428 research outputs found

    Detection of different species of p-aminothiophenol on silver nanoparticles by Surface-Enhanced Raman Spectroscopy (SERS)

    Get PDF
    In the present work we have analyzed the experimental and theoretical SERS spectra of the organic compound p-aminothiophenol (pATP, HS-Ph-NH2) recorded on silver nanoparticles. DFT calculations have been performed to support the experimental results in order to estimate the adsorption specie and the corresponding Raman bands assignment. It is found a different adsorption behavior of pATP not only by changing the concentration of the adsorbate but also by exciting the sample at different wavelengths.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The effect of concentration on the Surface-Enhanced Raman Scattering of p-Aminothiophenol

    Get PDF
    The organic compound p-aminothiophenol (pATP, HS-Ph-NH2) has become very popular because it is often used for checking the enhancement capability of each new SERS substrate due to its very intense SERS spectra. SERS of pATP on silver electrode is significantly different from its ordinary Raman spectra and it is very dependent on the particular conditions of the SERS experiment. In this work the effect of adsorbate concentration on the potential dependent SERS spectra of pATP recorded on a silver electrode has been studied using NaClO4 as electrolyte. On the other hand, MS-CASPT2 have been performed in order to help the analysis of the experimental results by computing resonance Raman spectra of selected structural models of the metal−adsorbate surface complex. It is found that the spectra are dependent on adsorbate concentration and dominated by a resonant charge transfer (CT) mechanism, where the charge is always transferred from the adsorbate to the metal. The relative SERS enhancements are due to Franck−Condon factors related to the CT process, and there are not intensified bands through Herzberg−Teller contributions. Furthermore, the Raman signals of the SERS recorded at low concentration arise from at least three different molecular species: (i) pATP bonded to silver electrode through sulfur atom (Agn-S−-Ph-NH2); (ii) pATP bonded to silver electrode through both sulfur and nitrogen atoms (Agn-S−-PhNH2-Agm); (iii) The azo derivative p,p′-dimercaptoazobenzene (or its nitrene precursor).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    SERS study of different species of p-aminothiophenol adsorbed on silver nanoparticles

    Get PDF
    In the present work we have focused the discussion on the experimental and theoretical SERS spectra of the organic compound pATP recorded on silver colloids. The huge SERS of pATP on metal substrates is significantly different from its ordinary Raman spectra due to the formation of a new specie namely p,p’ –dimercaptoazobenzene (DMAB). The features of the SERS spectra of pATP are strongly dependent on many factors as i.e. the laser power density or the laser wavelength but there are still important aspects to understand as, for example, the effect of the concentration that has already been studied before by our group. In this case we have analyzed the effect of the concentration at different wavelengths on the SERS spectra of pATP on silver nanoparticles.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effect of graphene substrate on the SERS Spectra of Aromatic bifunctional molecules on metal nanoparticles

    Get PDF
    The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

    Get PDF
    Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    No full text
    International audienceWe have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated

    Surface Plasmon Enhanced Chemical Reactions on Metal Nanostructures

    Get PDF
    Noble metal nanomaterials as plasmonic photocatalysts can strongly absorb visible light and generate localized surface plasmon resonance (SPR), which in turn depends on the size, shape, and surrounding of the plasmonic metal nanomaterials (PMNMs). Remarkably, the high-efficiency conversion of solar energy into chemical energy was expected to be achieved by PMNMs. Therefore, researchers have chosen PMNMs to improve the photocatalytic activity toward targeted molecules. This enhancement can be achieved by the effective separation of photogenerated electrons and holes of the PMNMs in the presence of light. Surface-enhanced Raman spectroscopy (SERS) has been performed for obtaining information about the photochemically transformed surface species at molecular levels. A profound understanding of kinetic mechanisms is needed for the development of novel plasmonic catalysts toward various chemical transformations of targeted molecules. In this chapter, based on the above discussions, the participation of SPR excitation in PMNMs and photocatalysis toward chemical transformations of SERS-active organic molecules such as aromatic amino and nitro compounds based on PMNMs have been discussed in detail through theoretical and experimental studies. Eventually, a summary and the future directions of this study are discussed

    Comparative Study of p-Aminothiophenol Adsorption by Surface-Enhanced Raman Spectroscopy

    Get PDF
    The organic compound p-aminothiophenol (PATP, HS-Ph-NH2) has become very popular for checking the enhancement capability of novel substrates due to its very intense SERS spectra. SERS of PATP on metal nanoparticles is significantly different from its ordinary Raman spectra and it is very dependent on the particular experimental conditions. It has been demonstrated that PATP molecule can chemically transform to 4,4′-dimercaptoazobenzene (DMAB) upon adsorption, being this new compound the responsible of giving rise to new SERS bands [1]. In this work, we have studied the adsorption behavior of PATP on different metal substrates: silver electrode [2], silver colloids and bimetallic nanoparticles made of gold and silver. Additionally, theoretical DFT calculations have been performed for supporting the experimental data. The analysis of the SERS results of the PAPT adsorbed on this type of nanoparticles leads us to deduce a very different catalytic capability in the dimerization of this adsorbate that depends directly on the morphology of the nanoparticle. These preliminary but fascinating results on these bimetallic systems are going to be the focus of further experiment in order to quantify the catalytic capabilities of these interesting nanoparticles. REFERENCES 1. Y.F. Huang, H.P. Zhu, G.K. Liu, D.Y. Wu, B. Ren, Z.Q. Tian, When the signal is not from the original molecule to be detected: Chemical transformation of para-Aminothiophenol on ag during the SERS measurement, J. Am. Chem. Soc. 132 (2010) 9244–9246. 2. M.R. Lopez-Ramirez, D. Aranda Ruiz, F.J. Avila Ferrer, S.P. Centeno, J.F. Arenas, J.C. Otero, J. Soto, Analysis of the Potential Dependent Surface-Enhanced Raman Scattering of p-Aminothiophenol on the Basis of MS-CASPT2 Calculations, J. Phys. Chem. C. 120 (2016) 19322–19328.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Spectroelectrochemical Study of the Photoinduced Catalytic Formation of 4,4′-Dimercaptoazobenzene from 4-Aminobenzenethiol Adsorbed on Nanostructured Copper

    Get PDF
    Surface-enhanced raman scattering (SERS) spectra of self-assembled monolayers of 4-aminobenzenethiol (4-ABT) on copper (Cu) and silver (Ag) surfaces decorated with Cu and Ag nanostructures, respectively, have been obtained with lasers at 532, 632.8, 785, and 1064 nm. Density functional theory (DFT) has been used to obtain calculated vibrational frequencies of the 4-ABT and 4,4′-dimercaptoazobenzene (4,4′-DMAB) molecules adsorbed on model Cu surfaces. The features of the SERS spectra depend on the electrode potential and the type and power density of the laser. SERS spectra showed the formation of the 4,4′-DMAB on the nanostructured Cu surface independently of the laser employed. For the sake of comparison SERS spectra of a self-assembled monolayer of the 4-ABT on Ag surfaces decorated with Ag nanostructures have been also obtained with the same four lasers. When using the 532 and 632.8 nm lasers, the 4,4′-DMAB is formed on Cu surface at electrode potentials as low as −1.0 V (AgCl/Ag) showing a different behavior with respect to Ag (and others metals such as Au and Pt). On the other hand, the surface-enhanced infrared reflection absorption (SEIRA) spectra showed that in the absence of the laser excitation the 4,4′-DMAB is not produced from the adsorbed 4-ABT on nanostructured Cu in the whole range of potentials studied. These results point out the prevalence of the role of electron–hole pairs through surface plasmon activity to explain the obtained SERS spectra.Financial support from Ministerio de Economía y Competitividad (Projects CTQ2013-48280-C3-3-R and CTQ2013-44083-P), Fondos Feder, and the University of Alicante are greatly acknowledged
    corecore