES iff exists o
such that S*PR-BM(N, mg, o) returns YES.

O

Now NP-hardness will be proven, reducing SAT to S*PR-NL. Let F = C;-Ca-...-Cy,

be a formula in conjunctive normal form, and let X = {z1,...z;} be the set of its
variables. For every x; € X let N, (Nz;) be the number of clauses of F in which the

literal z; (T;) appears.

Also please note that, for every j € [1,N¢], the index j @& 1 is defined as either

j+1(iff j < N.)or 1 (iff j = N,). Similarly, the index j © 1 is defined as either j — 1
(iff j > 1) or N, (iff j = 1).

The net Nx is constructed in the following compositional manner:

1. For every z; € X, i € [1,k], the place x; is added (in case N, > 0) and the

2. For every clause C;, j € [1,N.], two places are added to Nz, called o; and s

place X; is added (in case Nz > 0).

i1
A

IThe length of the encoding e is denoted by |e]|.

5.3. On deciding liveness 221

3. For every literal z; in C;, ¢ € [1,k], j € [1,N¢], four places are added (a;;,
bji, dji, €j.:), as well as five transitions (t;i, Wji, vji, Wji, ¥;,), and they are
connected to the rest of the net as depicted in Fig. 5.4.

4. For every literal 7; in C;, ¢ € [1,k], j € [1,N¢], the same places and transitions
described in the last point are added. However, they are not exactly connected
as depicted in Fig. 5.4. Instead, the same pattern of the figure must be followed
but interchanging x; with X;, and N, with Nz

In order to avoid unnecessary confusions, it should be stressed that the place S§91
in Fig. 5.4 is the same place as S;::@l, forj/=j501(G(=57a1).

The initial marking mg of every place will be as shown in Fig. 5.4. The reader
can check that the resulting net system (N7, myg) is an S*PR net system with an
acceptable initial marking, where Iy, = [1,N], every clause C; results in a process
JP1

In Fig. 5.5 it is depicted the resulting net Nz for the formula F = xl(gjvl +
T3)(x2 + T3). In this example, SAT(F) returns YES since the formula is satisfiable,
e.g. assigning z1="true”, ro="false” and z3="false”.

subnet where o; is the idle place, and the resource places are every x;, X;, and s

Theorem 5.8. SAT — S4PR-NL

Proof. Tt will be proved that SAT(F) returns YES iff S*PR-NL(N#, mg) returns
YES. By Theorem 1.4, (N, mg) is non-live iff exists a reachable m, m # myg, such
that every m-process-enabled transition is m-resource-disabled. The four necessary
conditions defined by E.G. Coffman [CES71] establish that in this state a circular wait
Jj®1
Jj
(by construction) the only transitions that can be m-process-enabled and m-resource-

exists. This is only possible with a circular wait on the resource places s since
disabled are v; ; or w; ;. Since it is also necessary that every locked process is in a “hold
and wait” state on the blocking set of resources (as expressed by Coffman [CEST1]),
it can easily be inferred: (Nr,mg) is non-live iff exists m € RS(Nz, mg) such that
Vj € [1,Nc]3li € [1,k] such that m[d;;] = 1 (thus, m[sgeal] = mfa;;] = mb,;] =
mle; ;] = mfo;] = 0).

Now, Vj € [1,N],¢ € [1,k] such that m[d; ;] = 1, there are two mutually exclusive
alternatives: either (i) yx,[d;:] = 1, yxld;:] = 0, or (ii) ysld;i] = 1, yx;[dj:] = 0.
Note that yx, and yx; are the minimal p-semiflows induced by the resource places x;,
and Xj, respectively.

By construction, (i) is applied to Nz when literal z; appears in the clause C; of the
formula F. Equivalently, (ii) is applied to Nz when literal T; appears in the clause
C; of the formula F.

If (i) holds, then 3;j' € [1,N¢], j # 4/, such that yx[d; ;] = 1 and m[d; ;] =
1. Otherwise, t;; and t; ; should have been fired to reach m. But the firing of
t; requires that no token from X; is taken, and the firing of t;/ ; requires that no

222 5. Some complexity results on the resource allocation problem

o 0GR OO O 8O-}
/'[

:‘. R .

X3
/G :
= O OB On B O 4o

X
()
Ol

=
i
O \I
L
O--1

Figure 5.5: SAT — S*PR-NL. Example: F = z1(z1 + T2) (22 + T3).

token from x; is taken, so t;; cannot be fired after t;/ ; and vice versa, leading to a
contradiction. By an analogous reasoning, if (ii) holds, then ;' € [1,N.], j # j’, such
that yx,[d; ;] =1 and m[d; ;] = 1.

Let f be a truth assignment for the set of boolean variables X, f : X — {true,
false, don’t care}. For every z; € X, f(z;) is defined as:

o f(z;)=“true” iff 35 € [1,N¢] such that (m[d;;] = 1) A (yx,[d;:] = 1). This
corresponds to case (1).

o f(x;)="“false” iff 3j € [1,N.] such that (m[d;;] = 1) A (yx{d;:] = 1). This
corresponds to case (2).

o f(z;)="“don’t care”, iff #j € [1,N] such that m[d;,;] = 1.

As we have seen, these assignments are mutually exclusive. Without loss of gen-
erality, the non-liveness condition can be finally rewritten in the following way, which
proves the hypothesis: (N, mg) is non-live iff exists a truth assignment f such that

5.4. On detecting bad markings 223

Vj € [1,Nc|3i € [1,k] such that either f(z;) = “true” and z; appears in C;, or f(x;)
= “false” and Z; appears in C;. O

Note that, as expected, the net system in Fig. 5.5 is non-live: the total deadlock
(Nr,m) is reachable from (Nr, mg), where m[d; ;] = m[dz 2] = m[ds 3] = m[x;| =
mlxs] = 1, being the rest of the places empty. Finally:

Theorem 5.9. S4PR-NL is NP-complete.

Proof. S*PR-NL is NP-hard since, by Theorem 5.8, SAT is reducible to S*PR-NL,
and it is also NP-easy by Theorem 5.6. O

The reader may have been left wondering why the S*PR problem was defined
specifically beginning from an acceptable initial marking. Instead, we could have
studied the more general problem of determining if, given (M, m), m € RS(N, mg),
the system is non-live. Indeed, the same complexity result applies: we can easily
reduce this problem to S*PR-NL. This is rather obvious from the fact that we can
fire an arbitrary sequence from m trying to lead every active process to the idle places.
If we are able to reach mgq, then the reduction applies. If we are not able to reach
mg, we will have found a marking such that every m-process-enabled transition is
m-resource-disabled, and the system is thus non-live.

Note that this is not true in general for every solution of the net state equation,
m = mp + C - x, xx 0. The problem resides in the fact that S*PR net systems
may have Kkilling spurious solutions, i.e., solutions of the net state equation that are
not reachable and which are non-live while the system (N, myg) is live. Note that
the problem of determining if a given marking is a spurious solution is studied in
Subsection 5.5, and it is proven to be co-NP-complete.

5.4 On detecting bad markings

In previous works [Gol78, Min82, LR01, SLO1], the complexity of the optimal dead-
lock avoidance problem has been approached for different classes of RASs, in some
sense more restrictive than the S*PR category, as explained earlier. These seminal
results are based on the study of safeness (usually as defined in the deadlock predic-
tion problem [Gol78]: “the existence of a feasible sequence in which to allocate the
remaining resource requirements of the processes”). However, the process structure
in these earlier models was finite and acyclic: once a process had satisfied all the re-
source requirements, it was terminated and hence removed from the system. On the
other hand, an S*PR net system does not have a target state; instead, the processes
are structurally repetitive. Hence, it is desirable to ensure that the feasible sequence
is arbitrarily long. This leads us to the following definition:

224 5. Some complexity results on the resource allocation problem

Definition 5.10. Let (N ,mq), N' = (P,T,C) be an S*PR net system with an ac-
ceptable initial marking, and let m be a reachable marking, m € RS(N,mg). Then
(N,m) (or simply, m) is doomed to deadlock iff 3k € IN such that for every firable
sequence o, m-Z exists t € T such that t is fired at most k times, o[t] < k.

The negation of this property (i.e. m is not doomed to deadlock) is somehow an
extension of that concept of safeness and leads us to the optimal deadlock avoidance
strategy. Hence, in the following a resource allocation will be considered “safe” iff m
is not doomed to deadlock. Soon it will be seen that markings which are doomed to
deadlock are well characterised in the S*PR class.

In contrast, an optimal deadlock detection strategy should detect iff a marking
m is doomed to deadlock, and apply recovery techniques if so. It must be remarked
that optimality is here interpreted in the strictest sense: the ability to detect the
problem as soon as possible, i.e., as soon as a transition in the net is bound to die.
Note that other works define optimal detection as simply deciding iff there exists a
transition which is effectively dead, i.e. no longer firable, in the current marking.
The latter is less general and also computationally easier. The earlier will be proved
co-NP-complete:

Problem 5.11. S*PR-Deadlock-Detection (S*PR-DD)

Given: An S*PR net system (N, mg), being mg an acceptable initial marking,
and a reachable marking m, m € RS(N, mp).

To decide: Is (N, m) doomed to deadlock?

Lemma 5.12. Let (N, mg) be an S4PR net system with an acceptable initial marking,
and let m be a reachable marking, m € RS(N,mg). Then (N, m) (or simply, m) is
doomed to deadlock iff mg ¢ RS(N, m).

Proof. The necessary part (“only if”) is rather obvious: every minimal t-semiflow is
firable in isolation from mg. This means that a repetitive sequence can be built so
that every minimal t-semiflow is successively fired, hence firing every transition an
arbitrarily large number of times. Regarding the sufficient part (“if”), let us proceed
by reduction to absurd. Suppose that mo ¢ RS(N,m), and that exists an infinite
finite sequence o, m—_7, such that every transition is fired infinite times. In that
case, every time a transition ¢t € *P, is fired in o (so the marking of an idle place
is increased), the token can be frozen in the correspondent idle place (i.e. leave the
token there). Since the idle places are the unique places in which no resource is used,
this augments the number of resources available in the system, so the rest of active
processes (i.e. tokens in the process places) can be moved in the same way as in the
original sequence o. Proceeding this way, a sequence ¢’ could be constructed such

5.4. On detecting bad markings 225

that it moves all the tokens to the idle places, reaching mg, unless there exists a
place p € Ps with frozen tokens in it (mLm’, m’[p] > 0). But this is impossible,
since that would imply that p® is m’-resource-disabled. Since the number of available
resources has not been decreased, that would imply that p® was not infinitely firable
in o, reaching a contradiction. O

Thus the problem of deadlock avoidance can be reduced to the problem of deter-
mining the reachability of the initial marking: a problem that is NP-complete, as will
be seen.

Problem 5.13. S*PR-Reachable-Initial-Marking (S*PR-RIM)

Given: An S*PR net system (N, mg), being mg an acceptable initial marking,
and a reachable marking m, m € RS(N, mg).

To decide: Ts mg reachable from (A, m)?

Theorem 5.14. S4PR-RIM is NP-easy.

Proof. In order to prove NP-easiness, let us introduce the following problem:

Problem 5.15. S*PR-Path-to-Initial-Marking (S*PR-PIM)

Given: An S*PR net system (N, mg), being mg an acceptable initial marking,
a reachable marking m € RS(A, my), and a firing sequence o,
lo| <K-|T|, where K= 3" p mo[p].

To decide: Is mg reached firing m-2.7

1. S*PR-PIM is in P (this is rather trivial: checking the firability of every transition
in the sequence can be done in deterministic linear time).

2. Let (N, mp,m, o) be a valid input for S*PR-PIM, being (A, mg, m) an input
for SYPR-NL. As the size of o is polynomial in the number of transitions and
population of the net, it is trivial to find two encodings e; (N, mg, m, o) and
e2(N, mo, m) such that |e; (N, mg, m,)| < ¢ |ea(N, mg, m)|¢, given c, ¢’

3. S*PR-RIM can be werified in deterministic polynomial time. By Lemma 5.5,
but reasoning over the reverse net, if mg is reachable there is a firing sequence
o, m-Z.mg, with (Jo| < K- |T|). Hence, S*PR-NL returns YES with input
(N, myp) iff exists a firing sequence o such that S*PR-PIM returns YES.

226

5. Some complexity results on the resource allocation problem

Figure 5.6: SAT — S*PR-RIM. Net MJ for each literal x; in C;.

Now that NP-easiness is proven, it is required to prove NP-hardness. But this part

is rather straightforward, due to the fact that (as commented before) the problem of

safeness in previous works [Gol78, LRO1, SLO1] can be easily proven a subcase of
S*PR-RIM. Since the problem was already NP-hard for this models, we conclude
that the problem is NP-hard through restriction [GJ79].

Nevertheless, an alternative proof will be provided on the following. Hopefully,
this will more clearly illustrate the fact that S*PR-RIM is NP-hard.

Let F =C;1-Cy-...-Cn, be a formula in conjunctive normal form as introduced in
Problem 5.2, and let X = {x1,...x;} be the set of its variables. Let N. be the number
of clauses in F, and for every z; € X let N, (Nz;) be the number of clauses of F in

which the literal z; (Z;) appears.

A net called Nz will be constructed in the following compositional manner:

1.

2.

A unique place ke is added to Nr.

For every x; € X, i € [1,k], the places x; (in case N, > 0) and X; (in case
Nz; > 0) are added.

. For every clause Cj, j € [1,N.], two places (o;, a;) and one transition (t;) are

added and connected as depicted in Fig. 5.6.

. For every literal x; in C;, ¢ € [1,k], 7 € [1,N], three places (b;;, d;, €,;) and

four transitions (u;;, vj,i, Wj, 2;;) are added and connected to the rest of the
net as depicted in Fig. 5.6.

. For every literal 7; in C;, ¢ € [1,k], j € [1,N], the same places and transitions

described in the last point are added but, to connect them, the pattern depicted
in Fig. 5.6 must be followed interchanging x; per X;, and N, per Nz

The marking m of every place will be as shown in Fig. 5.6. The reader can check

that the resulting net system (Nz,m) is an S*PR net system, where Iy, = [1,N],

5.4. On detecting bad markings 227

and every clause C;, with j € In,., results in a process subnet where o; is the idle
place. The resource places of the net are kc and every x;, X;.
It is also true that the marking mg is an acceptable initial marking for Nz, where:

e mglke] = N,

* Vj € [1,Ne]: mo[o;] =1,

e Vi€ [1,k]: mo[x;] = Ny, m[xi] = N,
e The rest of the places are empty in mg.

Moreover, the marking mg is reachable from m, by firing the sequence o =
ty ty ... tx,.

In Fig. 5.7 it is depicted the resulting net system (N, m) for the formula F =
T3(x1 +T3)xe. Obviously, SAT(F) returns NO since the formula is not satisfiable for
any possible truth assignment.

Theorem 5.16. SAT — S4PR-RIM

Proof. Let us prove that SAT(F) returns YES iff S*PR-RIM(N, mg, m) returns
YES.

It is obvious that mg € RS(N, m) iff exists a firing sequence o, m-Z.mq such
that Vj € [1,N¢]3i € [1,Kk] such that v;;, w,; and z;; appear in o.

In order to fire some w;; from a marking m’, m’ € RS(N, m), however, it is
required that m’[kc] = N¢. This is, all the tokens in Py U Ps should be in the places
labelled d;/ ;» or o/, for any j’, i'. But for marking any o, it is again required that
some w; ;+ is fired, so the problem can be reduced to:

mg € RS(N, my) iff exists m € RS(Nz, mo) such that Vj € [1,N.]3|i € [1, k] such
that m[d;;] =1 (thus, m[kc] = N, m[a;] = m[b;;] = m[e; ;] = m[o;] = 0).

Now the same reasoning than in the demonstration of Theorem 5.8 can be followed,
taking into account that the transitions t;; are now called u;;, and we conclude. [J

Returning to the example in Fig. 5.7, it can be verified that mg is not reachable
by any means, since there is no reachable marking m’ such that m’[kc] = 3, and this
implies that the transitions w; ; (according to the notation in Fig. 5.6) are dead, and
the idle places o; cannot ever be marked.

Finally:

Theorem 5.17. S4PR-RIM is NP-complete.

Proof. S*PR-RIM is NP-hard since, by Theorem 5.16, SAT is reducible to S*PR-RIM,
and it is also NP-easy by Theorem 5.14. O

228 5. Some complexity results on the resource allocation problem

—+
N

I'CIQIOIO

Figure 5.7: SAT — S*PR-RIM. Example: F = T2(x1 + T2)22.

Summing up, S*PR-DD is co-NP-complete (i.e., optimal deadlock detection in the
S*PR is co-NP-complete)?. The problem of deciding if the firing of a transition is
safe for applying optimal deadlock avoidance techniques remains NP-complete for the
S*PR class.

5.5 On detecting spurious markings

A spurious marking is a solution of the net state equation, m = mo+C-x, x > 0, that
is not reachable from mg. A Kkilling spurious solution is a spurious marking such that
(N, m) is non-live. There exist Petri net subclasses, such as EQ systems [TS93], for
which killing spurious solutions are not possible. In those cases, the linear description

2However, we remind the reader that there exists a reachable marking m’ such that it can be
structurally characterised as a bad marking by Theorem 1.4, but this does not affect the inherent
computational complexity of the problem.

5.6. Conclusions 229

provided by the net state equation can be used to determine the liveness of the system.

Unfortunately, the S*PR class is not one of those classes, and this limits the
potential of the net state equation for this purpose. Unless that, noticeably, spurious
solutions were efficiently detectable for a given S*PR system. As will be seen, however,
this is a co-NP-complete problem:

Problem 5.18. S*PR-Spurious-Detection (S*PR-SD)

Given: An S*PR net system (N, mg), being mg an acceptable initial marking,
ande]l\ﬂP',m:moJrCox,xZO.

To decide: Is m an spurious marking?

Intuitively, m is an spurious marking iff mg is not reachable from m in its reverse
(note that there may be isolated spurious solutions, i.e. not connected to the reacha-
bility space). Meanwhile, the reverse net of an S*PR net is another S*PR net. This
is quite trivial, since the polarity inversion of the incidence matrix does not affect its
(left or right) annullers, so the p and t-semiflows are preserved with respect to A.

It is easy to see now that S*PR-SD is co-NP-complete. This is bad news since,
unless NP=P, this implies that it cannot be verified that a marking is spurious in
deterministic polynomial time using solely the structure of the net.

5.6 Conclusions

RASs are abstractions of real systems allowing to concentrate on the study of problems
such as deadlocks due to the sharing of resources used in mutual exclusion. Modelling
RASs with Petri nets is particularly easy through the identification of processes with
state machines and resources with monitor places representing the allocation of copies
of resources. As a consequence, the S*PR subclass has already been proven specially
useful and suitable for the RAS abstraction of FMSs [TGVCEO05], but can be applied
in many other different contexts. To illustrate this fact, a motivating example was
introduced in order to depict the utility of the conceptual framework in the study and
correction of deadlock problems in distributed systems and protocols, beyond the FMS
context. More importantly in the context of this thesis, S*PR nets can be rather handy
as a restricted, powerful model for tackling certain simple multithreaded software
systems. Nevertheless, this is a most general class of models for which structural
results exist characterising non-liveness. For this reason, it has been addressed an
insight on the complexity of some problems related to handling with deadlocks using
this kind of models.

As expected, many of the important problems are proven computationally in-
tractable, and for this reason, the heuristics presented by F. Tricas et al. [Tri03,

230 5. Some complexity results on the resource allocation problem

TGVCEOQ5] have special interest. Obviously these results also work as lower bounds
of computational complexity for the (more general) class of PC2R nets. Regarding
optimal deadlock prevention, it has been established that the problem of determining
if an S*PR net system is non-live is NP-complete. Besides, evidence has been pro-
vided for NP-completeness of optimal deadlock avoidance for this class, generalising
earlier results for other types of RASs which were already proven NP-hard. This was
accomplished thanks to proving the equivalence of this problem with that of decid-
ing the reachability of the initial marking. The inverse problem (optimal deadlock
detection, in the strictest sense) is co-NP-complete.

Moreover, because the mathematical methods presented by Tricas et
al. [TGVCEQ5] are based on the net state equation, an insight on the complexity
of the detection of spurious markings is also relevant. The intractability of the prob-
lem, along with the existence of killing spurious solutions, constrains the practicality
of the net state equation for determining non-liveness.

Conclusions

During recent times, Petri nets have emerged as a powerful modeling paradigm for
dealing with the problem of allocation of shared resources in concurrent systems. So
attests the gradual flourish of Petri net-based analysis and synthesis techniques based
on the study of structural properties in RASs composed of sequential processes and
shared resources. Such approaches are framed within a methodological context which
advocates for a first study and correction of the problems caused by resource sharing,
prior to addressing other systemic problems. The application of structural correction
techniques allows that the outcome of this process can survive subsequent system
refinements. In essence, this approach is based on the principle that the so-named
RAS view of a system is but one of many facets of the system, which is observed
through a prior process of abstraction that allows applying this type of techniques on
concurrent systems belonging to enormously varied application domains. This PhD
thesis attempts to bring such techniques to the context of multithreaded program-
ming, which due to its inherent complexity presents serious difficulties when it comes
to successfully adapt the classical results in the field, and particularly to obtain live
multithreaded software systems.

First, Chap. 1 has presented a comprehensive overview on the RASs from an es-
sentially systemic point of view. In that sense, the chapter attempts to shed light
on some aspects rarely present in the literature. First, it identifies the basic princi-
ples of the proposed methodology and puts in value the abstraction process leading
to obtaining a view of the system based on processes and resources that is easily
translatable to Petri net models. In that sense, the process of abstraction has been
structured, identifying some of the usual features that allow categorising processes and
resources at the time of their identification. Discursively, that has been integrated
with the presentation of the RAS abstraction of different application domains from
the literature, projecting the features identified on these domains. As a result of this
process, it has been observed that there are often abundant commonalities because of
which the resulting Petri net models often belong to a restricted family of subclasses.
These subclasses have been introduced, compared and classified with respect to their
modeling capabilities. As a paradigm of these subclasses, S*PR has been presented as

231

232 Concluding Remarks

the one representing the final frontier, since it is the most general subclass for which
there exist structural results characterising liveness, which facilitates the application
of synthesis techniques for liveness enforcing.

Next, an RAS view of multithreaded software systems is discussed in Chapter 2.
As a result, we have presented a list of requirements that an RAS model must meet
to be able to model with sufficient versatility the richness of such systems. In parallel,
it has also been detected that those earlier models exploited in the literature are not
sufficient to meet that objective. Consequently, we have presented a new class of Petri
nets, called PC?R, which generalises the previous RAS subclasses and fully meets the
above requirements. Unfortunately, after crossing the Rubicon it has been observed
that finding some sort of structural liveness characterisation is a complicated task in
general for such complex systems. Some of the behavioural and structural properties
of these nets have been explored and compared to those found in more restricted
subclasses, therefore reaching a twofold objective. First, a general overview of the
family of classes to model RASs has been sketched; not only from a syntactical point
of view (the classical approach in this type of work) but also from a behavioural one.
And second, we have remarked some major obstacles encountered when approaching
into more complex systems such as multithreaded software systems to address the
problem of enforcing liveness. In addition, certain instruments are defined, such as
the shrinking graph, which are useful for addressing subsequent analysis and synthesis
techniques along Chap. 3 that allow dealing with the anomalous situations.

In Chap. 3, a review and categorisation of those Petri net-based techniques for en-
forcing liveness in the literature has been addressed. In particular, it has been proved
that the classical control theory based on the restriction of firing sequences to inhibit
abnormal behaviour by adding virtual resources which act as monitors is in general
difficult to apply in multithreaded software systems. Rather, in this context such
techniques are relegated to subclasses of systems (or subsystems of them) in which
resources are used under certain significant restrictions. However, new techniques
based on the addition of behaviour through the privatisation of resources, originally
raised in the context of the construction of minimum adaptive deadlock-free routing
algorithms for interconnection networks [Rovll], are revealed as a promising direc-
tion for obtaining live systems from a different approach. The above results have been
approached from the application domain under study in this thesis. The result is a
toolbox of heuristics to transform and correct, in a modular manner, multithreaded
software systems modelled through the PC?R class. This required to investigate the
peculiar characteristics and complex properties that siphons present in nets of such
kind, as well as to define or refocus the constructive elements that allow deploying
this type of techniques. In addition, a bridge has been established with classical
structural theory, introducing sufficient or necessary conditions that collapse in the
characterisation for simpler subclasses, thus outlining the disruption frontier of the

Concluding Remarks 233

classical results.

Gadara [WLR™09] is a subclass of Petri nets introduced to deal with the deadlock
problem due to the emergence of circular waits on binary mutexes in multithreaded
software. Although the structure of each process of a Gadara net is modelled by means
of a (general) state machine, this type of model presents a number of restrictions with
respect to the PC?R class (e.g., binary mutexes, resources that do not participate in
the internal choices, etc.) that constrain their application to a limited subclass of
multithreaded software systems. In Chap. 4 bridges have been established with the
family of RAS models in the literature. In particular it has been shown that Gadara
nets are strongly related to a subclass of S*PR in which the internal allocation of
resources to a process is deterministic. In addition, tools are provided to move from
one to the other net subclass, and a formal, exhaustive proof has been presented for a
siphon-based liveness characterisation for a superclass of Gadara nets: a result that,
despite already being stated for Gadara nets [WLRT09], remained publicly unproven
at the time of publishing our work [LGC11].

Finally, given the existing relations between the different subclasses of RASs and
the special place occupied by S*PR among all these subclasses, Chap. 5 introduces a
formal study of the computational complexity inherent to various problems related to
the application of liveness enforcing techniques in systems modelled through the S*PR
subclass. This subclass of nets is capable of modelling the RAS abstraction of some
simple multithreaded software systems. In particular, it has been proved that most
of the interesting problems of such systems regarding liveness fall within the family of
NP-complete or co-NP-complete problems. This intractability formally justifies the
search for efficient heuristics that imbues the literature and the pragmatical approach
pursued in some of the results presented in previous chapters. Furthermore, these
results mark a lower bound of computational complexity to more complex systems
such as those addressed in the context of the first chapters: the PC?R class, for
instance.

234 Concluding Remarks

Appendix A

Basic Petri nets notation

A Place/Transition (P/T) is a 4-tuple N = (P, T, F,W), where F C (P x T) U (T X
P) is the set of arcs, and W is a total function W : ' — IN*, being P, T non
empty, finite and disjoint sets. Elements belonging to the sets P and T are called
respectively places and transitions, or generally nodes. P/T nets can be represented
as a directed bipartite graph, where places (transitions) are graphically denoted by
circles (rectangles): let p € P, t € T, u = W(p,t), v = W(t,p), there is a directed
arc, labelled u (v), beginning in p (¢) and ending in ¢ (p) iff (p,t) € F ((t,p) € F).

The preset (poset) or set of input (output) nodes of a node x € P UT is denoted
by *z (z*), where *z = {y € PUT | (y,x) € F} (z* ={y € PUT| (z,y) € F}).
The preset (poset) of a set of nodes X C P UT is denoted by *X (X°*), where
‘X ={ylye®z,ze X} (X*={y|lyea®xzec X}

An ordinary P/T net is a net with unitary arc weights (i.e., V(x,y) € F: W(z,y) =
1, and hence N can be defined with a 3-tuple (P, T, F')). If the arc weights can be
non-unitary, the P/T net is also called generalised. A state machine is an ordinary
net such that for every t € T, |*t| = [t*| = 1. An acyclic state machine is an ordinary
net such that for every ¢t € T, |*t| < 1, |[t*| < 1, and there is no circuit in it.

A self-loop place p € P is a place such that p € p*®. A pure P/T net (also self-loop
free P/T net) is a net with no self-loop places. In pure P/T nets, the net can be also
defined by the 3-tuple NV = (P, T, C), where C is called the incidence matriz, and
C = Post — Pre, with Pre[p,t] = W(p,t) iff (p,t) € F (otherwise, Pre[p,t] = 0)
and Post[p,t] = W(t, p) iff (t,p) € F (otherwise, Post[t, p] = 0). Nets with self-loop
places can be easily transformed into pure P/T nets without altering most significant
behavioural properties, such as liveness, as shown in Fig.A.1.

A p-flow (t-flow) is a vector y € Z'Pl y £ 0 (x € Z"!, x # 0), which is a
left (right) annuler of the incidence matrix, y - C = 0 (C -x = 0). The support
of a p-flow (t-flow), denoted |y|| (||x]|), is the set of places (transitions) for which

235

236 A. Basic Petri nets notation

m m
n
I T >
T — T T”\‘

Figure A.1: Transformation rule: Removing self-loop places

their corresponding components in the p-flow (t-flow) are not zero, i.e., |y|| = {p €
P |y[p] # 0} (|x|| = {t € T'| x[t] # 0}). The aforementioned places (transitions) are
said to be covered by y (x). A minimal p-flow (minimal t-flow) is a p-flow (t-flow)
such that the g.c.d of its non-null components is one and its support ||y (||x]|) is not
an strict superset of the support of another p-flow (t-flow). A p-semiflow (t-semiflow)
is a non-negative p-flow. The P/T net N is conservative (consistent) iff every place
(transition) is covered by a p-semiflow (t-semiflow).

A set of places D C P (O C P) is a siphon (trap) iff every place p € *D (p € ©°)
satisfies p € D® (p € *©). The support of a p-semiflow is a siphon (trap) but the
opposite does not hold in general.

Let N = (P, T,F,W) be a P/T net, and let P’ C P and T’ C T, where P’ T" # .
The P/T net N7 = (P, T',F',W’) is the subnet generated by P’, T" iff (z,y) €
F' < (x,y) € F and W/(z,y) = W(a,y), for every pair of nodes z,y € P’ UT".
Let N = (P,T,C) be a pure P/T net. Its reverse net N* = (P,T,C*) is the same
net with its arcs inverted, i.e. Vp € P, t € T:C*(p,t) = —C(p,t). Its dual net
N4 = (P4 74 C9) is the result of replacing every place of N with a transition, and
viceversa, i.e. P4 =T, T4 =P and Vpec P4t € TY: Cd(p,t) = C(t,p).

A marking m of a P/T net A is a vector of INIPL assigning a finite number of
tokens m(p| to every place p € P. Tokens are usually represented by black dots within
the places. The support of a marking, ||ml||, is the set of places which are marked
in m, i.e. |m| ={p € P|mjlp] # 0}. We define a marked P/T net (also P/T net
system) as the pair (N, mg), where A is a P/T net, and mg is a marking for N,
also called initial marking. N is said to be the structure of the system, while mgq
represents the initial state of the system. Throughout this thesis, net markings are
usually denoted in the form: [P¥* PX2 PEn] with K, ..., K,, € N. For a marking
m denoted in this way, the naturals Ky, ..., K, represent the values of the vector m
corresponding to the places Py, ..., P, of the net, i.e., Vi € [1,n] : m[P;] = K;. The
rest of components of the vector m are assumed to be zero-valued.

Also in the context of this PhD thesis, p-semiflows are often represented as marking
invariants in the form: K; - m[P;] + Ky - m[Ps] + (...) + K, - m[P,] = K’, with K,

237

.., Ky, K’ € IN. In the first part of the equality, the naturals K1, ..., K, represent
the values of the vector y corresponding to each place Py, ..., P, of the net, i.e.,
Vi € [1,n] : y[Pi] = K;. The rest of components of the vector are assumed to be zero-
valued. Meanwhile, K’ is the result of the weighted sum of tokens in the net for a given
initial marking, where y determines the weighting (in other words: K’ = y7 - mg).

Let (N,mg) be a marked P/T net. A transition ¢t € T is enabled (also firable)
at mg iff Vp € *t:mg[p] > W(p,t), which is denoted by mo—. The firing of
an enabled transition ¢ € T changes the system state or marking to mj;, where
Vp € P:my[p] = mg[p] + Clp,t], and is denoted by mo—'sm;. A firing sequence
o from mg in A is a non-empty sequence of transitions ¢ = t; o ...t such that
mo-"m; -2, . my_1 " my. The firing of o is denoted by mg—-"-my. The lan-
guage of (N, mg), L(N,my), is the set of firing sequences from (N, mg). A marking
m is reachable from (N, mg) iff there exists a firing sequence o such that mg-Z-m.
The reachability set RS(N, mg) is the set of reachable markings, i.e. RS(N,mg) =
{m|3Jo:meg-Zsm}. The reachability graph of (N, mg) is a labelled directed graph
(V,E, L) such that V = RS(N,mg), E = {(my,mz) € V x V|3t € T: ml_.m2}
and L : E — T is a labelling function such that L(ml,m2) = {t € T | m1-,m2}.
A place p € P is a sequential implicit place in (N, mg) (or, simply, implicit) iff
the removal of the place p preserves all firing sequences of the original net, i.e.,
LN, mp) = LN, mg’), where (N, mg’) is the net system resulting from remov-
ing the place p from the original net.

A transition ¢t € T is live iff for every reachable marking m € RS(N,myg),
Jm’ € RS(N,m) such that m’_%,. The system (N, myg) is live iff every transi-
tion is live. Otherwise, (N, mg) is non-live. A transition ¢t € T is dead at a marking
m € RS(N, my) iff there is no reachable marking m’ € RS(N, m) such that m’_L,.
The marking m € RS(N,myg) is a total deadlock of (N, mg) iff every transition is
dead at m. A t-semiflow x is realisable iff 3m € RS(N,mg) and a firing sequence o
such that m—Z,m and o = x. A home state my is a marking such that it is reachable
from every reachable marking, i.e. Vm € RS(N, mg) : my € RS(NV, m). The net sys-
tem (N, myg) is reversible iff mg is a home state. A livelock of (N, mg) is a terminal
strongly connected component of the reachability graph with one or more arcs.

The net state equation of a marked pure P/T net (N, mg) is an algebraic equation
defined as m = mg + C - o, where o > 0. Every reachable marking holds the net
state equation, but there may exist solutions to the equation which are not reachable
markings. Thus we will call m € NPT g potentially reachable marking. The potential
reachability set PRS(N,myg) is defined as PRS(N,mg) = {m|3o € NTl:m =
mgo+ C-o,0 > 0}.

A directed path (or path) 7 of a P/T net N is a sequence of nodes 7 = z1 73 ... T,
such that the odd components are places and the even components transitions, or
viceversa, and for every pair (z;,;11), (%i,Zi+1) € F. An elementary path is a path

238 A. Basic Petri nets notation

such that Vi,j € [1,n] . z; # x;, except for zy = x,, (which is allowed). A general
circuit is a path such that 1 = z,,. An elementary circuit (or simply circuit) is both
an elementary path and a general circuit.

Appendix B

Some additional examples
and figures

Throughout this thesis, various Petri nets are provided in order to exemplify and
illustrate the various results and methods presented. Although all chapters have been
written to be self-contained, many of these examples can be completed with additional
graphical information providing insights into the structure and behavior of some of
these nets. To this end, we include below some figures which hopefully enhance the
documentary completeness of this thesis.

It should be noted that among these figures are some s-reg and resource pruning
graphs of PC2R nets which do not belong to the SOAR? subclass. Although these
instruments have not been formally defined for this more general class of nets, it is not
difficult to extend the results presented for SOAR? to these examples. Furthermore,
we believe they provide additional insight valuable enough to justify their inclusion
on an appendix.

Finally, note that all figures below are grouped by chapter. The chapter number
that labels each of these groups marks the chapter in which the examples that these
new figures complement originally appeared.

239

240 B. Some additional examples and figures

Chapter 2

(A0% A2, BO, R, Rzz}T”(AOe" BO, R1, R2% R3}T6{Ao3, B2, R1%, R2?)
E y LT 3
TAT2 (a0 AL BO, R2, R3) (A0% BL, ‘R12, R2°,R3)—1° T1

T4 T1
(Aoz, A2, B1, R1% RZSD#TSLJT6 ‘ AO?, Al, B2, R1, Rz)
\ | U 2 2 v A
1 T2 AQ% Al, B1, R1, R22, R3>—T5 |
T3 T1
v - T1

(Ao, Al, A2, B1, R1, Rzz)«Tz v
| [Ao, A12 B1, R2, R3}T5
T1
AT A2 BLRE) e

Figure B.1: Reachability graph of the PC?R net in Fig 2.6

R1

R2 (T2.A1) R3

Figure B.2: Resource pruning graph of the PC?R net in Fig 2.6

241

R5

R1 (T2,A1);(T5,A4); R2

(T3,A2);
(T6,A5);
(T10,B2);
(T13,B5)

(T8,B0)

(T13,B5)
(T12,B4)

(T4,A3);

(T14,B6)

(T14,B6) (T7,A6);

(T11,B3)

R4

Figure B.3: Resource pruning graph of the PC*R net in Fig. 2.21

R3

242 B. Some additional examples and figures

Chapter 3
R1 R2
S]O,A]/(TZ, Al) Sl,l
&)
"

R3 (T6, AS)/ORI

Si1 Sio

O<«——(T10, B1)—O<«—(T11, B2)—O
R3 R2 R1
S2,1 S2,1 S2,1

Figure B.4: S-reg pruning graph of Fig. 3.11, including labels

R3

Figure B.5: Agglomerated resource pruning graph of Fig. 3.12, including labels

243

R1

R2 (T5,A2)j R3
(T8,B1)

Figure B.6: Resource pruning graph of the net in Fig. 3.22

R2 (T7,C0) R3
(T1,A0);(T5,B1);(T8,C1)

Figure B.7: Resource pruning graph of the net in Fig. 3.23

244 B. Some additional examples and figures

R1 (T2,A1);(T5,A4); R?2
o (T8,B0);(T11,B3) -
(T14,B6) oo (T4,A3); ggﬁg
) AS); T9,B1);
(T.AS) (T10,B2) ((T12,Bz)1)
(T12,B4)

(T1,A0) (T11,B3)

(T4,A3); .
T13,B5
R5 () R3

(T13,B5) (T7,A6);

(T10,B2)
(T7,A6)

R4

Figure B.8: Resource pruning graph of the net in Fig. 3.24

245

d T1
A 4
(Al R1, R2) 6
I
T2
T3
v

Figure B.9: Reachability graph of the net in Fig. 3.26

R1
S ~
S E
ST SR O
» 4
& Z
R2 (T4,A3) R3

(T2,A1)

Figure B.10: Resource pruning graph of the net in Fig. 3.26

246 B. Some additional examples and figures

Bibliography

[BV84]

[BZB+97]

[CEST1]

[Col03]

[Coll1]
[CRC12]

[CS91]

[CX97]

[Dij67]

E. Best and K. Voss. Free choice systems have home states. Acta Infor-
matica 21, pages 89-100, 1984.

R. Brade, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205:
Resource ReSerVation Protocol — Version 1 Functional Specification,
September 1997.

E.G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM
Computing Surveys, 3(2):67-78, 1971.

J-M. Colom. The resource allocation problem in flexible manufacturing
systems. In W.M.P. van der Aalst and E. Best, editors, Proc. of the
24th Int. Conf. on Applications and Theory of Petri Nets, volume 2679
of LNCS, pages 23-35, Eindhoven, Netherlands, June 2003. Springer-
Verlag.

Collins English Dictionary. HarperCollins Publishers, 2011.

E.E. Cano, C.A. Rovetto, and J-M. Colom. An algorithm to compute
the minimal siphons in S*PR nets. Discrete Event Dynamic Systems,
22(4):403-428, 2012.

J-M. Colom and M. Silva. Improving the linearly based characterization
of P/T nets. In Rozenberg, G., editor, Advances in Petri Nets 1990,
volume 483 of LNCS, pages 113-145. Springer-Verlag, Berlin, Germany,
1991.

F. Chu and X.L. Xie. Deadlock analysis of Petri nets using siphons
and mathematical programming. IFEFE Transactions on Robotics and
Automation, 13(6):793-804, December 1997.

E.W. Dijkstra. The structure of the “THE”-multiprogramming system.
In Proc. of the 1st ACM Symposium on Operating System Principles,
SOSP 67, pages 10.1-10.6, New York, NY, USA, 1967. ACM.

247

248

Bibliography

[Dij82]

[DS86]

[Dua9s]

[ECMY5)

[EGVC9S]

[ER04]

[ETGVC02]

[Fan02]

[FGS06]

[FMMT97]

E.W. Dijkstra. The mathematics behind the Banker’s Algorithm. Se-
lecting Writings on Computing: A Personal Perspective, pages 308-312,
1982.

W.J. Dally and L. Seitz. The torus routing chip. Distributed Computing,
1(4):187-196, 1986.

J. Duato. Necessary and sufficient condition for deadlock-free adaptive
routing in wormhole networks. IEEFE Transactions on Parallel and Dis-
tributed Systems, 6(10):1055-1067, 1995.

J. Ezpeleta, J-M. Colom, and J. Martinez. A Petri net based deadlock
prevention policy for flexible manufacturing systems. IEEFE Transactions
on Robotics and Automation, 11(2):173-184, April 1995.

J. Ezpeleta, F. Garcia-Vallés, and J-M. Colom. A class of well structured
Petri nets for flexible manufacturing systems. In J. Desel and M. Silva,
editors, Proc. of the 19th Int. Conf. on Application and Theory of Petri
Nets, volume 1420 of LNCS, pages 64-83, Lisbon, Portugal, June 1998.
Springer-Verlag.

J. Ezpeleta and L. Recalde. A deadlock avoidance approach for non-
sequential resource allocation systems. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, 34(1):93-101, Jan-
uary 2004.

J. Ezpeleta, F. Tricas, F. Garcia-Vallés, and J-M. Colom. A banker’s
solution for deadlock avoidance in FMS with flexible routing and mul-
tiresource states. IFEFE Transactions on Robotics and Automation,
18(4):621-625, August 2002.

M.P. Fanti. A deadlock avoidance strategy for AGV systems modelled
by coloured Petri nets. In Proc. of the 6th Int. Workshop on Discrete
Event Systems (WODES’02), pages 61-66, Washington, DC, USA, 2002.
IEEE Computer Society.

M.P. Fanti, A. Giua, and C. Seatzu. Monitor design for colored Petri
nets: An application to deadlock prevention in railway networks. Control
Engineering Practice, 14(10):1231-12472, October 2006.

M.P. Fanti, B. Maione, S. Mascolo, and B. Turchiano. FEvent-based
feedback control for deadlock avoidance in flexible production systems.
IEEFE Transactions on Robotics and Automation, 13(3):347-363, 1997.

Bibliography 249

[FZ04] M.P. Fanti and M.C. Zhou. Deadlock control methods in automated
manufacturing systems. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A: Systems and Humans, 34(1):5-22, January 2004.

[GDS92] A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclusion con-
traints on nets with uncontrollable transitions. In IFEFE International
Conference on Systems, Man and Cybernetics, volume 2, pages 974-979,
Chicago, USA, October 1992.

[GJT9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[Gol 78] E. M. Gold. Deadlock prediction: Easy and difficult cases. STAM Journal

on Computing, 7(3):320-336, 1978.

[GRX03] A. Ghaffari, N. Rezg, and X.L. Xije. Design of a live and maximally
permissive Petri net controller using the theory of regions. IEEE Trans-
actions on Robotics, 19(1):137-142, 2003.

[GV99] F. Garcia-Vallés. Contributions to the structural and symbolic analysis of
place/transition nets with applications to flexible manufacturing systems
and asynchronous circuits. PhD thesis, University of Zaragoza, Zaragoza,
April 1999.

[GV(C99] F. Garcia-Vallés and J-M. Colom. Implicit places in net systems. In
P. Bucholz and M. Silva, editors, IEEE 8th International Workshop
on Petri Nets and Performance Models (PNPM’99), pages 104-113,
Zaragoza, Spain, September 1999. IEEE Computer Society Press.

[GVTCE9S8] F. Garcia-Vallés, F. Tricas, J-M. Colom, and J. Ezpeleta. Optimal con-
trol of discrete event systems. In Proc. of the 4th Int. Workshop on
Discrete Event Systems (WODES98), pages 88-93, Cagliari, Italy, Au-
gust 1998. Institution of Electrical Engineers, London.

. Glunchiglia and T. Walsh. A theory of abstraction. Artificial Intelli-
GW92 F. Giunchigli d T. Walsh. A th f ab i Artificial Intelli
gence, 57:323-389, October 1992.

[Har80] D. Harel. On folk theorems. Communications of the ACM, 23(7):379—
389, 1980.
[Hel13] A. Hellemans. Ring around the nanowire. IEEE Spectrum, 50(5):14-15,

May 2013.

250

Bibliography

[Hil85]

[HIXC06]

[Hoa78|

[HZL09)

[HZL11]

[IAOG]

[IA07]

[1A09]

[Joh75]

[JX01]

[7XC04]

D. Hillen. Relationship between deadlock-freeness and liveness in free-
choice nets. Newsletter, (19):28-32, February 1985.

Y.S. Huang, M.D. Jeng, X.L. Xie, and D.H. Chung. Siphon-based dead-
lock prevention policy for flexible manufacturing systems. IFEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, 36(6):1248-1256, 2006.

C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666—677, 1978.

H.S. Hu, M.C. Zhou, and Z.W. Li. Liveness enforcing supervision of video
streaming systems using non-sequential Petri nets. IEFEE Transactions
on Multimedia, 11(8):1446-1456, December 2009.

H.S. Hu, M.C. Zhou, and Z.W. Li. Supervisor optimization for deadlock
resolution in automated manufacturing systems with Petri nets. IFEE
Transactions on Automation Science and Engineering, 8(4):794-804, Oc-
tober 2011.

M.V. Tordache and P.J. Antsaklis. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Systems & Control: Foun-
dations & Applications. Birkh&user, 2006.

M.V. Tordache and P.J. Antsaklis. Petri net supervisors for disjunctive
constraints. In Proc. of the 2007 American Control Conference, pages
4951-4956, New York, USA, July 2007.

M.V. Iordache and P.J. Antsaklis. Petri nets and programming: A sur-
vey. In Proc. of the 2009 American Control Conference, pages 4994-4999,
St. Louis, Missouri, USA, June 2009.

D.B. Johnson. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing, 4(1):77-84, 1975.

M.D. Jeng and X.L. Xie. Modeling and analysis of semiconductor manu-
facturing systems with degraded behavior using Petri nets and siphons.
IEEE Transactions on Robotics and Automation, 17(5):576-588, 2001.

M.D. Jeng, X.L. Xie, and S.L. Chung. ERCN* merged nets for modeling
degraded behavior and parallel processes in semiconductor manufactur-
ing systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, 34(1):102-112, 2004.

Bibliography 251

[JXP02] M.D. Jeng, X.L. Xie, and M.Y. Peng. Process nets with resources
for manufacturing modeling and their analysis. IEEE Transactions on
Robotics, 18(6):875-889, 2002.

[KA99] X.D. Koutsoukos and P.J. Antsaklis. Computational issues in intelligent
control: Discrete-event and hybrid systems. In N.K. Sinha and M.M.
Gupta, editors, Soft Computing and Intelligent Systems: Theory and
Practice, chapter 3, pages 39—69. Academic Press, October 1999.

[Kid98] P.A. Kidwell. Stalking the elusive computer bug. IEEE Annals of the
History of Computing, 20(4):5-9, October 1998.

[KS89] J.F. Kurose and R. Simha. A microeconomic approach to optimal re-
source allocation in distributed computer systems. IFEFE Transactions
on Computers, 38(5):705-717, 1989.

[Lau02] K. Lautenbach. Reproducibility of the empty marking. In J. Esparza
and C. Lakos, editors, Proc. of the 23rd Int. Conf. on Applications and
Theory of Petri Nets, volume 2360 of LNCS, pages 237-253, London,
UK, 2002. Springer-Verlag.

[LDZ06] Z.W. Li, W. Ding, and R.M. Zhu. On deadlock prevention in case of
failures in flexible manufacturing systems. International Journal of Man-
ufacturing Technology and Management, 8(1-2):58-74, 2006.

[LGCO06] J-P. Léopez-Grao and J-M. Colom. Lender processes competing for shared
resources: Beyond the S*PR paradigm. In Proc. of the 2006 Int. Conf.
on Systems, Man and Cybernetics, pages 3052-3059, Taipei, Taiwan,
October 2006. IEEE.

[LGC11] J-P. Lépez-Grao and J-M. Colom. On the deadlock analysis of mul-
tithreaded control software. In Proceedings of the 16th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA’2011), Toulouse, France, September 2011.

[LGC12] J-P. Lépez-Grao and J-M. Colom. A Petri net perspective on the Re-
source Allocation Problem in software engineering. In K. Jensen, S. Do-
natelli, and J. Kleijn, editors, Transactions On Petri Nets and Other
models of Concurrency V (ToPNoC V), volume 6900 of LNCS, pages
181-200. Springer, Heidelberg, Germany, 2012.

[LGCT14] J-P. Lépez-Grao, J-M. Colom, and F. Tricas. Structural deadlock pre-
vention policies for Flexible Manufacturing Systems: A Petri net out-
look. In J. Campos, C. Seatzu, and X.L. Xie, editors, Formal Methods in

252

Bibliography

[LRO1]

[LSWT11]

[LT79]

[LT93]

[LWC+13]

[LZ08)]

ILZ09]

[Ming2]

[Mur89]

Manufacturing, Series on Industrial Information Technology, chapter 7.
CRC Press/Taylor and Francis, Toulouse, France, To appear. 2014.

M.A. Lawley and S.A. Reveliotis. Deadlock avoidance for sequential
Resource Allocation Systems: Hard and easy cases. Int. Journal of
Flexible Manufacturing Systems, 13:385-404, 2001.

H. Liao, J. Stanley, Y. Wang, S. Lafortune, S.A. Reveliotis, and
S. Mahlke. Deadlock-avoidance control of multithreaded software: An ef-
ficient siphon-based algorithm for Gadara Petri nets. In Proc. of the 50th
IEEE Conf. on Decision and Control and European Control Conference
(CDC-ECC 2011), 2011 50th IEEE Conference on, pages 1142-1148.
IEEE, December 2011.

K. Lautenbach and P.S. Thiagarajan. Analysis of a resource allocation
problem using Petri nets. In Syre, J.C., editor, Proc. of the 1st European
Conf. on Parallel and Distributed Processing, pages 260-266, Toulouse,
1979. Cepadues Editions.

N.G. Leveson and C.S. Turner. An investigation of the Therac — 25
accidents. IEEE Computer, 26(7):18-41, July 1993.

H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune,
S. Mahlke, and S.A. Reveliotis. Concurrency bugs in multithreaded soft-
ware: Modeling and analysis using Petri nets. Discrete Event Dynamic
Systems, pages 1-39, 2013.

Z.W. Li and M.C. Zhou. Control of elementary and dependent siphons
in Petri nets and their application. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, 38(1):133-148, January
2008.

Z.W. Li and M.C. Zhou. Deadlock Resolution in Automated Manufac-
turing Systems: A Novel Petri Net Approach. Springer, New York, USA,
2009.

T. Minoura. Deadlock avoidance revisited. Journal of the ACM,
29(4):1023-1048, Oct 1982.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541-580, 1989.

Bibliography 253

INR12]

[PCF09]

[PRO1]

[Rev99]

[Rev00]

[Rev03]

[Rev07]

[RLF97]

[Rov11]

[SCs8]

A. Nazeem and S.A. Reveliotis. Designing compact and maximally per-
missive deadlock avoidance policies for complex resource allocation sys-
tems through classification theory: The nonlinear case. IEEE Transac-
tions on Automatic Control, 57(7):1670-1684, July 2012.

L. Piroddi, R. Cordone, and I. Fumagalli. Combined siphon and mark-
ing generation for deadlock prevention in Petri nets. IFEE Transac-
tions on Systems, Man and Cybernetics, Part A: Systems and Humans,
39(3):650-661, May 2009.

J. Park and S.A. Reveliotis. Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible rout-
ings. IEEE Transactions on Automatic Control, 46(10):1572-1583, 2001.

S.A. Reveliotis. Accomodating FMS operational contingencies through
routing flexibility. IEFFEE Transactions on Robotics and Automation,
15(1):3-19, 1999.

S.A. Reveliotis. Conflict resolution in AGV systems. IIE Transactions,
32(7):647-659, 2000.

S.A. Reveliotis. On the siphon-based characterization of liveness in se-
quential resource allocation systems. In van der Aalst, W.M.P. and Best,
E., editor, Proc. of the 24th Int. Conf. on Applications and Theory of
Petri Nets, volume 2679 of LNCS, pages 241-255, Eindhoven, Nether-
lands, June 2003. Springer-Verlag.

S.A. Reveliotis. Implicit siphon control and its role in the liveness-
enforcing supervision of sequential resource allocation systems. IEFE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 37(3):319-328, May 2007.

S.A. Reveliotis, M.A. Lawley, and P.M. Ferreira. Polynomial complexity
deadlock avoidance policies for sequential resource allocation systems.
IEEFE Transactions on Automatic Control, 42(10):1344-1357, 1997.

C.A. Rovetto. Métodos basados en Redes de Petri para el diseno de
algoritmos de encaminamiento adaptativos minimos libres de bloqueos.
PhD thesis, University of Zaragoza, Zaragoza, September 2011.

M. Silva and J-M. Colom. On the computation of structural synchronic
invariants in P/T nets. In G. Rozenberg, editor, Advances in Petri Nets
1988, volume 340 of LNCS, pages 386—417. Springer-Verlag, Berlin, 1988.

254

Bibliography

[Si193]

[SLO1]

[Ter04]

[TGVCEO5]

[Tip95]

[Tri03]

[TS93]

[UZ07]

VB3]

[Wan09]

[Wei84]

M. Silva. Introducing Petri nets. In F. DiCesare, G. Harhalakis, J-
M. Proth, M. Silva, and F. Vernadat, editors, Practice of Petri nets in
manufacturing, pages 1-62. Chapman and Hall, 1993.

W. Sulistyono and M.A. Lawley. Deadlock avoidance for manufacturing
systems with partially ordered process plans. IEEE Transactions on
Robotics and Automation, 17(6):819-832, 2001.

E. Teruel. Structure theory of weighted place/transition net systems: The
equal conflict hiatus. PhD thesis, University of Zaragoza, Zaragoza, June
2004.

F. Tricas, F. Garcia-Vallés, J-M. Colom, and J. Ezpeleta. A Petri net
structure-based deadlock prevention solution for sequential resource al-
location systems. In Proc. of the 2005 Int. Conf. on Robotics and Au-
tomation (ICRA), pages 272-278, Barcelona, Spain, April 2005. IEEE.

F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3(3):121-189, 1995.

F. Tricas. Deadlock analysis, prevention and avoidance in sequential re-
source allocation systems. PhD thesis, University of Zaragoza, Zaragoza,
May 2003.

E. Teruel and M. Silva. Liveness and home states in equal conflict sys-
tems. In M. Ajmone Marsan, editor, Proc. of the 14th Int. Conf. on
Application and Theory of Petri Nets, volume 691 of LNCS, pages 415—
432. Springer-Verlag, 1993.

M. Uzam and M.C. Zhou. An iterative synthesis approach to Petri
net-based deadlock prevention policy for flexible manufacturing systems.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 37(3):362-371, May 2007.

M. E. Villapol and J. Billington. Analysing properties of the resource
reservation protocol. In W.M.P. van der Aalst and E. Best, editors, Proc.
of the 24th Int. Conf. on Applications and Theory of Petri Nets, volume
2679 of LNCS, pages 377-396. Springer-Verlag, June 2003.

Y. Wang. Software Fuailure Avoidance Using Discrete Control Theory.
PhD thesis, University of Michigan, Michigan, 2009.

M. Weiser. Program slicing. IEEE Transactions on Software Engineer-
ing, (4):352-357, 1984.

Bibliography 255

[Wei91] M. Weiser. The computer for the 21st century. Scientific American,
265(3):94-104, September 1991.

[WLR'09] Y. Wang, H. Liao, S.A. Reveliotis, T. Kelly, S. Mahlke, and S. Lafor-
tune. Gadara nets: Modeling and analyzing lock allocation for deadlock
avoidance in multithreaded software. In Proc. of the 49th IEEE Conf.
on Decision and Control, pages 4971-4976, Atlanta, Georgia, USA, De-
cember 2009.

[WZ05] N. Wu and M.C. Zhou. Modeling and deadlock avoidance of automated
manufacturing systems with multiple automated guided vehicles. IEFE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
35(6):11931202, December 2005.

[XJ99] X.L. Xie and M.D. Jeng. ERCN-merged nets and their analysis using
siphons. IEEE Transactions on Robotics and Automation, 29(4):692—
703, 1999.

[Zei84) B.P. Zeigler. Multifaceted modeling methodology: Grappling with the

irreducible complexity of systems. Behavioral Science, 29:169-178, 1984.

